
Traveling Salesman

Given a set of cities ({1, . . . , n}) and a symmetric matrix C = (cij),
cij ≥ 0 that specifies for every pair (i, j) ∈ [n]× [n] the cost for

travelling from city i to city j. Find a permutation π of the cities

such that the round-trip cost

cπ(1)π(n) +
n−1∑
i=1

cπ(i)π(i+1)

is minimized.
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Traveling Salesman

Theorem 96

There does not exist an O(2n)-approximation algorithm for TSP.

Hamiltonian Cycle:

For a given undirected graph G = (V , E) decide whether there

exists a simple cycle that contains all nodes in G.

ñ Given an instance to HAMPATH we create an instance for TSP.

ñ If (i, j) ∉ E then set cij to n2n otw. set cij to 1. This

instance has polynomial size.

ñ There exists a Hamiltonian Path iff there exists a tour with

cost n. Otw. any tour has cost strictly larger than n2n.

ñ An O(2n)-approximation algorithm could decide btw. these

cases. Hence, cannot exist unless P = NP .
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Gap Introducing Reduction

yes

no

value ≤ n

value > 2n

gap

HAM TSP

Reduction from Hamiltonian cycle to TSP

ñ instance that has Hamiltonian cycle is mapped to TSP

instance with small cost

ñ otherwise it is mapped to instance with large cost

ñ =⇒ there is no 2n/n-approximation for TSP



PCP theorem: Approximation View

Theorem 97 (PCP Theorem A)

There exists ε > 0 for which there is gap introducing reduction

between 3SAT and MAX3SAT.

yes

no

1

≤ 1− ε

gap

3SAT MAX3SAT

Here the goal of the MAX3SAT-problem is to
maximize the fraction of satisfied clauses. The
above theorem implies that we cannot approxi-
mate MAX3SAT with a ratio better than 1− ε.

The standard formula-
tion of the PCP theo-
rem looks very differ-
ent but the above theo-
rem is equivalent. Orig-
inally, the PCP theorem
is a result about interac-
tive proof systems and
its importance to hard-
ness of approximation
is somewhat a side ef-
fect.



PCP theorem: Proof System View

Definition 98 (NP)

A language L ∈ NP if there exists a polynomial time, deterministic

verifier V (a Turing machine), s.t.

[x ∈ L] completeness

There exists a proof string y, |y| = poly(|x|),
s.t. V(x,y) = “accept”.

[x ∉ L] soundness

For any proof string y, V(x,y) = “reject”.

Note that requiring |y| = poly(|x|) for x ∉ L does not make a

difference (why?).
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Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access

to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle πTSP would allow M to

write a TSP-instance x on a special oracle tape and obtain the

answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query

complexity, i.e., how often the machine queries the oracle.

For a proof string y, πy is an oracle that upon given an index i
returns the i-th character yi of y.
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Probabilistic Checkable Proofs

Definition 99 (PCP)

A language L ∈ PCPc(n),s(n)(r(n), q(n)) if there exists a

polynomial time, non-adaptive, randomized verifier V , s.t.

[x ∈ L] There exists a proof string y, s.t. Vπy (x) =
“accept” with probability ≥ c(n).

[x ∉ L] For any proof string y, Vπy (x) = “accept” with

probability ≤ s(n).

The verifier uses at most O(r(n)) random bits and makes at most

O(q(n)) oracle queries.

Note that the proof itself does not count towards the input of the verifier. The verifier has to write
the number of a bit-position it wants to read onto a special tape, and then the corresponding
bit from the proof is returned to the verifier. The proof may only be exponentially long, as a
polynomial time verifier cannot address longer proofs.

Non-adaptive means that e.g. the sec-
ond proof-bit read by the verifier may
not depend on the value of the first bit.



Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1.

Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.

s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random

bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.
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Probabilistic Checkable Proofs

ñ P = PCP(0,0)
verifier without randomness and proof access is deterministic

algorithm

ñ PCP(logn,0) ⊆ P

we can simulate O(logn) random bits in deterministic,

polynomial time

ñ PCP(0, logn) ⊆ P

we can simulate short proofs in polynomial time

ñ PCP(poly(n),0) = coRP
?!= P

by definition; coRP is randomized polytime with one sided

error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

RP = coRP = P is a commonly believed
conjecture. RP stands for randomized
polynomial time (with a non-zero prob-
ability of rejecting a YES-instance).
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Probabilistic Checkable Proofs

ñ PCP(0,poly(n)) = NP

by definition; NP-verifier does not use randomness and asks

polynomially many queries

ñ PCP(logn,poly(n)) ⊆ NP

NP-verifier can simulate O(logn) random bits

ñ PCP(poly(n),0) = coRP
?!⊆ NP

ñ NP ⊆ PCP(logn,1)
hard part of the PCP-theorem
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PCP theorem: Proof System View

Theorem 100 (PCP Theorem B)

NP = PCP(logn,1)
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Probabilistic Proof for Graph NonIsomorphism

GNI is the language of pairs of non-isomorphic graphs

Verifier gets input (G0, G1) (two graphs with n-nodes)

It expects a proof of the following form:

ñ For any labeled n-node graph H the H’s bit P[H] of the

proof fulfills

G0 ≡ H =⇒ P[H] = 0

G1 ≡ H =⇒ P[H] = 1

G0, G1 � H =⇒ P[H] = arbitrary
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Probabilistic Proof for Graph NonIsomorphism

Verifier:

ñ choose b ∈ {0,1} at random

ñ take graph Gb and apply a random permutation to obtain a

labeled graph H
ñ check whether P[H] = b

If G0 � G1 then by using the obvious proof the verifier will always

accept.

If G0 ≡ G1 a proof only accepts with probability 1/2.

ñ suppose π(G0) = G1

ñ if we accept for b = 1 and permutation πrand we reject for

b = 0 and permutation πrand ◦π
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Version B =⇒ Version A

ñ For 3SAT there exists a verifier that uses c logn random bits,

reads q = O(1) bits from the proof, has completeness 1 and

soundness 1/2.

ñ fix x and r :

input

x, r
proof bits

πj1 , . . . , πjq

computation

fx,r (πj1 , . . . , πjq)

reject accept

0 1
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Version B =⇒ Version A

ñ transform Boolean formula fx,r into 3SAT formula Cx,r
(constant size, variables are proof bits)

ñ consider 3SAT formula Cx Í
∧
r Cx,r

[x ∈ L] There exists proof string y, s.t. all formulas Cx,r
evaluate to 1. Hence, all clauses in Cx satisfied.

[x ∉ L] For any proof string y, at most 50% of formulas

Cx,r evaluate to 1. Since each contains only a

constant number of clauses, a constant fraction

of clauses in Cx are not satisfied.

ñ this means we have gap introducing reduction
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Version A =⇒ Version B

We show: Version A =⇒ NP ⊆ PCP1,1−ε(logn,1).

given L ∈ NP we build a PCP-verifier for L

Verifier:

ñ 3SAT is NP-complete; map instance x for L into 3SAT

instance Ix, s.t. Ix satisfiable iff x ∈ L
ñ map Ix to MAX3SAT instance Cx (PCP Thm. Version A)

ñ interpret proof as assignment to variables in Cx
ñ choose random clause X from Cx
ñ query variable assignment σ for X;

ñ accept if X(σ) = true otw. reject



Version A =⇒ Version B

[x ∈ L] There exists proof string y, s.t. all clauses in Cx
evaluate to 1. In this case the verifier returns 1.

[x ∉ L] For any proof string y, at most a (1− ε)-fraction

of clauses in Cx evaluate to 1. The verifier will

reject with probability at least ε.

To show Theorem B we only need to run this verifier a constant

number of times to push rejection probability above 1/2.

19 Hardness of Approximation 8. Jul. 2022

Harald Räcke 479/526



NP ⊆ PCP(poly(n), 1)

PCP(poly(n),1) means we have a potentially exponentially long

proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment

(say n bits)) by a code whose code-words have 2n bits.

A wrong proof is either

ñ a code-word whose pre-image does not correspond to a

satisfying assignment

ñ or, a sequence of bits that does not correspond to a

code-word

We can detect both cases by querying a few positions.

