How do we get an upper bound to a maximization LP?

max	13a	+	23 <i>b</i>	
s.t.	5 <i>a</i>	+	15 b	≤ 480
	4 <i>a</i>	+	4b	≤ 160
	35a	+	20 <i>b</i>	≤ 1190
			a, b	≥ 0

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

How do we get an upper bound to a maximization LP?

Note that a lower bound is easy to derive. Every choice of $a, b \ge 0$ gives us a lower bound (e.g. a = 12, b = 28 gives us a lower bound of 800).

If you take a conic combination of the rows (multiply the *i*-th row with $y_i \ge 0$) such that $\sum_i y_i a_{ij} \ge c_j$ then $\sum_i y_i b_i$ will be an upper bound.

5.1 Weak Duality

Definition 30

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ be a linear program P (called the primal linear program).

The linear program D defined by

$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

is called the dual problem.

Lemma 31 The dual of the dual problem is the primal problem.

Proof:

The dual problem is

5.1 Weak Duality

9. Jul. 2022 79/81

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

- $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$
- $\blacktriangleright w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

• $w = -\max\{-b^T y \mid -A^T y \le -c, y \ge 0\}$

The dual problem is

0 < 2 < 0 (2 < 2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2) (2 < 2

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

•
$$w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$\bullet w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$$

The dual problem is

- ► $z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$
 - $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$

Lemma 31

The dual of the dual problem is the primal problem.

Proof:

$$\bullet w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$$

$$\bullet \quad w = -\max\{-b^T y \mid -A^T y \leq -c, y \geq 0\}$$

The dual problem is

$$z = -\min\{-c^T x \mid -Ax \ge -b, x \ge 0\}$$

$$z = \max\{c^T x \mid Ax \le b, x \ge 0\}$$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \; .$

Let $z = \max\{c^T x \mid Ax \le b, x \ge 0\}$ and $w = \min\{b^T y \mid A^T y \ge c, y \ge 0\}$ be a primal dual pair.

x is primal feasible iff $x \in \{x \mid Ax \le b, x \ge 0\}$

y is dual feasible, iff $y \in \{y \mid A^T y \ge c, y \ge 0\}$.

Theorem 32 (Weak Duality)

Let \hat{x} be primal feasible and let \hat{y} be dual feasible. Then

 $c^T \hat{x} \leq z \leq w \leq b^T \hat{y} \ .$

 $A^{T}\hat{\boldsymbol{y}} \ge \boldsymbol{c} \Rightarrow \hat{\boldsymbol{x}}^{T}A^{T}\hat{\boldsymbol{y}} \ge \hat{\boldsymbol{x}}^{T}\boldsymbol{c} \ (\hat{\boldsymbol{x}} \ge 0)$ $A\hat{\boldsymbol{x}} \le \boldsymbol{b} \Rightarrow \boldsymbol{y}^{T}A\hat{\boldsymbol{x}} \le \hat{\boldsymbol{y}}^{T}\boldsymbol{b} \ (\hat{\boldsymbol{y}} \ge 0)$ This choice

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^T \hat{\gamma} \ge c \Rightarrow \hat{x}^T A^T \hat{\gamma} \ge \hat{x}^T c \ (\hat{\chi} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^T \hat{y} \ge c \Rightarrow \hat{x}^T A^T \hat{y} \ge \hat{x}^T c \ (\hat{x} \ge 0)$

 $A\hat{x} \le b \Rightarrow y^T A\hat{x} \le \hat{y}^T b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

 $A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$ $A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$

This gives

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$\begin{aligned} A^T \hat{y} &\geq c \Rightarrow \hat{x}^T A^T \hat{y} \geq \hat{x}^T c \ (\hat{x} \geq 0) \\ A \hat{x} &\leq b \Rightarrow y^T A \hat{x} \leq \hat{y}^T b \ (\hat{y} \geq 0) \end{aligned}$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$$
$$A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

5.1 Weak Duality

$$A^{T}\hat{y} \ge c \Rightarrow \hat{x}^{T}A^{T}\hat{y} \ge \hat{x}^{T}c \ (\hat{x} \ge 0)$$
$$A\hat{x} \le b \Rightarrow y^{T}A\hat{x} \le \hat{y}^{T}b \ (\hat{y} \ge 0)$$

This gives

$$c^T \hat{x} \leq \hat{y}^T A \hat{x} \leq b^T \hat{y} \ .$$

Since, there exists primal feasible \hat{x} with $c^T \hat{x} = z$, and dual feasible \hat{y} with $b^T \hat{y} = w$ we get $z \le w$.

If P is unbounded then D is infeasible.

