10 Karmarkars Algorithm

- ▶ inequalities $Ax \le b$; $m \times n$ matrix A with rows a_i^T
- $P = \{x \mid Ax \le b\}; P^{\circ} := \{x \mid Ax < b\}$
- ▶ interior point algorithm: $x \in P^{\circ}$ throughout the algorithm
- ▶ for $x \in P^{\circ}$ define

$$s_i(x) := b_i - a_i^T x$$

as the slack of the *i*-th constraint

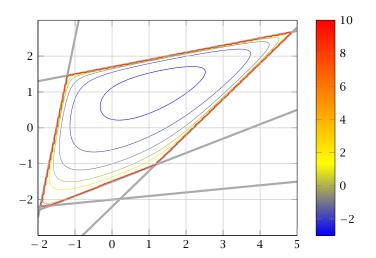
logarithmic barrier function:

$$\phi(x) = -\sum_{i=1}^{m} \ln(s_i(x))$$

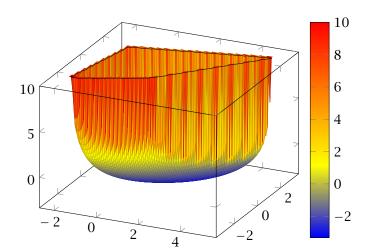
Penalty for point x; points close to the boundary have a very large penalty.

Throughout this section a_i denotes the i-th row as a column vector.

Penalty Function



Penalty Function



Gradient and Hessian

Taylor approximation:

$$\phi(x + \epsilon) \approx \phi(x) + \nabla \phi(x)^T \epsilon + \frac{1}{2} \epsilon^T \nabla^2 \phi(x) \epsilon$$

Gradient:

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} \cdot a_i = A^T d_x$$

where $d_x^T = (1/s_1(x), \dots, 1/s_m(x))$. (d_x vector of inverse slacks)

Hessian:

$$H_X := \nabla^2 \phi(x) = \sum_{i=1}^m \frac{1}{s_i(x)^2} a_i a_i^T = A^T D_x^2 A$$

with $D_X = \operatorname{diag}(d_X)$.

Proof for Gradient

$$\begin{split} \frac{\partial \phi(x)}{\partial x_i} &= \frac{\partial}{\partial x_i} \left(-\sum_r \ln(s_r(x)) \right) \\ &= -\sum_r \frac{\partial}{\partial x_i} \left(\ln(s_r(x)) \right) = -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(s_r(x) \right) \\ &= -\sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(b_r - a_r^T x \right) = \sum_r \frac{1}{s_r(x)} \frac{\partial}{\partial x_i} \left(a_r^T x \right) \\ &= \sum_r \frac{1}{s_r(x)} A_{ri} \end{split}$$

The *i*-th entry of the gradient vector is $\sum_{r} 1/s_r(x) \cdot A_{ri}$. This gives that the gradient is

$$\nabla \phi(x) = \sum_{r} 1/s_r(x) a_r = A^T d_x$$

Proof for Hessian

$$\frac{\partial}{\partial x_j} \left(\sum_r \frac{1}{s_r(x)} A_{ri} \right) = \sum_r A_{ri} \left(-\frac{1}{s_r(x)^2} \right) \cdot \frac{\partial}{\partial x_j} \left(s_r(x) \right)$$
$$= \sum_r A_{ri} \frac{1}{s_r(x)^2} A_{rj}$$

Note that $\sum_r A_{ri} A_{rj} = (A^T A)_{ij}$. Adding the additional factors $1/s_r(x)^2$ can be done with a diagonal matrix.

Hence the Hessian is

$$H_{\mathcal{X}} = A^T D^2 A$$

Properties of the Hessian

 H_X is positive semi-definite for $X \in P^{\circ}$

$$u^{T}H_{x}u = u^{T}A^{T}D_{x}^{2}Au = ||D_{x}Au||_{2}^{2} \ge 0$$

This gives that $\phi(x)$ is convex.

If rank(A) = n, H_X is positive definite for $X \in P^{\circ}$

$$u^T H_X u = ||D_X A u||_2^2 > 0 \text{ for } u \neq 0$$

This gives that $\phi(x)$ is strictly convex.

 $||u||_{H_X} := \sqrt{u^T H_X u}$ is a (semi-)norm; the unit ball w.r.t. this norm is an ellipsoid.