Note that this approach has strong con-
nections to error correction codes.
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The Code

u ∈ {0,1}n (satisfying assignment)

Walsh-Hadamard Code:

WHu : {0,1}n → {0,1}, x , xTu (over GF(2))

The code-word for u is WHu. We identify this function by a

bit-vector of length 2n.
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The Code

Lemma 101

If u ≠ u′ then WHu and WHu′ differ in at least 2n−1 bits.

Proof:

Suppose that u−u′ ≠ 0. Then

WHu(x) ≠ WHu′(x)⇐⇒ (u−u′)Tx ≠ 0

This holds for 2n−1 different vectors x.

19 Hardness of Approximation 8. Jul. 2022

Harald Räcke 482/526



The Code

Suppose we are given access to a function f : {0,1}n → {0,1} and

want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions {0,1}n
to {0,1} we can check

f(x +y) = f(x)+ f(y)

for all 22n pairs x,y. But that’s not very efficient.
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NP ⊆ PCP(poly(n), 1)

Can we just check a constant number of positions?
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NP ⊆ PCP(poly(n), 1)

Definition 102

Let ρ ∈ [0,1]. We say that f , g : {0,1}n → {0,1} are ρ-close if

Pr
x∈{0,1}n

[f (x) = g(x)] ≥ ρ .

Theorem 103 (proof deferred)

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.

Observe that for two codewords
Prx∈{0,1}n[f (x) = g(x)] = 1/2.
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NP ⊆ PCP(poly(n), 1)

We need O(1/δ) trials to be sure that f is (1− δ)-close to a linear

function with (arbitrary) constant probability.
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NP ⊆ PCP(poly(n), 1)

Suppose for δ < 1/4 f is (1− δ)-close to some linear function f̃ .

f̃ is uniquely defined by f , since linear functions differ on at least

half their inputs.

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?
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NP ⊆ PCP(poly(n), 1)

Suppose we are given x ∈ {0,1}n and access to f . Can we

compute f̃ (x) using only constant number of queries?

1. Choose x′ ∈ {0,1}n u.a.r.

2. Set x′′ := x + x′.
3. Let y′ = f(x′) and y′′ = f(x′′).
4. Output y′ +y′′.

x′ and x′′ are uniformly distributed (albeit dependent). With

probability at least 1− 2δ we have f(x′) = f̃ (x′) and

f(x′′) = f̃ (x′′).

Then the above routine returns f̃ (x).

This technique is known as local decoding of the Walsh-Hadamard

code.



NP ⊆ PCP(poly(n), 1)

We show that QUADEQ ∈ PCP(poly(n),1). The theorem follows

since any PCP-class is closed under polynomial time reductions.

QUADEQ

Given a system of quadratic equations over GF(2). Is there a

solution?
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QUADEQ is NP-complete

ñ given 3SAT instance C represent it as Boolean circuit

e.g. C = (x1 ∨ x2 ∨ x3)∧ (x3 ∨ x4 ∨ x̄5)∧ (x6 ∨ x7 ∨ x8)
ñ add variable for every wire

ñ add constraint for every gate

OR: i1 + i2 + i1 · i2 = o
AND: i1 · i2 = o
NEG: i = 1− o

ñ add constraint out = 1

ñ system is feasible iff

C is satisfiable

x1 x2 x3 x4 x5 x6 x7 x8

a hb

out

c

d
e

f

go

i2i1

d · e = g
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NP ⊆ PCP(poly(n), 1)

We encode an instance of QUADEQ by a matrix A that has n2

columns; one for every pair i, j; and a right hand side vector b.

For an n-dimensional vector x we use x ⊗ x to denote the

n2-dimensional vector whose i, j-th entry is xixj.

Then we are asked whether

A(x ⊗ x) = b

has a solution.

Note that over GF(2) x = x2. Therefore,
we can assume that there are no terms
of degree 1.



NP ⊆ PCP(poly(n), 1)

Let A, b be an instance of QUADEQ. Let u be a satisfying

assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u
and u⊗u. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not

correspond to codewords for vectors of the form u, and u⊗u.

