
Part IV

Flows and Cuts

15. Dec. 2022

Harald Räcke 280/426

The following slides are partially based on slides by Kevin Wayne.

15. Dec. 2022

Harald Räcke 281/426

6 Introduction
Flow Network

ñ directed graph G = (V , E); edge capacities c(e)
ñ two special nodes: source s; target t;
ñ no edges entering s or leaving t;
ñ at least for now: no parallel edges;

10

5

15

4

4

9

15

8

6

30

15

15

10

10

10

s

a

b

c

d

e

f

t

6 Introduction 15. Dec. 2022

Harald Räcke 282/426

Cuts

Definition 28

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A and

t ∈ V \A.

Definition 29

The capacity of a cut A is defined as

cap(A,V \A) :=
∑

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

6 Introduction 15. Dec. 2022

Harald Räcke 283/426

Cuts

Example 30

10

5

15

4

4

9

15

8

6

30

15

15

10

10

10

s

a

b

c

d

e

f

t

A

The capacity of the cut is cap(A,V \A) = 28.

6 Introduction 15. Dec. 2022

Harald Räcke 284/426

Flows

Definition 31

An (s, t)-flow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑

e∈out(v)
f(e) =

∑

e∈into(v)
f(e) .

(flow conservation constraints)

6 Introduction 15. Dec. 2022

Harald Räcke 285/426

Flows

Definition 32

The value of an (s, t)-flow f is defined as

val(f) =
∑

e∈out(s)
f(e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.

6 Introduction 15. Dec. 2022

Harald Räcke 286/426

Flows

Example 33

10|10

3|5

11|15

4|4

0|4

6|9

0|15

8|8

1|6

11|30

0|15

0|15

6|10

8|10

10|10

s

a

b

c

d

e

f

t

The value of the flow is val(f) = 24.

6 Introduction 15. Dec. 2022

Harald Räcke 287/426

Flows

Lemma 34 (Flow value lemma)

Let f be a flow, and let A ⊆ V be an (s, t)-cut. Then the net-flow

across the cut is equal to the amount of flow leaving s, i.e.,

val(f) =
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e) .

6 Introduction 15. Dec. 2022

Harald Räcke 288/426

Proof.

val(f) =
∑

e∈out(s)
f(e)

=
∑

e∈out(s)
f(e)+

∑

v∈A\{s}

(∑

e∈out(v)
f(e)−

∑

e∈in(v)
f(e)

)

=
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e)

The last equality holds since every edge with both end-points in A
contributes negatively as well as positively to the sum in Line 2.

The only edges whose contribution doesn’t cancel out are edges

leaving or entering A.

6 Introduction 15. Dec. 2022

Harald Räcke 289/426

Example 35

10|10

3|5

11|15

4|4

0|4

6|9

0|15

8|8

1|6

11|30

0|15

0|15

6|10

8|10

10|10

s

a

b

c

d

e

f

t

A

The net-flow across the cut is val(f) = 24.

6 Introduction 15. Dec. 2022

Harald Räcke 290/426

Corollary 36

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f ′ with larger value. Then

cap(A,V \A) < val(f ′)

=
∑

e∈out(A)
f ′(e)−

∑

e∈into(A)
f ′(e)

≤
∑

e∈out(A)
f ′(e)

≤ cap(A,V \A)

6 Introduction 15. Dec. 2022

Harald Räcke 291/426

7 Augmenting Path Algorithms

Greedy-algorithm:

ñ start with f(e) = 0 everywhere

ñ find an s-t path with f(e) < c(e) on every edge

ñ augment flow along the path

ñ repeat as long as possible

0|20

0|20

0|30

0|20

0|20

flow value: 0

s

a

b

t

flow value: 0flow value: 0flow value: 20

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 292/426

The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf) (the residual graph):

ñ Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

ñ Gf has edge e′1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e′2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

u v5|20
6|10

u v9
21

G

Gf

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 293/426

Augmenting Path Algorithm

Definition 37

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 294/426

Augmenting Paths

0|2

0|4

0|8

0|12

0|7

0|8

0|50|20

0|10

flow value: 0

s

a

b

t

c

d

0

2

0
4

0

8

0
12

0

7

0

8

0 5
0

20

0 10

s

a

b

t

c

d

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 295/426

Augmenting Path Algorithm

Theorem 38

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 39

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 296/426

Augmenting Path Algorithm

1. =⇒ 2.

