#### Knapsack:

Given a set of items  $\{1,\ldots,n\}$ , where the i-th item has weight  $w_i \in \mathbb{N}$  and profit  $p_i \in \mathbb{N}$ , and given a threshold W. Find a subset  $I \subseteq \{1,\ldots,n\}$  of items of total weight at most W such that the profit is maximized (we can assume each  $w_i \leq W$ ).

#### Knapsack:

Given a set of items  $\{1,\ldots,n\}$ , where the i-th item has weight  $w_i \in \mathbb{N}$  and profit  $p_i \in \mathbb{N}$ , and given a threshold W. Find a subset  $I \subseteq \{1,\ldots,n\}$  of items of total weight at most W such that the profit is maximized (we can assume each  $w_i \leq W$ ).

```
Algorithm 1 Knapsack
1: A(1) \leftarrow [(0,0), (p_1, w_1)]
2: for j \leftarrow 2 to n do
3: A(j) \leftarrow A(j-1)
4: for each (p, w) \in A(j-1) do
             if w + w_i \leq W then
                    add (p + p_i, w + w_i) to A(j)
              remove dominated pairs from A(j)
8: return \max_{(p,w)\in A(n)} p
```

The running time is  $\mathcal{O}(n \cdot \min\{W, P\})$ , where  $P = \sum_i p_i$  is the total profit of all items. This is only pseudo-polynomial.

#### **Definition 74**

An algorithm is said to have pseudo-polynomial running time if the running time is polynomial when the numerical part of the input is encoded in unary.

Let M be the maximum profit of an element.

- Let M be the maximum profit of an element.
- ▶ Set  $\mu := \epsilon M/n$ .

- Let M be the maximum profit of an element.
- ▶ Set  $\mu := \epsilon M/n$ .
- ► Set  $p'_i := \lfloor p_i/\mu \rfloor$  for all i.

- Let M be the maximum profit of an element.
- ▶ Set  $\mu := \epsilon M/n$ .
- ► Set  $p'_i := \lfloor p_i/\mu \rfloor$  for all i.
- Run the dynamic programming algorithm on this revised instance.

- Let M be the maximum profit of an element.
- ▶ Set  $\mu := \epsilon M/n$ .
- ► Set  $p'_i := \lfloor p_i/\mu \rfloor$  for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP')$$

- Let M be the maximum profit of an element.
- ▶ Set  $\mu := \epsilon M/n$ .
- ► Set  $p'_i := \lfloor p_i/\mu \rfloor$  for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP') = \mathcal{O}\Big(n\sum_i p_i'\Big)$$

- Let M be the maximum profit of an element.
- ▶ Set  $\mu := \epsilon M/n$ .
- ► Set  $p'_i := \lfloor p_i/\mu \rfloor$  for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i}p'_{i}\right) = \mathcal{O}\left(n\sum_{i}\left\lfloor\frac{p_{i}}{\epsilon M/n}\right\rfloor\right)$$

- Let M be the maximum profit of an element.
- ▶ Set  $\mu := \epsilon M/n$ .
- ► Set  $p'_i := \lfloor p_i/\mu \rfloor$  for all i.
- Run the dynamic programming algorithm on this revised instance.

$$\mathcal{O}(nP') = \mathcal{O}\left(n\sum_{i} p'_{i}\right) = \mathcal{O}\left(n\sum_{i} \left\lfloor \frac{p_{i}}{\epsilon M/n} \right\rfloor\right) \leq \mathcal{O}\left(\frac{n^{3}}{\epsilon}\right).$$

$$\sum_{i \in S} p_i$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\sum_{i \in S} p_i \ge \mu \sum_{i \in S} p'_i$$

$$\ge \mu \sum_{i \in O} p'_i$$

$$\ge \sum_{i \in O} p_i - |O|\mu$$

$$\ge \sum_{i \in O} p_i - n\mu$$

$$= \sum_{i \in O} p_i - \epsilon M$$

$$\ge (1 - \epsilon) \text{OPT}.$$

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job to complete.

The previous analysis of the scheduling algorithm gave a makespan of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job to complete.

Together with the obervation that if each  $p_i \ge \frac{1}{3}C_{\max}^*$  then LPT is optimal this gave a 4/3-approximation.

Partition the input into long jobs and short jobs.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

#### Idea:

1. Find the optimum Makespan for the long jobs by brute force.

Partition the input into long jobs and short jobs.

A job j is called short if

$$p_j \le \frac{1}{km} \sum_i p_i$$

#### Idea:

- 1. Find the optimum Makespan for the long jobs by brute force.
- 2. Then use the list scheduling algorithm for the short jobs, always assigning the next job to the least loaded machine.

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job (this only requires that all machines are busy before time  $S_{\ell}$ ).

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job (this only requires that all machines are busy before time  $S_{\ell}$ ).

If  $\ell$  is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

We still have a cost of

$$\frac{1}{m}\sum_{j\neq\ell}p_j+p_\ell$$

where  $\ell$  is the last job (this only requires that all machines are busy before time  $S_{\ell}$ ).

If  $\ell$  is a long job, then the schedule must be optimal, as it consists of an optimal schedule of long jobs plus a schedule for short jobs.

If  $\ell$  is a short job its length is at most

$$p_\ell \leq \sum_j p_j/(mk)$$

which is at most  $C_{\text{max}}^*/k$ .

#### Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most  $m^{km}$ , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

#### Theorem 75

The above algorithm gives a polynomial time approximatior scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose  $k = \lceil \frac{1}{\epsilon} \rceil$ .



Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most  $m^{km}$ , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

#### Theorem 75

The above algorithm gives a polynomial time approximatior scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose  $k = \lceil \frac{1}{6} \rceil$ .



Hence we get a schedule of length at most

$$\left(1+\frac{1}{k}\right)C_{\max}^*$$

There are at most km long jobs. Hence, the number of possibilities of scheduling these jobs on m machines is at most  $m^{km}$ , which is constant if m is constant. Hence, it is easy to implement the algorithm in polynomial time.

#### Theorem 75

The above algorithm gives a polynomial time approximation scheme (PTAS) for the problem of scheduling n jobs on m identical machines if m is constant.

We choose  $k = \lceil \frac{1}{\epsilon} \rceil$ .



We first design an algorithm that works as follows: On input of T it either finds a schedule of length  $(1+\frac{1}{k})T$  or certifies that no schedule of length at most T exists (assume  $T \geq \frac{1}{m} \sum_j p_j$ ).

- ightharpoonup A job is long if its size is larger than T/k.
- Otw. it is a short job.

#### We first design an algorithm that works as follows:

On input of T it either finds a schedule of length  $(1 + \frac{1}{k})T$  or certifies that no schedule of length at most T exists (assume  $T \ge \frac{1}{m} \sum_j p_j$ ).

- ightharpoonup A job is long if its size is larger than T/k
- Otw. it is a short job.

We first design an algorithm that works as follows: On input of T it either finds a schedule of length  $(1+\frac{1}{k})T$  or certifies that no schedule of length at most T exists (assume  $T \geq \frac{1}{m} \sum_j p_j$ ).

- ightharpoonup A job is long if its size is larger than T/k.
- Otw. it is a short job

We first design an algorithm that works as follows: On input of T it either finds a schedule of length  $(1+\frac{1}{k})T$  or certifies that no schedule of length at most T exists (assume  $T \geq \frac{1}{m} \sum_j p_j$ ).

- ▶ A job is long if its size is larger than T/k.
- Otw. it is a short job.

- ▶ We round all long jobs down to multiples of  $T/k^2$ .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- We round all long jobs down to multiples of  $T/k^2$ .
- For these rounded sizes we first find an optimal schedule.
- ▶ If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- ▶ We round all long jobs down to multiples of  $T/k^2$ .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

- ▶ We round all long jobs down to multiples of  $T/k^2$ .
- For these rounded sizes we first find an optimal schedule.
- If this schedule does not have length at most *T* we conclude that also the original sizes don't allow such a schedule.
- If we have a good schedule we extend it by adding the short jobs according to the LPT rule.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of  $T/k^2$  going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of  $T/k^2$  going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$

After the first phase the rounded sizes of the long jobs assigned to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw. their rounded sizes would add up to more than T (note that the rounded size of a long job is at least T/k).

Since, jobs had been rounded to multiples of  $T/k^2$  going from rounded sizes to original sizes gives that the Makespan is at most

$$\left(1+\frac{1}{k}\right)T$$
.

During the second phase there always must exist a machine with load at most T, since T is larger than the average load.

Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T$$

During the second phase there always must exist a machine with load at most T, since T is larger than the average load. Assigning the current (short) job to such a machine gives that the new load is at most

$$T + \frac{T}{k} \le \left(1 + \frac{1}{k}\right)T .$$

Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i \in \{k, ..., k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$  (described by a vector of length  $k^2$  where, the i-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the i-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k+1)^{k^2}$  different vectors.

Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i\in\{k,\ldots,k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$  (described by a vector of length  $k^2$  where, the i-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the i-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k+1)^{k^2}$  different vectors.

Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i\in\{k,\ldots,k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$  (described by a vector of length  $k^2$  where, the i-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the i-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k+1)^{k^2}$  different vectors.

Hence, any large job has rounded size of  $\frac{i}{k^2}T$  for  $i\in\{k,\ldots,k^2\}$ . Therefore the number of different inputs is at most  $n^{k^2}$  (described by a vector of length  $k^2$  where, the i-th entry describes the number of jobs of size  $\frac{i}{k^2}T$ ). This is polynomial.

The schedule/configuration of a particular machine x can be described by a vector of length  $k^2$  where the i-th entry describes the number of jobs of rounded size  $\frac{i}{k^2}T$  assigned to x. There are only  $(k+1)^{k^2}$  different vectors.

If  $OPT(n_1, \ldots, n_{k^2}) \leq m$  we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$ 

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_{k^2}) \in C} \text{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \text{otw.} \end{cases}$$

where C is the set of all configurations

Hence, the running time is roughly  $(k+1)^{k^2}n^{k^2} \approx (nk)^{k^2}$ .

If  $OPT(n_1, ..., n_{k^2}) \le m$  we can schedule the input.

We have

 $OPT(n_1,\ldots,n_{k^2})$ 

$$= \begin{cases} 0 & (n_1, \dots, n_{k^2}) = 0 \\ 1 + \min_{(s_1, \dots, s_k^2) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\ \infty & \mathsf{otw}. \end{cases}$$

where C is the set of all configurations

Hence, the running time is roughly  $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$ .

