Brewery Problem

Brewery brews ale and beer.

- Production limited by supply of corn, hops and barley malt
- Recipes for ale and beer require different amounts of resources

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

Harald Räcke	8. Jul. 2022 12/52

Brewery Problem

Linear Program

- Introduce variables a and b that define how much ale and beer to produce.
- Choose the variables in such a way that the objective function (profit) is maximized.
- Make sure that no constraints (due to limited supply) are violated.

max	13a	+	23 <i>b</i>	
s.t.	5 <i>a</i>	+	15b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a,b	≥ 0

ากปกก	المعماط	Däales
	Harald	Racke

3 Introduction to Linear Programming

Brewery Problem

	Corn (kg)	Hops (kg)	Malt (kg)	Profit (€)
ale (barrel)	5	4	35	13
beer (barrel)	15	4	20	23
supply	480	160	1190	

How can brewer maximize profits?

	3 Introduction to Linear Programming		8. Jul. 20
▶]	2 barrels ale, 28 barrels beer	⇒ 800€	
► 7	7.5 barrels ale, 29.5 barrels beer	⇒ 776€	
► (only brew beer: 32 barrels of beer	⇒736€	
► (only brew ale: 34 barrels of ale	⇒ 442€	

Harald Räcke

Standard Form LPs LP in standard form: **input:** numbers a_{ii}, c_i, b_i • output: numbers x_i \triangleright *n* = #decision variables, *m* = #constraints maximize linear objective function subject to linear (in)equalities $\sum c_j x_j$ max max $c^T x$ s.t. Ax = b $\sum_{i=1}^{n} a_{ij} x_j$ s.t. $= b_i \ 1 \leq i \leq m$ $\chi \geq$ $x_i \geq 0 \quad 1 \leq j \leq n$

Harald Räcke

8. Jul. 2022

3 Introduction to Linear Programming

Standard Form LPs

Original LP

	10 -		<u></u>	
max	13a	+	230	
s.t.	5 <i>a</i>	+	15b	≤ 480
	4a	+	4b	≤ 160
	35a	+	20b	≤ 1190
			a,b	≥ 0

Standard Form

Add a slack variable to every constraint.

Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

less or equal to equality:

$$a - 3b + 5c \le 12 \implies a - 3b + 5c + s = 12$$

 $s \ge 0$

greater or equal to equality:

 $a - 3b + 5c \ge 12 \implies a - 3b + 5c - s = 12$ $s \ge 0$

min to max:

$$\min a - 3b + 5c \implies \max -a + 3b - 5c$$

3 Introduction to Linear Programming

8. Jul. 2022

Standard Form LPs

There are different standard forms:

	sta	ndard f	orm								
	max	$c^T x$				mi	n	$c^T x$			
	s.t.	Ax	=	b		s.t		Ax	=	b	
		x	\geq	0				x	\geq	0	
	maxii max s.t.	standar mizatio $c^T x$ Ax x	rd n for ≤ ≥	т b 0		mi min s.t	s nin n :.	standar nizatio c ^T x Ax x	rd <u>n for</u> ≥ ≥	т b 0	
Harald	Räcke		3	Introd	luction to Linear F	Programming	J				8. Jul. 2022 17/52

Standard Form LPs It is easy to transform variants of LPs into (any) standard for	m:
equality to less or equal:	
$a - 3b + 5c = 12 \implies \begin{array}{c} a - 3b + 5c \le 12 \\ -a + 3b - 5c \le -12 \end{array}$	
equality to greater or equal:	
$a - 3b + 5c = 12 \implies \begin{array}{c} a - 3b + 5c \ge 12 \\ -a + 3b - 5c \ge -12 \end{array}$	
unrestricted to nonnegative:	
x unrestricted $\implies x = x^+ - x^-, x^+ \ge 0, x^- \ge 0$	
3 Introduction to Linear Programming	8. Jul. 2022 19/52

Standard Form LPs

Observations:

- a linear program does not contain x^2 , $\cos(x)$, etc.
- transformations between standard forms can be done efficiently and only change the size of the LP by a small constant factor
- for the standard minimization or maximization LPs we could include the nonnegativity constraints into the set of ordinary constraints; this is of course not possible for the standard form

Harald Räcke	3 Introduction to Linear Programming	8. Jul. 2022 20/52

Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- ► Is LP in NP?
- Is LP in co-NP?
- Is LP in P?