This we already showed.

2. =⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. =⇒ 1.

ñ Let f be a flow with no augmenting paths.

ñ Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

ñ Since there is no augmenting path we have s ∈ A and t ∉ A.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 297/426

Augmenting Path Algorithm

val(f) =
∑

e∈out(A)
f(e)−

∑

e∈into(A)
f(e)

=
∑

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the second

exploits the fact that the flow along incoming edges must be 0 as

the residual graph does not have edges leaving A.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 298/426

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 299/426

Lemma 40

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 41

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 300/426

A Bad Input

Problem: The running time may not be polynomial

0|500

0|500

0|1

0|500

0|500

flow value: 0

s

a

b

t

0

500

0 500

0

1

0 500

0

500

s

a

b

t

flow value: 0flow value: 0flow value: 1flow value: 1flow value: 1flow value: 2flow value: 2flow value: 2flow value: 3flow value: 3flow value: 3flow value: 4flow value: 4flow value: 4flow value: 5flow value: 5flow value: 5flow value: 6flow value: 6
Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 301/426

A Pathological Input

Let r = 1
2(
√

5− 1). Then rn+2 = rn − rn+1.

flow value: 0

s

a

b

c

t

d

e

f

∞

∞

∞ ∞

∞
∞

∞ r2

∞ r

∞ 0

∞
∞

∞
∞

∞
∞

∞
∞

∞
∞

∞ ∞

∞

∞

flow value: 0flow value: 0flow value: r2flow value: r2flow value: r2flow value: r2 + r3flow value: r2 + r3flow value: r2 + r3flow value: r2 + r3 + r4

Running time may be infinite!!!

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 302/426

How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.

7.1 The Generic Augmenting Path Algorithm 15. Dec. 2022

Harald Räcke 303/426

Overview: Shortest Augmenting Paths

Lemma 42

The length of the shortest augmenting path never decreases.

Lemma 43

After at most O(m) augmentations, the length of the shortest

augmenting path strictly increases.

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 304/426

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 44

The shortest augmenting path algorithm performs at most

O(mn) augmentations. This gives a running time of O(m2n).

Proof.

ñ We can find the shortest augmenting paths in time O(m) via

BFS.

ñ O(m) augmentations for paths of exactly k < n edges.

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 305/426

Shortest Augmenting Paths

Define the level `(v) of a node as the length of the shortest s-v
path in Gf (along non-zero edges).

Let LG denote the subgraph of the residual graph Gf that

contains only those edges (u,v) with `(v) = `(u)+ 1.

A path P is a shortest s-u path in Gf iff it is an s-u path in LG.

edge of Gf edge of LG

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 306/426

In the following we assume that the residual graph Gf does not

contain zero capacity edges.

This means, we construct it in the usual sense and then delete

edges of zero capacity.

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 307/426

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation Gf changes as follows:

ñ Bottleneck edges on the chosen path are deleted.

ñ Back edges are added to all edges that don’t have back edges

so far.

These changes cannot decrease the distance between s and t.

edge of Gf edge of LG

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the

shortest augmenting path strictly increases.

Let M denote the set of edges in graph LG at the beginning of a

round when the distance between s and t is k.

An s-t path in Gf that uses edges not in M has length larger than

k, even when using edges added to Gf during the round.

In each augmentation an edge is deleted from M.

edge of Gf edge in M

Note that an edge cannot
enter M again during the
round as this would require
an augmentation along a
non-shortest path.

Shortest Augmenting Paths

Theorem 45

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 46 (without proof)

There exist networks with m = Θ(n2) that require Ω(mn)
augmentations, when we restrict ourselves to only augment along

shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow (why?).

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 310/426

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve

(asymptotically) on the number of augmentations.

However, we can improve the running time to O(mn2) by

improving the running time for finding an augmenting path

(currently we assume O(m) per augmentation for this).

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 311/426

Shortest Augmenting Paths

We maintain a subset M of the edges of Gf with the guarantee

that a shortest s-t path using only edges from M is a shortest

augmenting path.

With each augmentation some edges are deleted from M.