Dikin Ellipsoid

$$E_X = \{ y \mid (y - x)^T H_X (y - x) \le 1 \} = \{ y \mid ||y - x||_{H_X} \le 1 \}$$

Points in E_x are feasible!!!

$$(y - x)^{T} H_{X}(y - x) = (y - x)^{T} A^{T} D_{X}^{2} A(y - x)$$

$$= \sum_{i=1}^{m} \frac{(a_{i}^{T} (y - x))^{2}}{s_{i}(x)^{2}}$$

$$= \sum_{i=1}^{m} \frac{(\text{change of distance to } i\text{-th constraint going from } x \text{ to } y)^{2}}{(\text{distance of } x \text{ to } i\text{-th constraint})^{2}}$$

$$< 1$$

In order to become infeasible when going from x to y one of the terms in the sum would need to be larger than 1.

Dikin Ellipsoids



Analytic Center

$$x_{\mathrm{ac}} := \operatorname{arg\,min}_{x \in P^{\circ}} \phi(x)$$

 \triangleright $x_{\rm ac}$ is solution to

$$\nabla \phi(x) = \sum_{i=1}^{m} \frac{1}{s_i(x)} a_i = 0$$

- depends on the description of the polytope
- \blacktriangleright $\chi_{\rm ac}$ exists and is unique iff P° is nonempty and bounded

Central Path

In the following we assume that the LP and its dual are strictly feasible and that rank(A) = n.

Central Path:

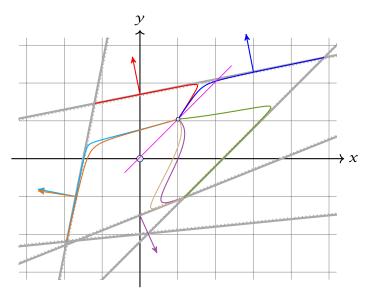
Set of points $\{x^*(t) \mid t > 0\}$ with

$$x^*(t) = \operatorname{argmin}_{x} \{ tc^T x + \phi(x) \}$$

- t = 0: analytic center
- $t = \infty$: optimum solution

 $x^*(t)$ exists and is unique for all $t \ge 0$.

Different Central Paths



Central Path

Intuitive Idea:

Find point on central path for large value of t. Should be close to optimum solution.

Questions:

- Is this really true? How large a t do we need?
- How do we find corresponding point $x^*(t)$ on central path?

The Dual

primal-dual pair:

$$\begin{array}{ll}
\text{min } c^T x \\
\text{s.t. } Ax \le b
\end{array}$$

$$\max -b^{T}z$$
s.t. $A^{T}z + c = 0$
 $z \ge 0$

Assumptions

- primal and dual problems are strictly feasible;
- ightharpoonup rank(A) = n.

-b} (variables x are unrestricted).

Force Field Interpretation

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$

- We can view each constraint as generating a repelling force. The combination of these forces is represented by $\nabla \phi(x)$.
- In addition there is a force *tc* pulling us towards the optimum solution.

The "gravitational force" actually pulls us in direction $-\nabla\Phi(x)$. We are minimizing, hence, optimizing in direction -c.

How large should t be?

Point $x^*(t)$ on central path is solution to $tc + \nabla \phi(x) = 0$.

This means

$$tc + \sum_{i=1}^{m} \frac{1}{s_i(x^*(t))} a_i = 0$$

or

$$c + \sum_{i=1}^{m} z_i^*(t) a_i = 0$$
 with $z_i^*(t) = \frac{1}{t s_i(x^*(t))}$

- \triangleright $z^*(t)$ is strictly dual feasible: $(A^Tz^* + c = 0; z^* > 0)$
- duality gap between $x := x^*(t)$ and $z := z^*(t)$ is

$$c^T x + b^T z = (b - Ax)^T z = \frac{m}{t}$$

• if gap is less than $1/2^{\Omega(L)}$ we can snap to optimum point

How to find $x^*(t)$

First idea:

- start somewhere in the polytope
- use iterative method (Newtons method) to minimize $f_t(x) := tc^T x + \phi(x)$

Newton Method

Quadratic approximation of f_t

$$f_t(x + \epsilon) \approx f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \, \epsilon$$

Suppose this were exact:

$$f_t(x + \epsilon) = f_t(x) + \nabla f_t(x)^T \epsilon + \frac{1}{2} \epsilon^T H_{f_t}(x) \epsilon$$

Then gradient is given by:

$$\nabla f_t(x+\epsilon) = \nabla f_t(x) + H_{f_t}(x) \cdot \epsilon$$
 Note that for the one-dimensional case
$$g(\epsilon) = f(x) + f'(x)\epsilon + \frac{1}{2}f''(x)\epsilon^2, \text{ then } g'(\epsilon) = f'(x) + f''(x)\epsilon.$$

Newton Method

Observe that $H_{f_t}(x) = H(x)$, where H(x) is the Hessian for the function $\phi(x)$ (adding a linear term like tc^Tx does not affect the Hessian).