If  $OPT(n_1, ..., n_{k^2}) \le m$  we can schedule the input.

#### We have

$$\begin{aligned}
& \mathsf{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \mathsf{otw}.
\end{aligned}$$

where  $\mathcal{C}$  is the set of all configurations.

Hence, the running time is roughly  $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$ 

If  $OPT(n_1, ..., n_{k^2}) \le m$  we can schedule the input.

We have

$$\begin{aligned}
& \mathsf{OPT}(n_1, \dots, n_{k^2}) \\
&= \begin{cases}
0 & (n_1, \dots, n_{k^2}) = 0 \\
1 + \min_{(s_1, \dots, s_{k^2}) \in C} \mathsf{OPT}(n_1 - s_1, \dots, n_{k^2} - s_{k^2}) & (n_1, \dots, n_{k^2}) \geq 0 \\
& & \mathsf{otw}.
\end{aligned}$$

where  $\mathcal{C}$  is the set of all configurations.

Hence, the running time is roughly  $(k+1)^{k^2} n^{k^2} \approx (nk)^{k^2}$ .

#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a str<mark>ongly NP-complete</mark> problem.

#### Theorem 76

#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

#### Theorem 76

#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

Theorem 76

#### Can we do better?

Scheduling on identical machines with the goal of minimizing Makespan is a strongly NP-complete problem.

### Theorem 76

- Suppose we have an instance with polynomially bounded processing times  $p_i \le q(n)$
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$\mathsf{ALG} \leq \left(1 + \frac{1}{k}\right)\mathsf{OPT} \leq \mathsf{OPT} + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times  $p_i \le q(n)$
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- ▶ Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times  $p_i \le q(n)$
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times  $p_i \le q(n)$
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\text{poly}(n,k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times  $p_i \le q(n)$
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- ► For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times  $p_i \le q(n)$
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

- Suppose we have an instance with polynomially bounded processing times  $p_i \le q(n)$
- We set  $k := \lceil 2nq(n) \rceil \ge 2 \text{ OPT}$
- Then

$$ALG \le \left(1 + \frac{1}{k}\right) OPT \le OPT + \frac{1}{2}$$

- But this means that the algorithm computes the optimal solution as the optimum is integral.
- This means we can solve problem instances if processing times are polynomially bounded
- Running time is  $\mathcal{O}(\text{poly}(n, k)) = \mathcal{O}(\text{poly}(n))$
- For strongly NP-complete problems this is not possible unless P=NP

## **More General**

Let  $OPT(n_1, ..., n_A)$  be the number of machines that are required to schedule input vector  $(n_1, ..., n_A)$  with Makespan at most T (A: number of different sizes).

If  $OPT(n_1,...,n_A) \leq m$  we can schedule the input

$$OPT(n_1, ..., n_A) = \begin{cases}
0 & (n_1, ..., n_A) = 0 \\
1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \ge 0 \\
\infty & \text{otw.}
\end{cases}$$

where C is the set of all configurations

 $|C| \le (B+1)^A$ , where B is the number of jobs that possibly can fit on the same machine.

The running time is then  $O((B+1)^A n^A)$  because the dynamic programming table has just  $n^A$  entries.

## **More General**

Let  $\mathrm{OPT}(n_1,\ldots,n_A)$  be the number of machines that are required to schedule input vector  $(n_1,\ldots,n_A)$  with Makespan at most T (A: number of different sizes).

If  $OPT(n_1,...,n_A) \leq m$  we can schedule the input.

$$OPT(n_1, ..., n_A) = \begin{cases}
0 & (n_1, ..., n_A) = 0 \\
1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \geq 0 \\
\infty & \text{otw.}
\end{cases}$$

where  ${\mathcal C}$  is the set of all configurations

 $|C| \le (B+1)^A$ , where B is the number of jobs that possibly can fit on the same machine.

The running time is then  $O((B+1)^A n^A)$  because the dynamic programming table has just  $n^A$  entries.

# **More General**

Let  $OPT(n_1, ..., n_A)$  be the number of machines that are required to schedule input vector  $(n_1, ..., n_A)$  with Makespan at most T (A: number of different sizes).

If  $OPT(n_1,...,n_A) \leq m$  we can schedule the input.

$$OPT(n_1, ..., n_A) = \begin{cases}
0 & (n_1, ..., n_A) = 0 \\
1 + \min_{(s_1, ..., s_A) \in C} OPT(n_1 - s_1, ..., n_A - s_A) & (n_1, ..., n_A) \geq 0 \\
\infty & \text{otw.}
\end{cases}$$

where C is the set of all configurations.

 $|C| \le (B+1)^A$ , where B is the number of jobs that possibly can fit on the same machine.

The running time is then  $O((B+1)^A n^A)$  because the dynamic programming table has just  $n^A$  entries.

Given n items with sizes  $s_1, \ldots, s_n$  where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

### Theorem 77

There is no  $\rho$ -approximation for Bin Packing with  $\rho < 3/2$  unless P = NP.

Given n items with sizes  $s_1, \ldots, s_n$  where

$$1 > s_1 \ge \cdots \ge s_n > 0$$
.

Pack items into a minimum number of bins where each bin can hold items of total size at most 1.