When M does not contain an s-t path anymore the distance

between s and t strictly increases.

Note that M is not the set of edges of the level graph but a subset

of level-graph edges.

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 312/426

Suppose that the initial distance between s and t in Gf is k.

M is initialized as the level graph LG.

Perform a DFS search to find a path from s to t using edges from

M.

Either you find t after at most n steps, or you end at a node v
that does not have any outgoing edges.

You can delete incoming edges of v from M.

7.2 Shortest Augmenting Paths 15. Dec. 2022

Harald Räcke 313/426

Analysis

Let a phase of the algorithm be defined by the time between two

augmentations during which the distance between s and t strictly

increases.

Initializing M for the phase takes time O(m).

The total cost for searching for augmenting paths during a phase

is at most O(mn), since every search (successful (i.e., reaching t)
or unsuccessful) decreases the number of edges in M and takes

time O(n).

The total cost for performing an augmentation during a phase is

only O(n). For every edge in the augmenting path one has to

update the residual graph Gf and has to check whether the edge

is still in M for the next search.

There are at most n phases. Hence, total cost is O(mn2).

How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 315/426

Capacity Scaling
Intuition:
ñ Choosing a path with the highest bottleneck increases the

flow as much as possible in a single step.
ñ Don’t worry about finding the exact bottleneck.
ñ Maintain scaling parameter ∆.
ñ Gf (∆) is a sub-graph of the residual graph Gf that contains

only edges with capacity at least ∆.

s

a

b

t

0

114

0 37

0

9

0 86

0

15

Gf

s

a

b

t

0

114

0 37

0

9

0 86

0

15

Gf (30)

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 316/426

Capacity Scaling

Algorithm 1 maxflow(G, s, t, c)
1: foreach e ∈ E do fe ← 0;

2: ∆← 2dlog2 Ce

3: while ∆ ≥ 1 do

4: Gf (∆)← ∆-residual graph

5: while there is augmenting path P in Gf (∆) do

6: f ← augment(f , c, P)
7: update(Gf (∆))
8: ∆← ∆/2
9: return f

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 317/426

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting paths

anymore

ñ this means we have a maximum flow.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 318/426

Capacity Scaling

Lemma 47

There are dlogCe + 1 iterations over ∆.

Proof: obvious.

Lemma 48

Let f be the flow at the end of a ∆-phase. Then the maximum flow

is smaller than val(f)+m∆.

Proof: less obvious, but simple:

ñ There must exist an s-t cut in Gf (∆) of zero capacity.

ñ In Gf this cut can have capacity at most m∆.

ñ This gives me an upper bound on the flow that I can still add.

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 319/426

Capacity Scaling

Lemma 49

There are at most 2m augmentations per scaling-phase.

Proof:

ñ Let f be the flow at the end of the previous phase.

ñ val(f∗) ≤ val(f)+ 2m∆
ñ Each augmentation increases flow by ∆.

Theorem 50

We need O(m logC) augmentations. The algorithm can be

implemented in time O(m2 logC).

7.3 Capacity Scaling 15. Dec. 2022

Harald Räcke 320/426

Matching

ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum cardinality

Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃

8.1 Matching 15. Dec. 2022

Harald Räcke 322/426

Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃

8.1 Matching 15. Dec. 2022

Harald Räcke 323/426

Maxflow Formulation
ñ Input: undirected, bipartite graph G = (L] R] {s, t}, E′).
ñ Direct all edges from L to R.

ñ Add source s and connect it to all nodes on the left.

ñ Add t and connect all nodes on the right to t.
ñ All edges have unit capacity.

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃

8.1 Matching 15. Dec. 2022

Harald Räcke 324/426

Proof

Max cardinality matching in G ≤ value of maxflow in G′

ñ Given a maximum matching M of cardinality k.

ñ Consider flow f that sends one unit along each of k paths.

ñ f is a flow and has cardinality k.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃

8.1 Matching 15. Dec. 2022

Harald Räcke 325/426

Proof
Max cardinality matching in G ≥ value of maxflow in G′

ñ Let f be a maxflow in G′ of value k
ñ Integrality theorem ⇒ k integral; we can assume f is 0/1.

ñ Consider M= set of edges from L to R with f(e) = 1.