Also $\nabla f_t(x) = tc + \nabla \phi(x)$.

We want to move to a point where this gradient is $\overline{0}$:

Newton Step at $x \in P^{\circ}$

$$\Delta x_{\mathsf{nt}} = -H_{f_t}^{-1}(x) \nabla f_t(x)$$

$$= -H_{f_t}^{-1}(x) (tc + \nabla \phi(x))$$

$$= -(A^T D_x^2 A)^{-1} (tc + A^T d_x)$$

Newton Iteration:

$$x := x + \Delta x_{\mathsf{nt}}$$

Measuring Progress of Newton Step

Newton decrement:

$$\lambda_t(x) = \|D_x A \Delta x_{\mathsf{nt}}\|$$
$$= \|\Delta x_{\mathsf{nt}}\|_{H_x}$$

Square of Newton decrement is linear estimate of reduction if we do a Newton step:

$$-\lambda_t(x)^2 = \nabla f_t(x)^T \Delta x_{\rm nt}$$

- $\lambda_t(x) = 0 \text{ iff } x = x^*(t)$
- $\lambda_t(x)$ is measure of proximity of x to $x^*(t)$

Theorem 55

If $\lambda_t(x) < 1$ then

- $x_+ := x + \Delta x_{nt} \in P^\circ$ (new point feasible)
- $\lambda_t(x_+) \leq \lambda_t(x)^2$

This means we have quadratic convergence. Very fast.

feasibility:

 $\lambda_t(x) = \|\Delta x_{\mathsf{nt}}\|_{H_x} < 1$; hence x_+ lies in the Dikin ellipsoid around x.

bound on $\lambda_t(x^+)$:

we use
$$D := D_X = \text{diag}(d_X)$$
 and $D_+ := D_{X^+} = \text{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

To see the last equality we use Pythagoras

$$||a||^2 + ||a + b||^2 = ||b||^2$$

if
$$a^T(a+b)=0$$
.

$$DA\Delta x_{nt} = DA(x^{+} - x)$$

$$= D(b - Ax - (b - Ax^{+}))$$

$$= D(D^{-1}\vec{1} - D_{+}^{-1}\vec{1})$$

$$= (I - D_{+}^{-1}D)\vec{1}$$

$$\begin{split} a^T(a+b) \\ &= \Delta x_{\mathsf{nt}}^{+T} A^T D_+ \left(D_+ A \Delta x_{\mathsf{nt}}^+ + (I - D_+^{-1} D) D A \Delta x_{\mathsf{nt}} \right) \\ &= \Delta x_{\mathsf{nt}}^{+T} \left(A^T D_+^2 A \Delta x_{\mathsf{nt}}^+ - A^T D^2 A \Delta x_{\mathsf{nt}} + A^T D_+ D A \Delta x_{\mathsf{nt}} \right) \\ &= \Delta x_{\mathsf{nt}}^{+T} \left(H_+ \Delta x_{\mathsf{nt}}^+ - H \Delta x_{\mathsf{nt}} + A^T D_+ \vec{\mathbf{I}} - A^T D \vec{\mathbf{I}} \right) \\ &= \Delta x_{\mathsf{nt}}^{+T} \left(- \nabla f_t(x^+) + \nabla f_t(x) + \nabla \phi(x^+) - \nabla \phi(x) \right) \\ &= 0 \end{split}$$

bound on $\lambda_t(x^+)$:

we use $D := D_X = \operatorname{diag}(d_X)$ and $D_+ := D_{X^+} = \operatorname{diag}(d_{X^+})$

$$\lambda_{t}(x^{+})^{2} = \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2}$$

$$\leq \|D_{+}A\Delta x_{\mathsf{nt}}^{+}\|^{2} + \|D_{+}A\Delta x_{\mathsf{nt}}^{+} + (I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)DA\Delta x_{\mathsf{nt}}\|^{2}$$

$$= \|(I - D_{+}^{-1}D)^{2}\vec{1}\|^{2}$$

$$\leq \|(I - D_{+}^{-1}D)\vec{1}\|^{4}$$

$$= \|DA\Delta x_{\mathsf{nt}}\|^{4}$$

$$= \lambda_{t}(x)^{4}$$

The second inequality follows from $\sum_{i} y_{i}^{4} \leq (\sum_{i} y_{i}^{2})^{2}$

If $\lambda_t(x)$ is large we do not have a guarantee.