We also have to reject proofs that correspond to codewords for

vectors of the form z, and z ⊗ z, where z is not a satisfying

assignment.
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NP ⊆ PCP(poly(n), 1)

Step 1. Linearity Test.

The proof contains 2n + 2n
2

bits. This is interpreted as a pair of

functions f : {0,1}n → {0,1} and g : {0,1}n2 → {0,1}.

We do a 0.999-linearity test for both functions (requires a

constant number of queries).

We also assume that for the remaining constant number of

accesses WH-decoding succeeds and we recover f̃ (x).

Hence, our proof will only ever see f̃ . To simplify notation we use

f for f̃ , in the following (similar for g, g̃).

Recall that for a correct proof there is no
difference between f and f̃ .



NP ⊆ PCP(poly(n), 1)

We need to show that the probability of accepting a wrong proof is small.
This first step means that in order to fool us with reasonable probability a wrong proof needs

to be very close to a linear function. The probability that we accept a proof when the functions
are not close to linear is just a small constant.

Similarly, if the functions are close to linear then the probability that the Walsh Hadamard
decoding fails (for any of the remaining accesses) is just a small constant. If we ignore this
small constant error then a malicious prover could also provide a linear function (as a near
linear function f is “rounded” by us to the corresponding linear function f̃ ). If this rounding is
successful it doesn’t make sense for the prover to provide a function that is not linear.
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NP ⊆ PCP(poly(n), 1)

Step 2. Verify that g encodes u ⊗ u where u is string encoded

by f .

f(r) = uTr and g(z) = wTz since f , g are linear.

ñ choose r , r ′ independently, u.a.r. from {0,1}n
ñ if f(r)f (r ′) ≠ g(r ⊗ r ′) reject

ñ repeat 3 times
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NP ⊆ PCP(poly(n), 1)

f(r) · f(r ′) = uTr ·uTr ′

=
(∑
i
uiri

)
·
(∑
j
ujr ′j

)
=
∑
ij
uiujrir ′j

= rTUr ′

where U is matrix with Uij = ui ·uj
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NP ⊆ PCP(poly(n), 1)

Let W be n×n-matrix with entries from w. Let U be matrix with

Uij = ui ·uj (entries from u⊗u).

g(r ⊗ r ′) = wT (r ⊗ r ′) =
∑
ij
wijrir ′j = rTWr ′

f(r)f (r ′) = uTr ·uTr ′ = rTUr ′

If U ≠ W then Wr ′ ≠ Ur ′ with probability at least 1/2. Then

rTWr ′ ≠ rTUr ′ with probability at least 1/4.

For a non-zero vector x and a random vector r (both with elements from
GF(2)), we have Pr[xT r ≠ 0] = 1

2 . This holds because the product is zero iff
the number of ones in r that “hit” ones in x in the product is even.



NP ⊆ PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check

Ak(u⊗u) = bk
where Ak is the k-th row of the constraint matrix. But the left

hand side is just g(ATk ).

We can handle this by a single query but checking all constraints

would take O(m) steps.

We compute rTA, where r ∈R {0,1}m. If u is not a satisfying

assignment then with probability 1/2 the vector r will hit an odd

number of violated constraints.

In this case rTA(u⊗u) ≠ rTb. The left hand side is equal to

g(ATr).



NP ⊆ PCP(poly(n), 1)

We used the following theorem for the linearity test:

Theorem 103

Let f : {0,1}n → {0,1} with

Pr
x,y∈{0,1}n

[
f(x)+ f(y) = f(x +y)

]
≥ ρ > 1

2
.

Then there is a linear function f̃ such that f and f̃ are ρ-close.
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NP ⊆ PCP(poly(n), 1)

Fourier Transform over GF(2)

In the following we use {−1,1} instead of {0,1}. We map

b ∈ {0,1} to (−1)b.

This turns summation into multiplication.