ñ Each node in L and R participates in at most one edge in M.

ñ |M| = k, as the flow must use at least k middle edges.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃

8.1 Matching 15. Dec. 2022

Harald Räcke 326/426

8.1 Matching

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
ñ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).

A graph is a unit capacity simple graph if

ñ every edge has capacity 1

ñ a node has either at most one leaving edge or at most
one entering edge

8.1 Matching 15. Dec. 2022

Harald Räcke 327/426

Baseball Elimination

team wins losses remaining games

i wi `i Atl Phi NY Mon

Atlanta 83 71 − 1 6 1
Philadelphia 80 79 1 − 0 2

New York 78 78 6 0 − 0
Montreal 77 82 1 2 0 −

Which team can end the season with most wins?

ñ Montreal is eliminated, since even after winning all remaining
games there are only 80 wins.

ñ But also Philadelphia is eliminated. Why?

8.2 Baseball Elimination 15. Dec. 2022

Harald Räcke 328/426

Baseball Elimination

Formal definition of the problem:

ñ Given a set S of teams, and one specific team z ∈ S.

ñ Team x has already won wx games.

ñ Team x still has to play team y, rxy times.

ñ Does team z still have a chance to finish with the most

number of wins.

8.2 Baseball Elimination 15. Dec. 2022

Harald Räcke 329/426

Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still

obtain.

s t

1

2

4

5

1-2

1-4

1-5

2-4

2-5

4-5

r12

r14

r15

r24

r25
r
45

M − w
1

M − w2

M − w4

M
− w

5

∞

Idea. Distribute the results of remaining games in such a way

that no team gets too many wins.

8.2 Baseball Elimination 15. Dec. 2022

Harald Räcke 330/426

Certificate of Elimination

Let T ⊆ S be a subset of teams. Define

w(T) :=
∑

i∈T
wi, r (T) :=

∑

i,j∈T ,i<j
rij

If w(T)+r(T)|T | > M then one of the teams in T will have more than

M wins in the end. A team that can win at most M games is

therefore eliminated.

wins of
teams in T

remaining games
among teams in T

8.2 Baseball Elimination 15. Dec. 2022

Harald Räcke 331/426

Theorem 51

A team z is eliminated if and only if the flow network for z does

not allow a flow of value
∑
ij∈S\{z},i<j rij.

Proof (⇐)

ñ Consider the mincut A in the flow network. Let T be the set

of team-nodes in A.

ñ If for node x-y not both team-nodes x and y are in T , then

x-y ∉ A as otw. the cut would cut an infinite capacity edge.

ñ We don’t find a flow that saturates all source edges:

r(S \ {z}) > cap(A,V \A)
≥

∑

i<j: i∉T∨j∉T
rij +

∑

i∈T
(M −wi)

≥ r(S \ {z})− r(T)+ |T |M −w(T)

ñ This gives M < (w(T)+ r(T))/|T |, i.e., z is eliminated.

Baseball Elimination

Proof (⇒)

ñ Suppose we have a flow that saturates all source edges.

ñ We can assume that this flow is integral.

ñ For every pairing x-y it defines how many games team x and

team y should win.

ñ The flow leaving the team-node x can be interpreted as the

additional number of wins that team x will obtain.

ñ This is less than M −wx because of capacity constraints.

ñ Hence, we found a set of results for the remaining games,

such that no team obtains more than M wins in total.

ñ Hence, team z is not eliminated.

8.2 Baseball Elimination 15. Dec. 2022

Harald Räcke 333/426

Project Selection

Project selection problem:

ñ Set P of possible projects. Project v has an associated profit

pv (can be positive or negative).

ñ Some projects have requirements (taking course EA2 requires

course EA1).

ñ Dependencies are modelled in a graph. Edge (u,v) means

“can’t do project u without also doing project v.”

ñ A subset A of projects is feasible if the prerequisites of every

project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.

8.3 Project Selection 15. Dec. 2022

Harald Räcke 334/426

Project Selection

The prerequisite graph:

ñ {x,a, z} is a feasible subset.

ñ {x,a} is infeasible.

z

a x

z

a x

8.3 Project Selection 15. Dec. 2022

Harald Räcke 335/426

Project Selection

Mincut formulation:

ñ Edges in the prerequisite graph get infinite capacity.