Try to avoid this case!!!

Path-following Methods

Try to slowly travel along the central path.

Algorithm 1 PathFollowing

1: start at analytic center

2: while solution not good enough do

3: make step to improve objective function

4: recenter to return to central path

Short Step Barrier Method

simplifying assumptions:

- a first central point $x^*(t_0)$ is given
- $\triangleright x^*(t)$ is computed exactly in each iteration

 $\boldsymbol{\epsilon}$ is approximation we are aiming for

```
start at t=t_0, repeat until m/t \le \epsilon
```

- compute $x^*(\mu t)$ using Newton starting from $x^*(t)$
- $ightharpoonup t := \mu t$

where
$$\mu = 1 + 1/(2\sqrt{m})$$

Short Step Barrier Method

gradient of
$$f_{t+}$$
 at $(x = x^*(t))$

$$\nabla f_{t+}(x) = \nabla f_t(x) + (\mu - 1)tc$$
$$= -(\mu - 1)A^T D_x \vec{1}$$

This holds because $0 = \nabla f_t(x) = tc + A^T D_x \vec{1}$.

The Newton decrement is

$$\lambda_{t^{+}}(x)^{2} = \nabla f_{t^{+}}(x)^{T} H^{-1} \nabla f_{t^{+}}(x)$$

$$= (\mu - 1)^{2} \vec{1}^{T} B (B^{T} B)^{-1} B^{T} \vec{1} \qquad B = D_{x}^{T} A$$

$$\leq (\mu - 1)^{2} m$$

$$= 1/4$$

This means we are in the range of quadratic convergence!!!

Number of Iterations

the number of Newton iterations per outer iteration is very small; in practise only 1 or $2^{\frac{1}{2}} \frac{\text{trix } (P^2 = P)}{\text{trix } (P^2 = P)}$ it can only have

Number of outer iterations:

We need $t_k = \mu^k t_0 \ge m/\epsilon$. This holds when

$$k \ge \frac{\log(m/(\epsilon t_0))}{\log(\mu)}$$

We get a bound of

$$\mathcal{O}\left(\sqrt{m}\log\frac{m}{\epsilon t_0}\right)$$

Explanation for previous slide $P = B(B^TB)^{-1}B^T$ is a symmetric real-valued matrix; it has n linearly independent Eigenvectors. Since it is a projection matrix $(P^2 = P)$ it can only have Eigenvalues 0 and 1 (because the Eigenvalues of P^2 are λ_i^2 , where λ_i is Eigenvalue of P). The expression

$$\max_{v} \frac{v^T P v}{v^T v}$$

gives the largest Eigenvalue for \vec{l} P. Hence, $\vec{1}^T P \vec{1} \leq \vec{1}^T \vec{1} = m$

We show how to get a starting point with $t_0=1/2^L$. Together with $\epsilon\approx 2^{-L}$ we get $\mathcal{O}(L\sqrt{m})$ iterations.

We assume that the polytope (not just the LP) is bounded. Then $Av \leq 0$ is not possible.

For $x \in P^{\circ}$ and direction $v \neq 0$ define

$$\sigma_{x}(v) := \max_{i} \frac{a_{i}^{T} v}{s_{i}(x)}$$

hand side of the i-th constraint when moving in direction of v. If $\sigma_X(v)>1$ then for one coordinate this change is larger than the slack in the constraint at position x. By downscaling v we can ensure to stay in the polytope.

 $a_i^T v$ is the change on the left

Observation:

$$x + \alpha v \in P$$
 for $\alpha \in \{0, 1/\sigma_{x}(v)\}$

Suppose that we move from x to $x + \alpha v$. The linear estimate says that $f_t(x)$ should change by $\nabla f_t(x)^T \alpha v$.