The set of function f : {−1,1}n → R form a 2n-dimensional

Hilbert space.
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NP ⊆ PCP(poly(n), 1)

Hilbert space

ñ addition (f + g)(x) = f(x)+ g(x)
ñ scalar multiplication (αf)(x) = αf(x)
ñ inner product 〈f , g〉 = Ex∈{−1,1}n[f (x)g(x)]

(bilinear, 〈f , f 〉 ≥ 0, and 〈f , f 〉 = 0⇒ f = 0)

ñ completeness: any sequence xk of vectors for which

∞∑
k=1

‖xk‖ <∞ fulfills

∥∥∥∥∥∥L−
N∑
k=1

xk

∥∥∥∥∥∥→ 0

for some vector L.
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NP ⊆ PCP(poly(n), 1)

standard basis

ex(y) =
{

1 x = y
0 otw.

Then, f(x) =∑iαiei(x) where αx = f(x), this means the

functions ei form a basis. This basis is orthonormal.
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NP ⊆ PCP(poly(n), 1)

fourier basis

For α ⊆ [n] define

χα(x) =
∏
i∈α
xi

Note that

〈χα, χβ〉 = Ex
[
χα(x)χβ(x)

]
= Ex

[
χα4β(x)

]
=
{

1 α = β
0 otw.

This means the χα’s also define an orthonormal basis. (since we

have 2n orthonormal vectors...)
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NP ⊆ PCP(poly(n), 1)

A function χα multiplies a set of xi’s. Back in the GF(2)-world this

means summing a set of zi’s where xi = (−1)zi .

This means the function χα correspond to linear functions in the

GF(2) world.
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NP ⊆ PCP(poly(n), 1)

We can write any function f : {−1,1}n → R as

f =
∑
α
f̂αχα

We call f̂α the αth Fourier coefficient.

Lemma 104

1. 〈f , g〉 =∑α fαgα
2. 〈f , f 〉 =∑α f 2

α

Note that for Boolean functions f : {−1,1}n → {−1,1}, 〈f , f 〉 = 1.

〈f , f 〉 = Ex[f (x)2] = 1
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Linearity Test

in GF(2):
We want to show that if Prx,y[f (x)+ f(y) = f(x +y)] is large

than f has a large agreement with a linear function.

in Hilbert space: (we will prove)

Suppose f : {±1}n → {−1,1} fulfills

Pr
x,y
[f (x)f(y) = f(x ◦y)] ≥ 1

2
+ ε .

Then there is some α ⊆ [n], s.t. f̂α ≥ 2ε.

Here x ◦y denotes the n-dimensional vector with entry
xiyi in position i (Hadamard product).
Observe that we have χα(x ◦y) = χα(x)χα(y).
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Linearity Test

For Boolean functions 〈f , g〉 is the fraction of inputs on which

f , g agree minus the fraction of inputs on which they disagree.

2ε ≤ f̂α = 〈f , χα〉 = agree− disagree = 2agree− 1

This gives that the agreement between f and χα is at least 1
2 + ε.
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Linearity Test

Pr
x,y
[f (x ◦y) = f(x)f(y)] ≥ 1

2
+ ε

means that the fraction of inputs x,y on which f(x ◦y) and

f(x)f(y) agree is at least 1/2+ ε.

This gives

Ex,y[f (x ◦y)f(x)f(y)] = agreement− disagreement

= 2agreement− 1

≥ 2ε
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2ε ≤ Ex,y
[
f(x ◦y)f(x)f(y)

]

= Ex,y
[(∑

α f̂αχα(x ◦y)
)
·
(∑

β f̂βχβ(x)
)
·
(∑

γ f̂γχγ(y)
)]

= Ex,y
[∑

α,β,γ f̂αf̂βf̂γχα(x)χα(y)χβ(x)χγ(y)
]

=
∑
α,β,γ f̂αf̂βf̂γ · Ex

[
χα(x)χβ(x)

]
Ey
[
χα(y)χγ(y)

]
=
∑
α
f̂ 3
α

≤max
α
f̂α ·

∑
α
f̂ 2
α =max

α
f̂α
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Label Cover

Input:

ñ bipartite graph G = (V1, V2, E)
ñ label sets L1, L2

ñ for every edge (u,v) ∈ E a relation Ru,v ⊆ L1 × L2 that

describe assignments that make the edge happy.