ñ Add edge (s, v) with capacity pv for nodes v with positive

profit.

ñ Create edge (v, t) with capacity −pv for nodes v with

negative profit.
prerequisite graph

s t

u z

v w

a x

∞

pu

pv

p
a

−p
z

−pw

−px

8.3 Project Selection 15. Dec. 2022

Harald Räcke 336/426

Theorem 52

A is a mincut if A \ {s} is the optimal set of projects.

Proof.

ñ A is feasible because of capacity infinity edges.

ñ cap(A,V \A) =
∑

v∈Ā:pv>0

pv +
∑

v∈A:pv<0

(−pv)

=
∑

v :pv>0

pv −
∑

v∈A
pv

prerequisite graph

s t

u z

v w

a x

∞

pu

pv

p
a

−p
z

−pw

−px

∑

v∈Ā:pv>0

pv
∑

v∈Ā:pv>0

pv

For the formula we
define ps := 0.

The step follows by
adding

∑
v∈A:pv>0 pv−∑

v∈A:pv>0 pv = 0.

Note that minimizing
the capacity of the cut
(A,V \A) corresponds
to maximizing profits
of projects in A.

Preflows

Definition 53

An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}
∑

e∈out(v)
f(e)≤

∑

e∈into(v)
f(e) .

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 338/426

Preflows

Example 54

10|1
0

3|5

11|15

0|4

0|4

0|9

0|15

1|6

11|30

0|10

0|10

2|1
0

0|8

0|15

0|15

s

a

b

c

t

d

e

f

A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an active

node.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 339/426

Preflows

Definition:

A labelling is a function ` : V → N. It is valid for preflow f if

ñ `(u) ≤ `(v)+ 1 for all edges (u,v) in the residual graph Gf
(only non-zero capacity edges!!!)

ñ `(s) = n
ñ `(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 340/426

Preflows

0|2

0|4

0|8

0|12

0|7

0|8

0|520|20

10|10

s6

a

0|20

b

0|10

t 0

c

0|0

d

0|0

0

2

0
4

0

8

0
12

0

7

0

8

0 5
20

0

10 0

s6

a
0

b

0

t 0

c
0

d

0

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 341/426

Preflows

Lemma 55

A preflow that has a valid labelling saturates a cut.

Proof:

ñ There are n nodes but n+ 1 different labels from 0, . . . , n.

ñ There must exist a label d ∈ {0, . . . , n} such that none of the

nodes carries this label.

ñ Let A = {v ∈ V | `(v) > d} and B = {v ∈ V | `(v) < d}.
ñ We have s ∈ A and t ∈ B and there is no edge from A to B in

the residual graph Gf ; this means that (A, B) is a saturated

cut.

Lemma 56

A flow that has a valid labelling is a maximum flow.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 342/426

Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation
constraints in which case we can conclude that we have a maximum flow.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 343/426

Changing a Preflow

An arc (u,v) with cf (u,v) > 0 in the residual graph is admissible

if `(u) = `(v)+ 1 (i.e., it goes downwards w.r.t. labelling `).

The push operation

Consider an active node u with excess flow

f(u) =∑e∈into(u) f(e)−
∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissible arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

ñ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

ñ deactivating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive

Note that a push-operation may be
saturating and deactivating at the
same time.

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissible arc.

Increasing the label of u by 1 results in a valid labelling.

ñ Edges (w,u) incoming to u still fulfill their constraint

`(w) ≤ `(u)+ 1.

ñ An outgoing edge (u,w) had `(u) < `(w)+ 1 before since

it was not admissible. Now: `(u) ≤ `(w)+ 1.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 345/426

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 346/426

Reminder

ñ In a preflow nodes may not fulfill conservation constraints; a

node may have more incoming flow than outgoing flow.

ñ Such a node is called active.

ñ A labelling is valid if for every edge (u,v) in the residual

graph `(u) ≤ `(v)+ 1.

ñ An arc (u,v) in residual graph is admissible if

`(u) = `(v)+ 1.

ñ A saturating push along e pushes an amount of c(e) flow

along the edge, thereby saturating the edge (and making it

dissappear from the residual graph).