### **Theorem 77**

There is no  $\rho$ -approximation for Bin Packing with  $\rho < 3/2$  unless P = NP.

### **Proof**

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i \quad ?$$

- We can solve this problem by setting  $s_i := 2b_i/B$  and asking whether we can pack the resulting items into 2 bins or not.
- A  $\rho$ -approximation algorithm with  $\rho$  < 3/2 cannot output 3 or more bins when 2 are optimal.
- ► Hence, such an algorithm can solve Partition

### **Proof**

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting  $s_i := 2b_i/B$  and asking whether we can pack the resulting items into 2 bins or not.
- A  $\rho$ -approximation algorithm with  $\rho$  < 3/2 cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition

## **Proof**

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting  $s_i := 2b_i/B$  and asking whether we can pack the resulting items into 2 bins or not.
- A  $\rho$ -approximation algorithm with  $\rho < 3/2$  cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition

### **Proof**

$$\sum_{i \in S} b_i = \sum_{i \in T} b_i ?$$

- ▶ We can solve this problem by setting  $s_i := 2b_i/B$  and asking whether we can pack the resulting items into 2 bins or not.
- A  $\rho$ -approximation algorithm with  $\rho < 3/2$  cannot output 3 or more bins when 2 are optimal.
- Hence, such an algorithm can solve Partition.

## **Definition 78**

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms  $\{A_\epsilon\}$  along with a constant c such that  $A_\epsilon$  returns a solution of value at most  $(1+\epsilon)\mathrm{OPT}+c$  for minimization problems.

## **Definition 78**

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms  $\{A_\epsilon\}$  along with a constant c such that  $A_\epsilon$  returns a solution of value at most  $(1+\epsilon)\mathrm{OPT}+c$  for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- ► However, we will develop an APTAS for Bin Packing

## **Definition 78**

An asymptotic polynomial-time approximation scheme (APTAS) is a family of algorithms  $\{A_\epsilon\}$  along with a constant c such that  $A_\epsilon$  returns a solution of value at most  $(1+\epsilon)\mathrm{OPT}+c$  for minimization problems.

- Note that for Set Cover or for Knapsack it makes no sense to differentiate between the notion of a PTAS or an APTAS because of scaling.
- However, we will develop an APTAS for Bin Packing.

Again we can differentiate between small and large items.

## Lemma 79

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$  bins, where  $\mathrm{SIZE}(I)=\sum_i s_i$  is the sum of all item sizes.

Again we can differentiate between small and large items.

## Lemma 79

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell, \frac{1}{1-\nu}SIZE(I) + 1\}$  bins, where  $SIZE(I) = \sum_{i} s_{i}$  is the sum of all item sizes.

- If after Greedy we use more than  $\ell$  bins, all bins (apart from the last) must be full to at least  $1 - \gamma$ .



352/377

Again we can differentiate between small and large items.

## Lemma 79

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell, \frac{1}{1-\nu}SIZE(I) + 1\}$  bins, where  $SIZE(I) = \sum_{i} s_{i}$  is the sum of all item sizes.

- If after Greedy we use more than  $\ell$  bins, all bins (apart from the last) must be full to at least  $1 - \gamma$ .
- ► Hence,  $r(1 y) \le SIZE(I)$  where r is the number of nearly-full bins.



Again we can differentiate between small and large items.

## Lemma 79

Any packing of items into  $\ell$  bins can be extended with items of size at most  $\gamma$  s.t. we use only  $\max\{\ell,\frac{1}{1-\gamma}\mathrm{SIZE}(I)+1\}$  bins, where  $\mathrm{SIZE}(I)=\sum_i s_i$  is the sum of all item sizes.

- If after Greedy we use more than  $\ell$  bins, all bins (apart from the last) must be full to at least  $1 \gamma$ .
- ► Hence,  $r(1 \gamma) \le \text{SIZE}(I)$  where r is the number of nearly-full bins.
- This gives the lemma.



Choose  $y = \epsilon/2$ . Then we either use  $\ell$  bins or at most

$$\frac{1}{1 - \epsilon/2} \cdot \text{OPT} + 1 \le (1 + \epsilon) \cdot \text{OPT} + 1$$

bins.

It remains to find an algorithm for the large items.

# **Linear Grouping:**

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

# **Linear Grouping:**

Generate an instance I' (for large items) as follows.

- Order large items according to size.
- ▶ Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

9. Jul. 2022

# **Linear Grouping:**

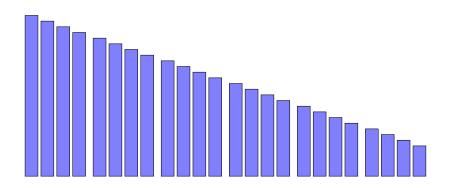
Generate an instance I' (for large items) as follows.

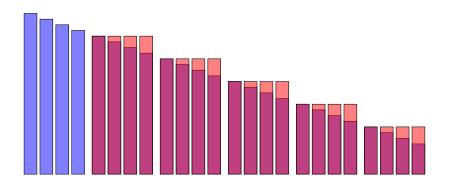
- Order large items according to size.
- ▶ Let the first *k* items belong to group 1; the following *k* items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.

