- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- lacktriangle Non-negative weight w_j for each clause C_j
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- n Boolean variables
- ightharpoonup m clauses C_1, \ldots, C_m . For example

$$C_7 = x_3 \vee \bar{x}_5 \vee \bar{x}_9$$

- Non-negative weight w_j for each clause C_j .
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

- ▶ A variable x_i and its negation \bar{x}_i are called literals.
- ► Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- $ightharpoonup x_i$ is called a positive literal while the negation \bar{x}_i is called a negative literal.
- ▶ For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- $ightharpoonup x_i$ is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses

- A variable x_i and its negation \bar{x}_i are called literals.
- ▶ Hence, each clause consists of a set of literals (i.e., no duplications: $x_i \lor x_i \lor \bar{x}_j$ is **not** a clause).
- We assume a clause does not contain x_i and \bar{x}_i for any i.
- x_i is called a positive literal while the negation \bar{x}_i is called a negative literal.
- For a given clause C_j the number of its literals is called its length or size and denoted with ℓ_j .
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_i independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

9. Jul. 2022

Define random variable X_j with

$$X_j = \left\{ egin{array}{ll} 1 & \mbox{if } C_j \ \mbox{satisfied} \ 0 & \mbox{otw.} \end{array}
ight.$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{i} w_{j} X_{j}$$

Define random variable X_j with

$$X_j = \begin{cases} 1 & \text{if } C_j \text{ satisfied} \\ 0 & \text{otw.} \end{cases}$$

Then the total weight W of satisfied clauses is given by

$$W = \sum_{i} w_{j} X_{j}$$

E[W]

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} Pr[C_{j} \text{ is satisified}]$$

$$E[W] = \sum_{j} w_{j} E[X_{j}]$$

$$= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}]$$

$$= \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right)$$

$$\begin{split} E[W] &= \sum_{j} w_{j} E[X_{j}] \\ &= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}] \\ &= \sum_{j} w_{j} \Big(1 - \Big(\frac{1}{2}\Big)^{\ell_{j}}\Big) \\ &\geq \frac{1}{2} \sum_{i} w_{j} \end{split}$$

$$\begin{split} E[W] &= \sum_{j} w_{j} E[X_{j}] \\ &= \sum_{j} w_{j} \Pr[C_{j} \text{ is satisified}] \\ &= \sum_{j} w_{j} \Big(1 - \Big(\frac{1}{2}\Big)^{\ell_{j}}\Big) \\ &\geq \frac{1}{2} \sum_{j} w_{j} \\ &\geq \frac{1}{2} \text{OPT} \end{split}$$

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$$

$$\begin{array}{llll} \max & \sum_{j} w_{j} z_{j} \\ \text{s.t.} & \forall j & \sum_{i \in P_{j}} y_{i} + \sum_{i \in N_{j}} (1 - y_{i}) & \geq & z_{j} \\ & \forall i & y_{i} & \in & \{0, 1\} \\ & \forall j & z_{j} & \leq & 1 \end{array}$$

MAXSAT: LP formulation

Let for a clause C_j , P_j be the set of positive literals and N_j the set of negative literals.

$$C_j = \bigvee_{i \in P_j} x_i \vee \bigvee_{i \in N_j} \bar{x}_i$$

MAXSAT: Randomized Rounding

Set each x_i independently to true with probability y_i (and, hence, to false with probability $(1 - y_i)$).

Lemma 84 (Geometric Mean ≤ Arithmetic Mean)

For any nonnegative a_1, \ldots, a_k

$$\left(\prod_{i=1}^k a_i\right)^{1/k} \le \frac{1}{k} \sum_{i=1}^k a_i$$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 86

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b . Then

$$f(\lambda)$$

for $\lambda \in [0,1]$

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 86

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

16.1 MAXSAT

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 86

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= \alpha + \lambda h$$

for $\lambda \in [0,1]$.