ñ A deactivating push along e = (u,v) pushes a flow of f(u),
where f(u) is the excess flow of u. This makes u inactive.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 347/426

Push Relabel Algorithms

Algorithm 1 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 348/426

Preflow Push

0|2

0|4

0|8

0|12

0|7

0|8

0|520|20

10|10

s6

a

0|20

b

0|10

t 0

c

0|0

d

0|0

0

2

0
4

0

8

0
12

0

7

0

8

0 5
20

0

10 0

s6

a
0

b

0

t 0

c
0

d

0

relabel to 1saturating pushsaturating pushsaturating pushrelabel to 7deactivating push

The yellow edges indicate the cut that is intro-
duced by the smallest missing label.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 349/426

Analysis
Note that the lemma is almost trivial. A node v having excess
flow means that the current preflow ships something to v. The
residual graph allows to undo flow. Therefore, there must exist a
path that can undo the shipment and move it back to s. However,
a formal proof is required.

Lemma 57

An active node has a path to s in the residual graph.

Proof.

ñ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

ñ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

ñ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

ñ Let f(B) =∑v∈B f(v) be the excess flow of all nodes in B.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 350/426

Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =
{

0 (x,y) ∉ E
f((x,y)) (x,y) ∈ E

We have

f(B) =
∑

b∈B
f(b)

=
∑

b∈B

(∑

v∈V
f(v, b)−

∑

v∈V
f(b,v)

)

=
∑

b∈B

(∑

v∈A
f(v, b)+

∑

v∈B
f(v, b)−

∑

v∈A
f(b,v)−

∑

v∈B
f(b,v)

)

=
∑

b∈B

∑

v∈A
f(v, b)−

∑

b∈B

∑

v∈A
f(b,v)+

∑

b∈B

∑

v∈B
f(v, b)−

∑

b∈B

∑

v∈B
f(b,v)

≤ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 351/426

Analysis

Lemma 58

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label of

the source is n.

Lemma 59

There are only O(n2) relabel operations.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 352/426

Analysis

Lemma 60

The number of saturating pushes performed is at most O(mn).

Proof.

ñ Suppose that we just made a saturating push along (u,v).
ñ Hence, the edge (u,v) is deleted from the residual graph.

ñ For the edge to appear again, a push from v to u is required.

ñ Currently, `(u) = `(v)+ 1, as we only make pushes along

admissible edges.

ñ For a push from v to u the edge (v,u) must become

admissible. The label of v must increase by at least 2.

ñ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).

Lemma 61

The number of deactivating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f) =∑active nodes v `(v)
ñ A saturating push increases Φ by ≤ 2n (when the target node

becomes active it may contribute at most 2n to the sum).

ñ A relabel increases Φ by at most 1.

ñ A deactivating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#deactivating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .

Analysis

Theorem 62

There is an implementation of the generic push relabel algorithm

with running time O(n2m).

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 355/426

Analysis

Proof:

For every node maintain a list of admissible edges starting at that

node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
ñ check for all outgoing edges if they become admissible

ñ check for all incoming edges if they become non-admissible

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 356/426

Analysis
For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in the

residual graph Gf). Then we use the discharge-operation:

Algorithm 2 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissible then push(u,v)
8: else u.current-neighbour ← v.next-in-list

Note that u.current-neighbour is a global variable. It is only

changed within the discharge routine, but keeps its value between

consecutive calls to discharge.

Lemma 63

If v = null in Line 3, then there is no

outgoing admissible edge from u.

Proof.

ñ While pushing from u the current-neighbour pointer is only

advanced if the current edge is not admissible.

ñ The only thing that could make the edge admissible again

would be a relabel at u.

ñ If we reach the end of the list (v = null) all edges are not

admissible.

This shows that discharge(u) is correct, and that we can perform

a relabel in Line 4.

In order for e to become admissible the
other end-point say v has to push flow
to u (so that the edge (u,v) re-appears
in the residual graph). For this the label
of v needs to be larger than the label of
u. Then in order to make (u,v) admis-
sible the label of u has to increase.