Input size:

n number of variables, *m* constraints, *L* number of bits to encode the input

החוחר	3 Introduction to Linear Programming	8. Jul. 2022
UUU Harald Räcke		21/52

Definitions

Let for a Linear Program in standard form
$P = \{x \mid Ax = b, x \ge 0\}.$
P is called the feasible region (Lösungsraum) of the LP.
A point $x \in P$ is called a feasible point (gültige Lösung).
• If $P \neq \emptyset$ then the LP is called feasible (erfüllbar). Otherwise,
it is called infeasible (unerfüllbar).
An LP is bounded (beschränkt) if it is feasible and
• $c^T x < \infty$ for all $x \in P$ (for maximization problems)
• $c^T x > -\infty$ for all $x \in P$ (for minimization problems)

Harald Räcke	3 Introduction to Linear Programming	8. Jul.

Definition 2

Given vectors/points $x_1, \ldots, x_k \in \mathbb{R}^n$, $\sum \lambda_i x_i$ is called

- linear combination if $\lambda_i \in \mathbb{R}$.
- affine combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$.
- convex combination if $\lambda_i \in \mathbb{R}$ and $\sum_i \lambda_i = 1$ and $\lambda_i \ge 0$.
- conic combination if $\lambda_i \in \mathbb{R}$ and $\lambda_i \ge 0$.

Note that a combination involves only finitely many vectors.

הם הב	
	Harald Räcke

3 Introduction to Linear Programming

8. Jul. 2022

Definition 3

A set $X \subseteq \mathbb{R}^n$ is called

- a linear subspace if it is closed under linear combinations.
- an affine subspace if it is closed under affine combinations.
- convex if it is closed under convex combinations.
- a convex cone if it is closed under conic combinations.

Note that an affine subspace is **not** a vector space

Definition 4

Given a set $X \subseteq \mathbb{R}^n$.

- span(X) is the set of all linear combinations of X (linear hull, span)
- aff(X) is the set of all affine combinations of X (affine hull)
- conv(X) is the set of all convex combinations of X (convex hull)
- cone(X) is the set of all conic combinations of X (conic hull)

8. Jul. 2022 26/52

Definition 5 A function $f : \mathbb{R}^n \to \mathbb{R}$ is convex if for $x, y \in \mathbb{R}^n$ and $\lambda \in [0, 1]$ we have

 $f(\lambda x + (1 - \lambda)\gamma) \le \lambda f(x) + (1 - \lambda)f(\gamma)$

Lemma 6 If $P \subseteq \mathbb{R}^n$, and $f : \mathbb{R}^n \to \mathbb{R}$ convex then also

 $O = \{ x \in P \mid f(x) \le t \}$

Harald Räcke	3 Introduction to Linear Programming	8. Jul. 2022 28/52

Definition 9 A set $H \subseteq \mathbb{R}^n$ is a hyperplane if $H = \{x \mid a^T x = b\}$, for $a \neq 0$.

Definition 10 A set $H' \subseteq \mathbb{R}^n$ is a (closed) halfspace if $H = \{x \mid a^T x \leq b\}$, for $a \neq 0$.

Dimensions

Definition 7

The dimension dim(A) of an affine subspace $A \subseteq \mathbb{R}^n$ is the dimension of the vector space $\{x - a \mid x \in A\}$, where $a \in A$.

Definition 8

The dimension dim(X) of a convex set $X \subseteq \mathbb{R}^n$ is the dimension of its affine hull aff(X).