A function f on an interval I is concave if for any two points s and r from I and any $\lambda \in [0,1]$ we have

$$f(\lambda s + (1 - \lambda)r) \ge \lambda f(s) + (1 - \lambda)f(r)$$

Lemma 86

Let f be a concave function on the interval [0,1], with f(0)=a and f(1)=a+b. Then

$$f(\lambda) = f((1 - \lambda)0 + \lambda 1)$$

$$\geq (1 - \lambda)f(0) + \lambda f(1)$$

$$= a + \lambda b$$

for $\lambda \in [0,1]$.

 $Pr[C_j \text{ not satisfied}]$

$$Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i$$

$$\begin{aligned} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_i} y_i \right) \right]^{\ell_j} \end{aligned}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \end{split}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - y_i) \prod_{i \in N_j} y_i \\ &\leq \left[\frac{1}{\ell_j} \left(\sum_{i \in P_j} (1 - y_i) + \sum_{i \in N_j} y_i \right) \right]^{\ell_j} \\ &= \left[1 - \frac{1}{\ell_j} \left(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i) \right) \right]^{\ell_j} \\ &\leq \left(1 - \frac{z_j}{\ell_i} \right)^{\ell_j} \end{split}.$$

The function $f(z)=1-(1-\frac{z}{\ell})^\ell$ is concave. Hence,

 $Pr[C_j \text{ satisfied}]$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

The function $f(z) = 1 - (1 - \frac{z}{\ell})^{\ell}$ is concave. Hence,

$$\Pr[C_j \text{ satisfied}] \ge 1 - \left(1 - \frac{z_j}{\ell_j}\right)^{\ell_j}$$

$$\ge \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] \cdot z_j .$$

$$f''(z)=-rac{\ell-1}{\ell}\Big[1-rac{z}{\ell}\Big]^{\ell-2}\leq 0$$
 for $z\in[0,1].$ Therefore, f is concave.

E[W]

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ is satisfied}]$$

$$\geq \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}} \right)^{\ell_{j}} \right]$$

$$\begin{split} E[W] &= \sum_j w_j \Pr[C_j \text{ is satisfied}] \\ &\geq \sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j} \right)^{\ell_j} \right] \\ &\geq \left(1 - \frac{1}{\varrho} \right) \text{OPT .} \end{split}$$

MAXSAT: The better of two

Theorem 87

Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$ -approximation.

16.1 MAXSAT

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

 $E[\max\{W_1, W_2\}]$

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

$$E[\max\{W_1, W_2\}]$$

 $\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2]$

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

$$\begin{split} E[\max\{W_{1}, W_{2}\}] \\ &\geq E[\frac{1}{2}W_{1} + \frac{1}{2}W_{2}] \\ &\geq \frac{1}{2} \sum_{j} w_{j} z_{j} \left[1 - \left(1 - \frac{1}{\ell_{j}}\right)^{\ell_{j}} \right] + \frac{1}{2} \sum_{j} w_{j} \left(1 - \left(\frac{1}{2}\right)^{\ell_{j}}\right) \end{split}$$

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

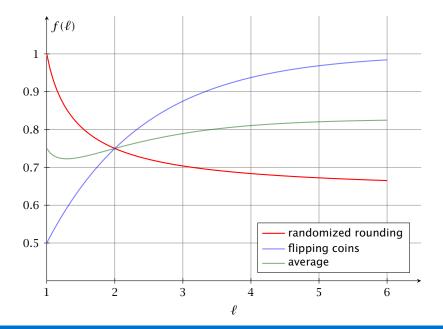
$$\begin{split} E[\max\{W_1,W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \\ &\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right] \\ &\geq \frac{3}{4} \text{for all integers} \end{split}$$

Let W_1 be the value of randomized rounding and W_2 the value obtained by coin flipping.