9.1 Generic Push Relabel 15. Dec. 2022

Harald Räcke 358/426

9.2 Relabel to Front

Algorithm 1 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← `(u)
8: discharge(u)
9: if `(u) > old-height then // relabel happened

10: move u to the front of L
11: u← u.next

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 359/426

9.2 Relabel to Front

Lemma 64 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissible edges; this means for an admissible edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 360/426

Proof:

ñ Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissible, which means that any
ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

ñ Maintenance:
1. ñ Pushes do no create any new admissible edges. Therefore, if

discharge() does not relabel u, L is still topologically sorted.
ñ After relabeling, u cannot have admissible incoming edges as

such an edge (x,u) would have had a difference
`(x)− `(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissible edges leaving u that were generated by the
relabeling.

9.2 Relabel to Front

Proof:

ñ Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u′ (u in the next iteration) will be the current u;
the discharge(u) operation only terminates when u is not
active anymore.

For the case that we do not relabel, observe that the only way
a predecessor could be active is that we push flow to it via an
admissible arc. However, all admissible arc point to
successors of u.

Note that the invariant means that for u = null we have a preflow

with a valid labelling that does not have active nodes. This means

we have a maximum flow.

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 362/426

9.2 Relabel to Front

Lemma 65

There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 363/426

9.2 Relabel to Front

Lemma 66

The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 364/426

9.2 Relabel to Front

Recall that a saturating push operation

(min{cf (e), f (u)} = cf (e)) can also be a deactivating push

operation (min{cf (e), f (u)} = f(u)).
Lemma 67

The cost for all saturating push-operations that are not

deactivating is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 365/426

9.2 Relabel to Front

Lemma 68

The cost for all deactivating push-operations is only O(n3).

A deactivating push-operation takes constant time and ends the

current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 69

The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).

9.2 Relabel to Front 15. Dec. 2022

Harald Räcke 366/426

9.3 Highest Label

Algorithm 1 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)

9.3 Highest Label 15. Dec. 2022

Harald Räcke 367/426

9.3 Highest Label

Lemma 70

When using highest label the number of deactivating pushes is

only O(n3).

A push from a node on level ` can only “activate” nodes on levels

strictly less than `.

This means, after a deactivating push from u a relabel is required

to make u active again.

Hence, after n deactivating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of deactivating pushes is at most

n(#relabels + 1) = O(n3).

9.3 Highest Label

Since a discharge-operation is terminated by a deactivating push

this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of the generic push-relabel

algorithm.

Question:

How do we find the next node for a discharge operation?

9.3 Highest Label 15. Dec. 2022

Harald Räcke 369/426

9.3 Highest Label

Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists Lk, Lk−1, . . . , L0, (in that order) until you find a

non-empty list.

Unless the last (deactivating) push was to s or t the list k− 1 must

be non-empty (i.e., the search takes constant time).

9.3 Highest Label 15. Dec. 2022

Harald Räcke 370/426

9.3 Highest Label

Hence, the total time required for searching for active nodes is at

most

O(n3)+n(#deactivating-pushes-to-s-or-t)

Lemma 71

The number of deactivating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 72

The push-relabel algorithm with the rule highest-label takes time

O(n3).

9.3 Highest Label 15. Dec. 2022

Harald Räcke 371/426

9.3 Highest Label

Proof of the Lemma.

ñ We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

ñ After a node v (which must have `(v) = n+ 1) made a

deactivating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before v
can become active again.

ñ This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most once,

v can make at most n pushes to the source.

ñ As this holds for every node the total number of pushes to

the source is at most O(n2).

9.3 Highest Label 15. Dec. 2022

Harald Räcke 372/426

Mincost Flow

Problem Definition:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

ñ G = (V , E) is a directed graph.

ñ u : E → R+0 ∪ {∞} is the capacity function.

ñ c : E → R is the cost function

(note that c(e) may be negative).

ñ b : V → R,
∑
v∈V b(v) = 0 is a demand function.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 373/426

Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10

ñ Given a flow network for a standard maxflow problem.

ñ Set b(v) = 0 for every node. Keep the capacity function u for

all edges. Set the cost c(e) for every edge to 0.

ñ Add an edge from t to s with infinite capacity and cost −1.

ñ Then, val(f∗) = − cost(fmin), where f∗ is a maxflow, and

fmin is a mincost-flow.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 374/426

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

ñ Given a flow network for a standard maxflow problem, and a

value k.

ñ Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

ñ Set edge-costs to zero, and keep the capacities.