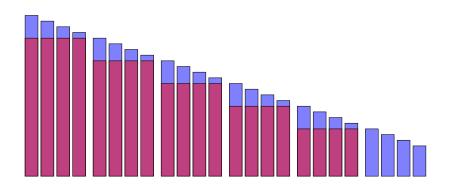
# **Linear Grouping:**

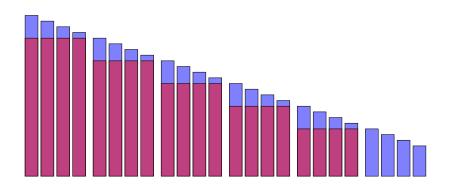
Generate an instance I' (for large items) as follows.

- Order large items according to size.
- Let the first k items belong to group 1; the following k items belong to group 2; etc.
- Delete items in the first group;
- Round items in the remaining groups to the size of the largest item in the group.









$$\mathsf{OPT}(I') \leq \mathsf{OPT}(I) \leq \mathsf{OPT}(I') + k$$

#### Proof 1:

Any bin packing for Egives a bin packing for E as follows:

Pack the items of group 2, where in the packing for 1 the

items for group 1 have been packed:

Pack the items of groups 3, where in the packing for 1 the

items for aroup 2 have been packed:

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;
- **.**...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- Any bin packing for I gives a bin packing for I' as follows.
- Pack the items of group 2, where in the packing for I the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;
- ▶ ...

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;



$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- Any bin packing for I gives a bin packing for I' as follows.
- ▶ Pack the items of group 2, where in the packing for *I* the items for group 1 have been packed;
- Pack the items of groups 3, where in the packing for I the items for group 2 have been packed;
- **...**

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- **...**

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- **...**

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;

$$OPT(I') \le OPT(I) \le OPT(I') + k$$

- ▶ Any bin packing for I' gives a bin packing for I as follows.
- Pack the items of group 1 into k new bins;
- Pack the items of groups 2, where in the packing for I' the items for group 2 have been packed;
- **...**

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time  $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time  $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time  $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$ 

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time  $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$ .

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

 $OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$ 

running time  $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$ .

We set  $k = \lfloor \epsilon \text{SIZE}(I) \rfloor$ .

Then  $n/k \le n/\lfloor \epsilon^2 n/2 \rfloor \le 4/\epsilon^2$  (note that  $\lfloor \alpha \rfloor \ge \alpha/2$  for  $\alpha \ge 1$ ).

Hence, after grouping we have a constant number of piece sizes  $(4/\epsilon^2)$  and at most a constant number  $(2/\epsilon)$  can fit into any bin.

We can find an optimal packing for such instances by the previous Dynamic Programming approach.

cost (for large items) at most

$$OPT(I') + k \le OPT(I) + \epsilon SIZE(I) \le (1 + \epsilon)OPT(I)$$

running time  $\mathcal{O}((\frac{2}{\epsilon}n)^{4/\epsilon^2})$ .

### Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

### Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1+\epsilon)OPT(I)+1$$
.

### Can we do better?

In the following we show how to obtain a solution where the number of bins is only

$$OPT(I) + \mathcal{O}(\log^2(SIZE(I)))$$
.

Note that this is usually better than a guarantee of

$$(1 + \epsilon)OPT(I) + 1$$
.

# **Configuration LP**

# **Change of Notation:**

- Group pieces of identical size.
- Let  $s_1$  denote the largest size, and let  $b_1$  denote the number of pieces of size  $s_1$ .
- $\triangleright$   $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;
- **...**
- $\triangleright$   $s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .

# **Configuration LP**

# **Change of Notation:**

- Group pieces of identical size.
- Let  $s_1$  denote the largest size, and let  $b_1$  denote the number of pieces of size  $s_1$ .
- $\triangleright$   $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ?
- **.**...
- $\triangleright$   $s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .

### **Change of Notation:**

- Group pieces of identical size.
- Let  $s_1$  denote the largest size, and let  $b_1$  denote the number of pieces of size  $s_1$ .
- $\triangleright$   $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;
- . . . .
- $ightharpoonup s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .

### **Change of Notation:**

- Group pieces of identical size.
- Let  $s_1$  denote the largest size, and let  $b_1$  denote the number of pieces of size  $s_1$ .
- $\triangleright$   $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;
- **...**
- $\triangleright$   $s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .

### **Change of Notation:**

- Group pieces of identical size.
- Let  $s_1$  denote the largest size, and let  $b_1$  denote the number of pieces of size  $s_1$ .
- $\triangleright$   $s_2$  is second largest size and  $b_2$  number of pieces of size  $s_2$ ;
- ▶ ...
- $\triangleright$   $s_m$  smallest size and  $b_m$  number of pieces of size  $s_m$ .

A possible packing of a bin can be described by an m-tuple  $(t_1, \ldots, t_m)$ , where  $t_i$  describes the number of pieces of size  $s_i$ . Clearly.

$$\sum_i t_i \cdot s_i \leq 1 \ .$$

We call a vector that fulfills the above constraint a configuration.

A possible packing of a bin can be described by an m-tuple  $(t_1, \ldots, t_m)$ , where  $t_i$  describes the number of pieces of size  $s_i$ . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

A possible packing of a bin can be described by an m-tuple  $(t_1, \ldots, t_m)$ , where  $t_i$  describes the number of pieces of size  $s_i$ . Clearly,

$$\sum_{i} t_i \cdot s_i \leq 1 .$$

We call a vector that fulfills the above constraint a configuration.