Harald Räcke

3 Introduction to Linear Programming

8. Jul. 2022

Definitions

Definition 12

A polyhedron is a set $P \subseteq \mathbb{R}^n$ that can be represented as the intersection of finitely many half-spaces $\{H(a_1, b_1), \dots, H(a_m, b_m)\}$, where

 $H(a_i, b_i) = \{x \in \mathbb{R}^n \mid a_i x \le b_i\} .$

Definition 13 A polyhedron *P* is bounded if there exists *B* s.t. $||x||_2 \le B$ for all $x \in P$.

Harald Räcke

3 Introduction to Linear Programming

Definition 15

Let $P \subseteq \mathbb{R}^n$, $a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. The hyperplane

 $H(a,b) = \{x \in \mathbb{R}^n \mid a^T x = b\}$

is a supporting hyperplane of *P* if $\max\{a^T x \mid x \in P\} = b$.

Definition 16

Let $P \subseteq \mathbb{R}^n$. *F* is a face of *P* if F = P or $F = P \cap H$ for some supporting hyperplane *H*.

Definition 17

Let $P \subseteq \mathbb{R}^n$.

- a face v is a vertex of P if $\{v\}$ is a face of P.
- a face *e* is an edge of *P* if *e* is a face and dim(e) = 1.
- a face *F* is a facet of *P* if *F* is a face and $\dim(F) = \dim(P) 1$.

8. Jul. 2022 34/52

8. Jul. 2022

Equivalent definition for vertex:

Definition 18

Given polyhedron *P*. A point $x \in P$ is a vertex if $\exists c \in \mathbb{R}^n$ such that $c^T y < c^T x$, for all $y \in P$, $y \neq x$.

Definition 19

Given polyhedron *P*. A point $x \in P$ is an extreme point if $\nexists a, b \neq x, a, b \in P$, with $\lambda a + (1 - \lambda)b = x$ for $\lambda \in [0, 1]$.

Lemma 20

A vertex is also an extreme point.

Observation

The feasible region of an LP is a Polyhedron.

Harald Räcke	3 Introduction to Linear Programming	8. Jul. 2022 36/52

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form) then there exists an optimum solution that is an extreme point.

Proof

- suppose x is optimal solution that is not extreme point
- there exists direction $d \neq 0$ such that $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- Wlog. assume $c^T d \ge 0$ (by taking either d or -d)
- Consider $x + \lambda d$, $\lambda > 0$

3 Introduction to Linear Programming	8. Jul. 2022
Harald Räcke	37/52

Notation

Suppose $B \subseteq \{1 \dots n\}$ is a set of column-indices. Define A_B as the subset of columns of A indexed by B.

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Harald Räcke	3 Introduction to Linear Programming	8. Ju

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇒)

- ► assume *A_B* has linearly dependent columns
- there exists $d \neq 0$ such that $A_B d = 0$
- extend *d* to \mathbb{R}^n by adding 0-components
- now, Ad = 0 and $d_j = 0$ whenever $x_j = 0$
- for sufficiently small λ we have $x \pm \lambda d \in P$
- hence, x is not extreme point

Theorem 22

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. Then x is extreme point iff A_B has linearly independent columns.

Proof (⇐)

- assume x is not extreme point
- there exists direction d s.t. $x \pm d \in P$
- Ad = 0 because $A(x \pm d) = b$
- define $B' = \{j \mid d_j \neq 0\}$
- $A_{B'}$ has linearly dependent columns as Ad = 0
- $d_j = 0$ for all j with $x_j = 0$ as $x \pm d \ge 0$
- Hence, $B' \subseteq B$, $A_{B'}$ is sub-matrix of A_B

Theorem 23

Let $P = \{x \mid Ax = b, x \ge 0\}$. For $x \in P$, define $B = \{j \mid x_j > 0\}$. If A_B has linearly independent columns then x is a vertex of P.