$$\begin{split} E[\max\{W_1,W_2\}] \\ &\geq E[\frac{1}{2}W_1 + \frac{1}{2}W_2] \\ &\geq \frac{1}{2}\sum_j w_j z_j \left[1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right] + \frac{1}{2}\sum_j w_j \left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right) \\ &\geq \sum_j w_j z_j \left[\frac{1}{2}\left(1 - \left(1 - \frac{1}{\ell_j}\right)^{\ell_j}\right) + \frac{1}{2}\left(1 - \left(\frac{1}{2}\right)^{\ell_j}\right)\right] \\ &\geq \frac{3}{4} \text{for all integers} \\ &\geq \frac{3}{4} \text{OPT} \end{split}$$

9. Jul. 2022

391/414



So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.

9. Jul. 2022

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1/true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \to [0,1]$ and set x_i to true with probability $f(y_i)$.

Let $f:[0,1] \rightarrow [0,1]$ be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

Theorem 88

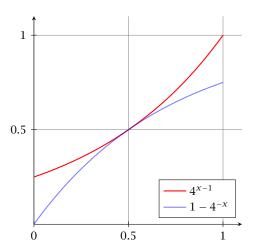
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.

Let
$$f:[0,1] \rightarrow [0,1]$$
 be a function with

$$1 - 4^{-x} \le f(x) \le 4^{x - 1}$$

Theorem 88

Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$ -approximation.



 $Pr[C_j \text{ not satisfied}]$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_i} (1 - f(y_i)) \prod_{i \in N_i} f(y_i)$$

$$\Pr[C_j \text{ not satisfied}] = \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i)$$

$$\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \end{split}$$

$$\begin{split} \Pr[C_j \text{ not satisfied}] &= \prod_{i \in P_j} (1 - f(y_i)) \prod_{i \in N_j} f(y_i) \\ &\leq \prod_{i \in P_j} 4^{-y_i} \prod_{i \in N_j} 4^{y_i - 1} \\ &= 4^{-(\sum_{i \in P_j} y_i + \sum_{i \in N_j} (1 - y_i))} \\ &\leq 4^{-z_j} \end{split}$$

 $Pr[C_j \text{ satisfied}]$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

E[W]

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{i} w_{j} \Pr[C_{j} \text{ satisfied}]$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{j} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{j} w_{j} z_{j}$$

$$\Pr[C_j \text{ satisfied}] \ge 1 - 4^{-z_j} \ge \frac{3}{4}z_j$$
.

Therefore,

$$E[W] = \sum_{i} w_{j} \Pr[C_{j} \text{ satisfied}] \ge \frac{3}{4} \sum_{i} w_{j} z_{j} \ge \frac{3}{4} \text{OPT}$$

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider: $(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- hence, the LP has value 4

Lemma 90

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

Consider:
$$(x_1 \lor x_2) \land (\bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2) \land (\bar{x}_1 \lor \bar{x}_2)$$

- any solution can satisfy at most 3 clauses
- we can set $y_1 = y_2 = 1/2$ in the LP; this allows to set $z_1 = z_2 = z_3 = z_4 = 1$
- ▶ hence, the LP has value 4.

16.1 MAXSAT

MaxCut

MaxCut

Given a weighted graph G = (V, E, w), $w(v) \ge 0$, partition the vertices into two parts. Maximize the weight of edges between the parts.

Trivial 2-approximation

9. Jul. 2022

Semidefinite Programming

- linear objective, linear contraints
- we can constrain a square matrix of variables to be symmetric positive definite

Vector Programming

$$\begin{array}{cccc}
\max / \min & \sum_{i,j} c_{ij}(v_i^t v_j) \\
\text{s.t.} & \forall k & \sum_{i,j,k} a_{ijk}(v_i^t v_j) &= b_k \\
v_i \in \mathbb{R}^n
\end{array}$$

- ightharpoonup variables are vectors in n-dimensional space
- objective functions and contraints are linear in inner products of the vectors

This is equivalent!