The following argument shows that f_t is well behaved. For small α the reduction of $f_t(x)$ is close to linear estimate.

$$f_t(x + \alpha v) - f_t(x) = tc^T \alpha v + \phi(x + \alpha v) - \phi(x)$$

$$\phi(x + \alpha v) - \phi(x) = -\sum_i \log(s_i(x + \alpha v)) + \sum_i \log(s_i(x))$$

$$= -\sum_i \log(s_i(x + \alpha v)/s_i(x))$$

$$= -\sum_i \log(1 - a_i^T \alpha v/s_i(x))$$

$$s_i(x + \alpha v) = b_i - a_i^T x - a_i^T \alpha v = s_i(x) - a_i^T \alpha v$$

 $= (tc^T + \sum_i a_i^T / s_i(x)) \alpha v$ $= tc^T \alpha v + \sum_i \alpha w_i$

 $f_t(x + \alpha v) - f_t(x) - \nabla f_t(x)^T \alpha v$

Define
$$au_{x} = a^{T}au/a_{x}(x)$$
 and σ

For |x| < 1, $x \le 0$:

For |x| < 1, $0 < x \le y$:

Define $w_i = a_i^T v / s_i(x)$ and $\sigma = \max_i w_i$. Then

$$v/s_i(x)$$
 and $\sigma =$

 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots \ge -\frac{x^2}{2} = -\frac{y^2}{2} \frac{x^2}{x^2}$

 $x + \log(1 - x) = -\frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots = \frac{x^2}{y^2} \left(-\frac{y^2}{2} - \frac{y^2x}{3} - \frac{y^2x^2}{4} - \dots \right)$

 $\geq \frac{x^2}{v^2} \left(-\frac{y^2}{2} - \frac{y^3}{3} - \frac{y^4}{4} - \dots \right) = \frac{x^2}{v^2} (y + \log(1 - y))$

 $=-\sum_{i}(\alpha w_{i}+\log(1-\alpha w_{i}))$

 $\leq -\sum_{w>0} (\alpha w_i + \log(1 - \alpha w_i)) + \sum_i \frac{\alpha^2 w_i^2}{2}$

 $\leq -\sum_{w_i>0} \frac{w_i^2}{\sigma^2} \left(\alpha \sigma + \log(1 - \alpha \sigma)\right) + \frac{(\alpha \sigma)^2}{2} \sum_{w_i \leq 0} \frac{w_i^2}{\sigma^2}$

$$\operatorname{ax}_i w_i$$
. Th

 $\nabla f_t(x)^T \alpha v$

Note that $||w|| = ||v||_{H_x}$.

Damped Newton Method
$$\begin{bmatrix} \text{For } x \ge 0 \\ \frac{x^2}{2} \le \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots = -(x + \log(1 - x)) \end{bmatrix}$$

$$\leq -\sum_{i} \frac{w_{i}^{2}}{\sigma^{2}} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$
$$= -\frac{1}{\sigma^{2}} \|v\|_{H_{x}}^{2} \left(\alpha \sigma + \log(1 - \alpha \sigma) \right)$$

Damped Newton Iteration:

In a damped Newton step we choose

$$x_{+} = x + \frac{1}{1 + \sigma_{x}(\Delta x_{nt})} \Delta x_{nt}$$

This means that in the above expressions we choose $\alpha = \frac{1}{1+\alpha}$ and $v = \Delta x_{nt}$. Note that , it wouldn't make sense to choose lpha larger than 1 as this would mean that our real target $(x + \Delta x_{nt})$ is inside the polytope but we overshoot and go further than this target.

Theorem:

In a damped Newton step the cost decreases by at least

$$\lambda_t(x) - \log(1 + \lambda_t(x))$$

Proof: The decrease in cost is

$$-\alpha \nabla f_t(x)^T v + \frac{1}{\sigma^2} \|v\|_{H_x}^2 (\alpha \sigma + \log(1 - \alpha \sigma))$$

Choosing $\alpha = \frac{1}{1+\alpha}$ and $v = \Delta x_{nt}$ gives

$$\frac{1}{1+\sigma}\lambda_t(x)^2 + \frac{\lambda_t(x)^2}{\sigma^2} \left(\frac{\sigma}{1+\sigma} + \log\left(1 - \frac{\sigma}{1+\sigma}\right) \right)$$
$$= \frac{\lambda_t(x)^2}{\sigma^2} \left(\sigma - \log(1+\sigma) \right)$$

With $v=\Delta x_{\rm nt}$ we have $\|w\|_2=\|v\|_{H_X}=\lambda_t(x)$; further recall that $\sigma=\|w\|_{\infty}$; hence $\sigma\leq\lambda_t(x)$.