ñ maximize number of happy edges

1 2 3 4

1 2 3 4 5

L1 = { , , , }

L2 = { , , , , }

Re = {( , ), ( , ), ( , )}

The label cover problem also has its origin in proof systems. It encodes a 2PR1
(2 prover 1 round system). Each side of the graph corresponds to a prover. An
edge is a query consisting of a question for prover 1 and prover 2. If the answers
are consistent the verifer accepts otw. it rejects.



Label Cover

ñ an instance of label cover is (d1, d2)-regular if every vertex in

L1 has degree d1 and every vertex in L2 has degree d2.

ñ if every vertex has the same degree d the instance is called

d-regular
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MAX E3SAT via Label Cover

instance:

Φ(x) = (x1 ∨ x̄2 ∨ x3)∧ (x4 ∨ x2 ∨ x̄3)∧ (x̄1 ∨ x2 ∨ x̄4)

corresponding graph:

x1 x2 x3 x4

x1 ∨ x̄2 ∨ x3 x4 ∨ x2 ∨ x̄3 x̄1 ∨ x2 ∨ x̄4

label sets: L1 = {T , F}3, L2 = {T , F} (T=true, F=false)

relation: RC,xi = {((ui, uj , uk),ui)}, where the clause C is over

variables xi, xj , xk and assignment (ui, uj , uk) satisfies C

R = {((F, F, F), F), ((F, T , F), F), ((F, F, T), T), ((F, T , T), T),
((T , T , T), T), ((T , T , F), F), ((T , F, F), F)}

The verifier accepts if the la-
belling (assignment to vari-
ables in clauses at the top
+ assignment to variables at
the bottom) causes the clause
to evaluate to true and is con-
sistent, i.e., the assignment
of e.g. x4 at the bottom is
the same as the assignment
given to x4 in the labelling of
the clause.



MAX E3SAT via Label Cover

Lemma 105

If we can satisfy k out of m clauses in φ we can make at least

3k+ 2(m− k) edges happy.

Proof:

ñ for V2 use the setting of the assignment that satisfies k
clauses

ñ for satisfied clauses in V1 use the corresponding assignment

to the clause-variables (gives 3k happy edges)

ñ for unsatisfied clauses flip assignment of one of the

variables; this makes one incident edge unhappy (gives

2(m− k) happy edges)
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MAX E3SAT via Label Cover

Lemma 106

If we can satisfy at most k clauses in Φ we can make at most

3k+ 2(m− k) = 2m+ k edges happy.

Proof:

ñ the labeling of nodes in V2 gives an assignment

ñ every unsatisfied clause in this assignment cannot be

assigned a label that satisfies all 3 incident edges

ñ hence at most 3m− (m− k) = 2m+ k edges are happy

19 Hardness of Approximation 8. Jul. 2022

Harald Räcke 514/526



Hardness for Label Cover

We cannot distinguish between the following two cases

ñ all 3m edges can be made happy

ñ at most 2m+ (1− ε)m = (3− ε)m out of the 3m edges can

be made happy

Hence, we cannot obtain an approximation constant α > 3−ε
3 .

Here ε > 0 is the constant from PCP The-
orem A.
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(3, 5)-regular instances

Theorem 107

There is a constant ρ s.t. MAXE3SAT is hard to approximate with

a factor of ρ even if restricted to instances where a variable

appears in exactly 5 clauses.

Then our reduction has the following properties:

ñ the resulting Label Cover instance is (3,5)-regular

ñ it is hard to approximate for a constant α < 1

ñ given a label `1 for x there is at most one label `2 for y that

makes edge (x,y) happy (uniqueness property)
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(3, 5)-regular instances

The previous theorem can be obtained with a series of

gap-preserving reductions:

ñ MAX3SAT ≤ MAX3SAT(≤ 29)
ñ MAX3SAT(≤ 29) ≤ MAX3SAT(≤ 5)
ñ MAX3SAT(≤ 5) ≤ MAX3SAT(= 5)
ñ MAX3SAT(= 5) ≤ MAXE3SAT(= 5)

Here MAX3SAT(≤ 29) is the variant of MAX3SAT in which a

variable appears in at most 29 clauses. Similar for the other

problems.
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Regular instances

Theorem 108

There is a constant α < 1 such if there is an α-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Given a label `1 for x ∈ V1 there is at most one label `2 for y that

makes (x,y) happy. (uniqueness property)

We take the (3,5)-regular instance. We make 3 copies of
every clause vertex and 5 copies of every variable vertex.
Then we add edges between clause vertex and variable
vertex iff the clause contains the variable. This increases
the size by a constant factor. The gap instance can still
either only satisfy a constant fraction of the edges or all
edges. The uniqueness property still holds for the new
instance.
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Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance

probability of a wrong proof (or as here: a pair of wrong proofs)

one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a

single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several

rounds in parallel and hope that the acceptance probability of

wrong proofs goes down.