Fact [without proof]

We (essentially) can solve Semidefinite Programs in polynomial time...

Quadratic Programs

Quadratic Program for MaxCut:

$$\begin{array}{cccc}
\max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - y_i y_j) \\
\forall i & y_i \in \{-1,1\}
\end{array}$$

This is exactly MaxCut!

Semidefinite Relaxation

$$\begin{bmatrix} \max & \frac{1}{2} \sum_{i,j} w_{ij} (1 - v_i^t v_j) \\ \forall i & v_i^t v_i = 1 \\ \forall i & v_i \in \mathbb{R}^n \end{bmatrix}$$

- this is clearly a relaxation
- the solution will be vectors on the unit sphere

9. Jul. 2022

- ► Choose a random vector r such that $r/\|r\|$ is uniformly distributed on the unit sphere.
- ▶ If $r^t v_i > 0$ set $y_i = 1$ else set $y_i = -1$

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0, 1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, ..., x_n)]$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot ... \cdot e^{x_n^2/2} dx_1 \cdot ... \cdot dx_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + ... + x_n^2)} dx_1 \cdot ... \cdot dx_n$$

Hence the probability for a point only depends on its distance to the origin.

Choose the *i*-th coordinate r_i as a Gaussian with mean 0 and variance 1, i.e., $r_i \sim \mathcal{N}(0, 1)$.

Density function:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{x^2/2}$$

Then

$$\Pr[r = (x_1, ..., x_n)]$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{x_1^2/2} \cdot e^{x_2^2/2} \cdot ... \cdot e^{x_n^2/2} dx_1 \cdot ... \cdot dx_n$$

$$= \frac{1}{(\sqrt{2\pi})^n} e^{\frac{1}{2}(x_1^2 + ... + x_n^2)} dx_1 \cdot ... \cdot dx_n$$

Hence the probability for a point only depends on its distance to the origin.

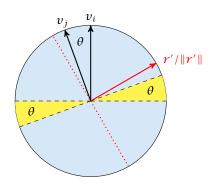
Fact

The projection of r onto two unit vectors e_1 and e_2 are independent and are normally distributed with mean 0 and variance 1 iff e_1 and e_2 are orthogonal.

Note that this is clear if e_1 and e_2 are standard basis vectors.

Corollary

If we project r onto a hyperplane its normalized projection $(r'/\|r'\|)$ is uniformly distributed on the unit circle within the hyperplane.



- if the normalized projection falls into the shaded region, v_i and v_j are rounded to different values
- this happens with probability θ/π

16.2 MAXCUT 9. Jul. 2022

contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^tv_j\right)$$

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$

contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\big(1-v_i^tv_j\big)$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{ij}\arccos(v_i^t v_j)/\pi$
- ratio is at most

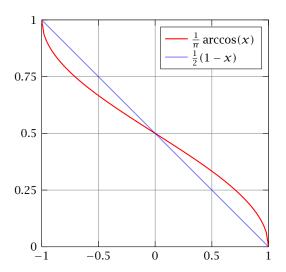
$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$

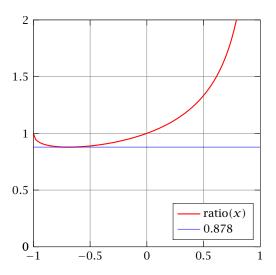
contribution of edge (i, j) to the SDP-relaxation:

$$\frac{1}{2}w_{ij}\left(1-v_i^tv_j\right)$$

- (expected) contribution of edge (i, j) to the rounded instance $w_{ij}\arccos(v_i^t v_j)/\pi$
- ratio is at most

$$\min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)} \ge 0.878$$





Theorem 91

Given the unique games conjecture, there is no α -approximation for the maximum cut problem with constant

$$\alpha > \min_{x \in [-1,1]} \frac{2\arccos(x)}{\pi(1-x)}$$

unless P = NP.