The first inequality follows since the function $\frac{1}{x^2}(x - \log(1+x))$ is monotonically decreasing.

$$\geq \lambda_t(x) - \log(1 + \lambda_t(x))$$

 ≥ 0.09

for
$$\lambda_t(x) \ge 0.5$$

Centering Algorithm:

Input: precision δ ; starting point x

- 1. compute $\Delta x_{\rm nt}$ and $\lambda_t(x)$
- 2. if $\lambda_t(x) \leq \delta$ return x
- 3. set $x := x + \alpha \Delta x_{nt}$ with

$$\alpha = \left\{ \begin{array}{ll} \frac{1}{1+\sigma_{X}(\Delta x_{\text{nt}})} & \lambda_{t} \geq 1/2 \\ 1 & \text{otw.} \end{array} \right.$$

Centering

Lemma 56

The centering algorithm starting at x_0 reaches a point with $\lambda_t(x) \leq \delta$ after

$$\frac{f_t(x_0) - \min_{\mathcal{Y}} f_t(\mathcal{Y})}{0.09} + \mathcal{O}(\log\log(1/\delta))$$

iterations.

This can be very, very slow...

How to get close to analytic center?

Let $P = \{Ax \le b\}$ be our (feasible) polyhedron, and x_0 a feasible point.

We change $b \to b + \frac{1}{\lambda} \cdot \vec{1}$, where $L = \langle A \rangle + \langle b \rangle + \langle c \rangle$ (encoding length) and $\lambda = 2^{2L}$. Recall that a basis is feasible in the old LP iff it is feasible in the new LP.

Lemma [without proof]

The inverse of a matrix M can be represented with rational numbers that have denominators $z_{ij} = \det(M)$.

For two basis solutions x_B , $x_{\bar{B}}$, the cost-difference $c^Tx_B - c^Tx_{\bar{B}}$ can be represented by a rational number that has denominator $z = \det(A_B) \cdot \det(A_{\bar{B}})$.

This means that in the perturbed LP it is sufficient to decrease the duality gap to $1/2^{4L}$ (i.e., $t\approx 2^{4L}$). This means the previous analysis essentially also works for the perturbed LP.

For a point x from the polytope (not necessarily BFS) the objective value $\bar{c}^T x$ is at most $n2^M 2^L$, where $M \leq L$ is the encoding length of the largest entry in \bar{c} .

How to get close to analytic center?

Start at x_0 .

Note that an entry in \hat{c} fulfills $|\hat{c}_i| \leq 2^{2L}$. This holds since the slack in every constraint at x_0 is at least $\lambda = 1/2^{2L}$, and the gradient is the vector of inverse slacks.

Choose $\hat{c} := -\nabla \phi(x)$.

 $x_0 = x^*(1)$ is point on central path for \hat{c} and t = 1.

You can travel the central path in both directions. Go towards 0 until $t \approx 1/2^{\Omega(L)}$. This requires $O(\sqrt{m}L)$ outer iterations.

Let $x_{\hat{c}}$ denote this point.

Let x_c denote the point that minimizes

$$t \cdot c^T x + \phi(x)$$

(i.e., same value for t but different c, hence, different central path).

How to get close to analytic center?

Clearly,

$$t \cdot \hat{c}^T x_{\hat{c}} + \phi(x_{\hat{c}}) \le t \cdot \hat{c}^T x_c + \phi(x_c)$$

The difference between $f_t(x_{\hat{c}})$ and $f_t(x_c)$ is

$$tc^{T}x_{\hat{c}} + \phi(x_{\hat{c}}) - tc^{T}x_{c} - \phi(x_{c})$$

$$\leq t(c^{T}x_{\hat{c}} + \hat{c}^{T}x_{c} - \hat{c}^{T}x_{\hat{c}} - c^{T}x_{c})$$

$$\leq 4tn2^{3L}$$

For $t=1/2^{\Omega(L)}$ the last term becomes constant. Hence, using damped Newton we can move from $x_{\hat{c}}$ to $x_{\hat{c}}$ quickly.

In total for this analysis we require $\mathcal{O}(\sqrt{m}L)$ outer iterations for the whole algorithm.

One iteration can be implemented in $\tilde{\mathcal{O}}(m^3)$ time.