Let N be the number of configurations (exponential)

Let  $T_1, ..., T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).

```
\begin{array}{lll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_j & \text{integral} \end{array}
```

### Let N be the number of configurations (exponential).

Let  $T_1, ..., T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).

Let N be the number of configurations (exponential).

Let  $T_1, \ldots, T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).

```
\begin{array}{lll} \min & \sum_{j=1}^{N} x_{j} \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_{j} & \geq & b_{i} \\ & \forall j \in \{1, \dots, N\} & x_{j} & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_{j} & \text{integral} \end{array}
```

Let N be the number of configurations (exponential).

Let  $T_1, ..., T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).

$$\begin{array}{llll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \\ & \forall j \in \{1, \dots, N\} & x_j & \text{integral} \end{array}$$

How to solve this LP?

later...

We can assume that each item has size at least  $1/\mathrm{SIZE}(I)$  .

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e.,  $G_1$  is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for  $G_2, \ldots, G_{r-1}$ .
- ▶ Only the size of items in the last group  $G_r$  may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e.,  $G_1$  is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for  $G_2, ..., G_{r-1}$
- ▶ Only the size of items in the last group  $G_r$  may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e.,  $G_1$  is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for  $G_2, \ldots, G_{r-1}$ .
- ▶ Only the size of items in the last group  $G_r$  may sum up to less than 2.

- Sort items according to size (monotonically decreasing).
- Process items in this order; close the current group if size of items in the group is at least 2 (or larger). Then open new group.
- ▶ I.e.,  $G_1$  is the smallest cardinality set of largest items s.t. total size sums up to at least 2. Similarly, for  $G_2, \ldots, G_{r-1}$ .
- ▶ Only the size of items in the last group  $G_r$  may sum up to less than 2.

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- ▶ Observe that  $n_i \ge n_{i-1}$ .

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- ▶ Observe that  $n_i \ge n_{i-1}$ .

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- ▶ Observe that  $n_i \ge n_{i-1}$ .

- Round all items in a group to the size of the largest group member.
- ▶ Delete all items from group  $G_1$  and  $G_r$ .
- For groups  $G_2, \ldots, G_{r-1}$  delete  $n_i n_{i-1}$  items.
- Observe that  $n_i \ge n_{i-1}$ .

- Each group that survives (recall that  $G_1$  and  $G_r$  are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ightharpoonup All items in a group have the same size in I'

- ▶ Each group that survives (recall that  $G_1$  and  $G_r$  are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ightharpoonup All items in a group have the same size in I'

- Each group that survives (recall that  $G_1$  and  $G_r$  are deleted) has total size at least 2.
- ▶ Hence, the number of surviving groups is at most SIZE(I)/2.
- ▶ All items in a group have the same size in I'.

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- ▶ The total size of items in  $G_1$  and  $G_r$  is at most 6 as a group has total size at most 3.
- ightharpoonup Consider a group  $G_i$  that has strictly more items than  $G_{i-1}$ .
- ▶ It discards  $n_i n_{i-1}$  pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all i that have  $n_i > n_{i-1}$  gives a bound of at most

$$\sum_{i=1}^{r-1} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- ▶ The total size of items in  $G_1$  and  $G_r$  is at most 6 as a group has total size at most 3.
- ▶ Consider a group  $G_i$  that has strictly more items than  $G_{i-1}$ .
- It discards  $n_i n_{i-1}$  pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all i that have  $n_i > n_{i-1}$  gives a bound of at most

$$\sum_{j=1}^{N-1} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- ▶ The total size of items in  $G_1$  and  $G_r$  is at most 6 as a group has total size at most 3.
- ▶ Consider a group  $G_i$  that has strictly more items than  $G_{i-1}$ .
- lt discards  $n_i n_{i-1}$  pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all i that have  $n_i > n_{i-1}$  gives a bound of at most  $n_{r-1}$ 

 $\sum_{i=1}^{m-1} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I)))$ 

The total size of deleted items is at most  $O(\log(SIZE(I)))$ .

- ▶ The total size of items in  $G_1$  and  $G_r$  is at most 6 as a group has total size at most 3.
- ▶ Consider a group  $G_i$  that has strictly more items than  $G_{i-1}$ .
- ▶ It discards  $n_i n_{i-1}$  pieces of total size at most

$$3\frac{n_i - n_{i-1}}{n_i} \le \sum_{j=n_{i-1}+1}^{n_i} \frac{3}{j}$$

since the average piece size is only  $3/n_i$ .