- define $c_j = \begin{cases} 0 & j \in B \\ -1 & j \notin B \end{cases}$
- then $c^T x = 0$ and $c^T y \le 0$ for $y \in P$
- ▶ assume $c^T y = 0$; then $y_j = 0$ for all $j \notin B$
- $b = Ay = A_By_B = Ax = A_Bx_B$ gives that $A_B(x_B y_B) = 0$;
- this means that $x_B = y_B$ since A_B has linearly independent columns
- we get y = x
- hence, x is a vertex of P

8. Jul. 2022 42/52

Observation

For an LP we can assume wlog. that the matrix A has full row-rank. This means rank(A) = m.

- assume that rank(A) < m
- assume wlog. that the first row A₁ lies in the span of the other rows A₂,..., A_m; this means

$$A_1 = \sum_{i=2}^m \lambda_i \cdot A_i$$
, for suitable λ_i

- **C1** if now $b_1 = \sum_{i=2}^{m} \lambda_i \cdot b_i$ then for all x with $A_i x = b_i$ we also have $A_1 x = b_1$; hence the first constraint is superfluous
- C2 if $b_1 \neq \sum_{i=2}^m \lambda_i \cdot b_i$ then the LP is infeasible, since for all x that fulfill constraints A_2, \ldots, A_m we have

$$A_1 x = \sum_{i=2}^m \lambda_i \cdot A_i x = \sum_{i=2}^m \lambda_i \cdot b_i \neq b_1$$

Theorem 24

Given $P = \{x \mid Ax = b, x \ge 0\}$. *x is extreme point iff there exists* $B \subseteq \{1, ..., n\}$ *with* |B| = m *and*

- \blacktriangleright A_B is non-singular
- $\blacktriangleright x_B = A_B^{-1}b \ge 0$
- $\blacktriangleright x_N = 0$

where $N = \{1, \ldots, n\} \setminus B$.

Proof

Take $B = \{j \mid x_j > 0\}$ and augment with linearly independent columns until |B| = m; always possible since rank(A) = m.

Harald Räcke

3 Introduction to Linear Programming

8. Jul. 2022

Basic Feasible Solutions $x \in \mathbb{R}^{n}$ is called basic solution (Basislösung) if Ax = b and $rank(A_{J}) = |J|$ where $J = \{j \mid x_{j} \neq 0\}$; x is a basic feasible solution (gültige Basislösung) if in addition $x \ge 0$. A basis (Basis) is an index set $B \subseteq \{1, ..., n\}$ with $rank(A_{B}) = m$ and |B| = m. $x \in \mathbb{R}^{n}$ with $A_{B}x_{B} = b$ and $x_{j} = 0$ for all $j \notin B$ is the basic solution associated to basis B (die zu *B* assoziierte Basislösung)

8. Jul. 2022 46/52

Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n - m of the x_i 's are zero. The corresponding non-negativity constraint is fulfilled with equality.

Fact:

In a BFS at least n constraints are fulfilled with equality.

Harald Räcke	3 Introduction to Linear Programming	8. Ju

Basic Feasible Solutions

Definition 25

For a general LP (max{ $c^T x | Ax \le b$ }) with n variables a point x is a basic feasible solution if x is feasible and there exist n (linearly independent) constraints that are tight.

Harald Räcke

3 Introduction to Linear Programming

```
8. Jul. 2022
```

Fundamental Questions Linear Programming Problem (LP)

Let $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, $\alpha \in \mathbb{Q}$. Does there exist $x \in \mathbb{Q}^n$ s.t. Ax = b, $x \ge 0$, $c^T x \ge \alpha$?

Questions:

- Is LP in NP? yes!
- Is LP in co-NP?
- Is LP in P?

Proof:

Given a basis *B* we can compute the associated basis solution by calculating A_B⁻¹b in polynomial time; then we can also compute the profit.

Observation

We can compute an optimal solution to a linear program in time $\mathcal{O}\left(\binom{n}{m} \cdot \operatorname{poly}(n,m)\right)$.

- there are only $\binom{n}{m}$ different bases.
- compute the profit of each of them and take the maximum

What happens if LP is unbounded?

החוחר	3 Introduction to Linear Programming	8. Jul. 2022
UUU Harald Räcke		52/52