19 Hardness of Approximation 8. Jul. 2022

Harald Räcke 519/526



Parallel Repetition

Given Label Cover instance I with G = (V1, V2, E), label sets L1

and L2 we construct a new instance I′:
ñ V ′1 = Vk1 = V1 × · · · × V1

ñ V ′2 = Vk2 = V2 × · · · × V2

ñ L′1 = Lk1 = L1 × · · · × L1

ñ L′2 = Lk2 = L2 × · · · × L2

ñ E′ = Ek = E × · · · × E
An edge ((x1, . . . , xk), (y1, . . . , yk)) whose end-points are labelled

by (`x1 , . . . , `
x
k ) and (`y1 , . . . , `

y
k ) is happy if (`xi , `

y
i ) ∈ Rxi,yi for

all i.
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Parallel Repetition

If I is regular than also I′.

If I has the uniqueness property than also I′.

Did the gap increase?

ñ Suppose we have labelling `1, `2 that satisfies just an

α-fraction of edges in I.
ñ We transfer this labelling to instance I′:

vertex (x1, . . . , xk) gets label (`1(x1), . . . , `1(xk)),
vertex (y1, . . . , yk) gets label (`2(y1), . . . , `2(yk)).

ñ How many edges are happy?

only (α|E|)k out of |E|k!!! (just an αk fraction)

Does this always work?
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Counter Example

Non interactive agreement:

ñ Two provers A and B
ñ The verifier generates two random bits bA, and bB, and

sends one to A and one to B.

ñ Each prover has to answer one of A0, A1, B0, B1 with the

meaning A0 := prover A has been given a bit with value 0.

ñ The provers win if they give the same answer and if the

answer is correct.
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Counter Example

The provers can win with probability at most 1/2.

0

1

0

1

0

1

0

1

A B

A0 A1

A1

Regardless what we do 50% of edges are unhappy!
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Counter Example

In the repeated game the provers can

also win with probability 1/2:

0,0

0,1

1,0

1,1

0,0

1,0

0,1

1,1

0,0

0,1

1,0

1,1

0,0

1,0

0,1

1,1

A B

A0, B0

A0, B0

A0, B0

A0, B0

A1, B1

A1, B1

A1, B1

A1, B1

For the first game/coordinate the
provers give an answer of the form
“A has received...” (A0 or A1) and
for the second an answer of the
form “B has received...” (B0 or B1).

If the answer a prover has to
give is about himself a prover can
answer correctly. If the answer to
be given is about the other prover
the same bit is returned. This
means e.g. Prover B answers A1

for the first game iff in the second
game he receives a 1-bit.

By this method the provers al-
ways win if Prover A gets the same
bit in the first game as Prover B
in the second game. This happens
with probability 1/2.

This strategy is not possible for
the provers if the game is repeated
sequentially. How should prover B
know (for her answer in the first
game) which bit she is going to re-
ceive in the second game?



Boosting

Theorem 109

There is a constant c > 0 such if OPT(I) = |E|(1− δ) then

OPT(I′) ≤ |E′|(1− δ)
ck

logL , where L = |L1| + |L2| denotes total

number of labels in I.

proof is highly non-trivial
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Hardness of Label Cover

Theorem 110

There are constants c > 0, δ < 1 s.t. for any k we cannot

distinguish regular instances for Label Cover in which either

ñ OPT(I) = |E|, or

ñ OPT(I) = |E|(1− δ)ck
unless each problem in NP has an algorithm running in time

O(nO(k)).

Corollary 111

There is no α-approximation for Label Cover for any constant α.
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