Summing over all i that have  $n_i > n_{i-1}$  gives a bound of at most

$$\sum_{j=1}^{n_{r-1}} \frac{3}{j} \le \mathcal{O}(\log(\text{SIZE}(I))) .$$

### Algorithm 1 BinPack

- 1: **if** SIZE(I) < 10 **then**
- 2: pack remaining items greedily
- 3: Apply harmonic grouping to create instance I'; pack discarded items in at most  $\mathcal{O}(\log(\text{SIZE}(I)))$  bins.
- 4: Let x be optimal solution to configuration LP
- 5: Pack  $\lfloor x_j \rfloor$  bins in configuration  $T_j$  for all j; call the packed instance  $I_1$ .
- 6: Let  $I_2$  be remaining pieces from I'
- 7: Pack  $I_2$  via BinPack $(I_2)$

$$\mathsf{OPT}_{\mathsf{LP}}(I_1) + \mathsf{OPT}_{\mathsf{LP}}(I_2) \leq \mathsf{OPT}_{\mathsf{LP}}(I') \leq \mathsf{OPT}_{\mathsf{LP}}(I)$$

Proof:

Each piece surviving in a can be mapped to a piece in a of noof

lesser size. Herice,

 $_{\odot}$  is feasible solution for  $_{\odot}$  (even integral).

is feasible solution for



$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

#### Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence,  $OPT_{LP}(I') \leq OPT_{LP}(I)$
- $\triangleright$   $[x_j]$  is feasible solution for  $I_1$  (even integral).
- $\triangleright x_i \lfloor x_i \rfloor$  is feasible solution for  $I_2$ .

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

#### Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence,  $OPT_{LP}(I') \leq OPT_{LP}(I)$
- $ightharpoonup [x_j]$  is feasible solution for  $I_1$  (even integral).
- $\triangleright x_i \lfloor x_i \rfloor$  is feasible solution for  $I_2$ .

$$OPT_{LP}(I_1) + OPT_{LP}(I_2) \le OPT_{LP}(I') \le OPT_{LP}(I)$$

#### Proof:

- ► Each piece surviving in I' can be mapped to a piece in I of no lesser size. Hence,  $OPT_{LP}(I') \leq OPT_{LP}(I)$
- $ightharpoonup [x_j]$  is feasible solution for  $I_1$  (even integral).
- $ightharpoonup x_j \lfloor x_j \rfloor$  is feasible solution for  $I_2$ .

### Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in  $I_2$  are handed down to the next level

Pieces of type 2 summed over all recursion levels are packed into at most  $\mathrm{OPT}_{\mathrm{LP}}$  many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

### Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in  $I_2$  are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  $\mathrm{OPT}_{\mathrm{LP}}$  many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in  $I_2$  are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  $\mathrm{OPT}_{\mathrm{LP}}$  many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

Each level of the recursion partitions pieces into three types

- Pieces discarded at this level.
- 2. Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in  $I_2$  are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most OPT<sub>LP</sub> many bins.

$$\mathcal{O}(\log(\operatorname{SIZE}(I))) \cdot L$$

Each level of the recursion partitions pieces into three types

- 1. Pieces discarded at this level.
- **2.** Pieces scheduled because they are in  $I_1$ .
- **3.** Pieces in  $I_2$  are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into at most  $\mathrm{OPT}_{\mathrm{LP}}$  many bins.

Pieces of type 1 are packed into at most

$$\mathcal{O}(\log(\text{SIZE}(I))) \cdot L$$

many bins where L is the number of recursion levels.

We can show that  $SIZE(I_2) \le SIZE(I)/2$ . Hence, the number of recursion levels is only  $\mathcal{O}(\log(SIZE(I_{\text{original}})))$  in total.

We can show that  $SIZE(I_2) \leq SIZE(I)/2$ . Hence, the number of recursion levels is only  $\mathcal{O}(\log(SIZE(I_{\text{original}})))$  in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes ( $\leq$  SIZE(I)/2).
- ► The total size of items in  $I_2$  can be at most  $\sum_{j=1}^{N} x_j \lfloor x_j \rfloor$  which is at most the number of non-zero entries in the solution to the configuration LP.

We can show that  $SIZE(I_2) \leq SIZE(I)/2$ . Hence, the number of recursion levels is only  $\mathcal{O}(\log(SIZE(I_{\text{original}})))$  in total.

- ▶ The number of non-zero entries in the solution to the configuration LP for I' is at most the number of constraints, which is the number of different sizes ( $\leq$  SIZE(I)/2).
- ▶ The total size of items in  $I_2$  can be at most  $\sum_{j=1}^N x_j \lfloor x_j \rfloor$  which is at most the number of non-zero entries in the solution to the configuration LP.

### How to solve the LP?

Let  $T_1, ..., T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ).

In total we have  $b_i$  pieces of size  $s_i$ .

### **Primal**

$$\begin{array}{lll} \min & \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

#### Dual

```
\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^m T_{ji} y_i & \leq & 1 \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}
```

### How to solve the LP?

Let  $T_1, ..., T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ). In total we have  $b_i$  pieces of size  $s_i$ .

#### **Primal**

#### Dual

$$\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^m T_{ji} y_i \leq 1 \\ & \forall i \in \{1, \dots, m\} & y_i \geq 0 \end{array}$$

### How to solve the LP?

Let  $T_1, ..., T_N$  be the sequence of all possible configurations (a configuration  $T_j$  has  $T_{ji}$  pieces of size  $s_i$ ). In total we have  $b_i$  pieces of size  $s_i$ .

#### **Primal**

$$\begin{array}{lll} \min & \sum_{j=1}^{N} x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^{N} T_{ji} x_j \geq b_i \\ & \forall j \in \{1, \dots, N\} & x_j \geq 0 \end{array}$$

#### Dual

Suppose that I am given variable assignment y for the dual.

### How do I find a violated constraint?

I have to find a configuration  $T_j = (T_{j1}, \dots, T_{jm})$  that

But this is the Knapsack problem.

Suppose that I am given variable assignment  $\boldsymbol{y}$  for the dual.

### How do I find a violated constraint?

I have to find a configuration  $T_j = (T_{j1}, \dots, T_{jm})$  that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot y_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

Suppose that I am given variable assignment  $\gamma$  for the dual.

### How do I find a violated constraint?

I have to find a configuration  $T_i = (T_{i1}, \dots, T_{im})$  that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot y_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

Suppose that I am given variable assignment y for the dual.

### How do I find a violated constraint?

I have to find a configuration  $T_j = (T_{j1}, \dots, T_{jm})$  that

is feasible, i.e.,

$$\sum_{i=1}^m T_{ji} \cdot y_i \le 1 ,$$

and has a large profit

$$\sum_{i=1}^{m} T_{ji} y_i > 1$$

But this is the Knapsack problem.

We have FPTAS for Knapsack. This means if a constraint is violated with  $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1-\epsilon)$  of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1,\dots,N\} & \sum_{i=1}^m T_{ji} y_i \leq 1 + \epsilon' \\ & \forall i \in \{1,\dots,m\} & y_i \geq 0 \end{array}$$

Primal<sup>'</sup>

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{array}$$

We have FPTAS for Knapsack. This means if a constraint is violated with  $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1-\epsilon)$  of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{lll} \max & \sum_{i=1}^m y_i b_i \\ \text{s.t.} & \forall j \in \{1,\dots,N\} & \sum_{i=1}^m T_{ji} y_i & \leq & 1+\epsilon' \\ & \forall i \in \{1,\dots,m\} & y_i & \geq & 0 \end{array}$$

Primal

$$\begin{array}{llll} \min & (1+\epsilon') \sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1 \dots m\} & \sum_{j=1}^N T_{ji} x_j & \geq & b_i \\ & \forall j \in \{1, \dots, N\} & x_j & \geq & 0 \end{array}$$

We have FPTAS for Knapsack. This means if a constraint is violated with  $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1-\epsilon)$  of the optimal profit.

The solution we get is feasible for:

Dual'

$$\begin{array}{llll} \max & \sum_{i=1}^{m} y_i b_i \\ \text{s.t.} & \forall j \in \{1, \dots, N\} & \sum_{i=1}^{m} T_{ji} y_i & \leq & 1 + \epsilon' \\ & \forall i \in \{1, \dots, m\} & y_i & \geq & 0 \end{array}$$

Primal

$$\begin{array}{lll} \min & (1+\epsilon')\sum_{j=1}^N x_j \\ \text{s.t.} & \forall i \in \{1\dots m\} & \sum_{j=1}^N T_{ji}x_j \geq b_i \\ & \forall j \in \{1,\dots,N\} & x_j \geq 0 \end{array}$$

We have FPTAS for Knapsack. This means if a constraint is violated with  $1+\epsilon'=1+\frac{\epsilon}{1-\epsilon}$  we find it, since we can obtain at least  $(1-\epsilon)$  of the optimal profit.

The solution we get is feasible for:

Dual'

Primal'

If the value of the computed dual solution (which may be infeasible) is  $\boldsymbol{z}$  then

$$OPT \le z \le (1 + \epsilon')OPT$$

If the value of the computed dual solution (which may be infeasible) is  $\boldsymbol{z}$  then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$  OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is  $\boldsymbol{z}$  then

$$OPT \le z \le (1 + \epsilon')OPT$$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is  $\boldsymbol{z}$  then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$  OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is  $\boldsymbol{z}$  then

$$OPT \le z \le (1 + \epsilon')OPT$$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime

If the value of the computed dual solution (which may be infeasible) is  $\boldsymbol{z}$  then

$$OPT \le z \le (1 + \epsilon')OPT$$

- The constraints used when computing z certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- Let DUAL" be DUAL without unused constraints.
- ► The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

If the value of the computed dual solution (which may be infeasible) is  $\boldsymbol{z}$  then

$$OPT \le z \le (1 + \epsilon')OPT$$

- ► The constraints used when computing *z* certify that the solution is feasible for DUAL'.
- Suppose that we drop all unused constraints in DUAL. We will compute the same solution feasible for DUAL'.
- ► Let DUAL" be DUAL without unused constraints.
- The dual to DUAL" is PRIMAL where we ignore variables for which the corresponding dual constraint has not been used.
- ▶ The optimum value for PRIMAL'' is at most  $(1 + \epsilon')$ OPT.
- We can compute the corresponding solution in polytime.

### This gives that overall we need at most

$$(1 + \epsilon')\mathsf{OPT}_{\mathsf{LP}}(I) + \mathcal{O}(\mathsf{log}^2(\mathsf{SIZE}(I)))$$

bins.

We can choose  $\epsilon' = \frac{1}{\text{OPT}}$  as  $\text{OPT} \leq \#$ items and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.

This gives that overall we need at most

$$(1 + \epsilon') \text{OPT}_{\text{LP}}(I) + \mathcal{O}(\log^2(\text{SIZE}(I)))$$

bins.

We can choose  $\epsilon' = \frac{1}{\text{OPT}}$  as  $\text{OPT} \leq \#\text{items}$  and since we have a fully polynomial time approximation scheme (FPTAS) for knapsack.