ñ There exists a maxflow of value at least k if and only if the

mincost-flow problem is feasible.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 375/426

Generalization

Our model:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

where b : V → R,
∑
v b(v) = 0; u : E → R+0 ∪ {∞}; c : E → R;

A more general model?

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

10 Mincost Flow 15. Dec. 2022

Harald Räcke 376/426

Generalization

Differences

ñ Flow along an edge e may have non-zero lower bound `(e).
ñ Flow along e may have negative upper bound u(e).
ñ The demand at a node v may have lower bound a(v) and

upper bound b(v) instead of just lower bound = upper

bound = b(v).

10 Mincost Flow 15. Dec. 2022

Harald Räcke 377/426

Reduction I
min

∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set `(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V .

Set b(r) = −∑v∈V b(v).
−∑v b(v) is negative; hence r is only sending flow.

v

r

u(e
) = b

(v)
− a(

v)

`(e
) = 0

c(e
) = 0

Reduction II

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either `(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
`(e) = −∞
c(e) = 0

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) ≠ 0 we can transform the graph so that c(e) = 0.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 379/426

Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

x

b(x) = b(u)
u v

+
δ−
δ

+δ
δ

−δ
−δ +δ

u(e)= ∞
`(e) = −∞
c(e) = δ ≠ 0

−δ

Additionally we set b(u) = 0.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 380/426

Reduction III

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) ≠ −∞:

u v

u v

u(e) = d ≠∞
`(e) = −∞
c(e) = a

u(e) = ∞
`(e) = −d
c(e) = −a

Replace the edge by an edge in opposite direction.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 381/426

Reduction IV
min

∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) = 0:

u v

u v

u(e)
`(e) = d ≠ −∞
c(e)

u(e)− d
`(e) = 0

c(e)

ū v̄
b(ū) = d b(v̄) = −d

The added edges have infinite capacity and cost c(e)/2.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 382/426

Applications

Caterer Problem

ñ She needs to supply ri napkins on N successive days.

ñ She can buy new napkins at p cents each.

ñ She can launder them at a fast laundry that takes m days and

cost f cents a napkin.

ñ She can use a slow laundry that takes k > m days and costs s
cents each.

ñ At the end of each day she should determine how many to

send to each laundry and how many to buy in order to fulfill

demand.

ñ Minimize cost.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 383/426

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

day edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = ri;
cost: c(e) = 0

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

buy edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = p

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

forward edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = 0

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

slow edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = s

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

fast edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = f

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

trash edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = 0

Residual Graph

Version A:

The residual graph G′ for a mincost flow is just a copy of the

graph G.

If we send f(e) along an edge, the corresponding edge e′ in the

residual graph has its lower and upper bound changed to

`(e′) = `(e)− f(e) and u(e′) = u(e)− f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the

residual graph for standard flows, with the only exception that

one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity

z and a cost of −c((u,v)).

10 Mincost Flow 15. Dec. 2022

Harald Räcke 385/426

10 Mincost Flow

A circulation in a graph G = (V , E) is a function f : E → R+ that

has an excess flow f(v) = 0 for every node v ∈ V .

A circulation is feasible if it fulfills capacity constraints, i.e.,

f(e) ≤ u(e) for every edge of G.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 386/426

Lemma 73

A given flow is a mincost-flow if and only if the corresponding

residual graph Gf does not have a feasible circulation of negative

cost.

⇒ Suppose that g is a feasible circulation of negative cost in the

residual graph.

Then f + g is a feasible flow with cost

cost(f)+ cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f∗ be a min-cost flow.

We need to show that the residual graph has a feasible

circulation with negative cost.

Clearly f∗ − f is a circulation of negative cost. One can also

easily see that it is feasible for the residual graph. (after

sending −f in the residual graph (pushing all flow back) we arrive

at the original graph; for this f∗ is clearly feasible)

For previous slide:
g = f∗ − f is obtained by computing ∆(e) = f∗(e)− f(e) for every
edge e = (u,v). If the result is positive set g((u,v)) = ∆(e) and
g((v,u)) = 0. Otherwise set g((u,v)) = 0 and g((v,u)) = −∆(e).

10 Mincost Flow 15. Dec. 2022

Harald Räcke 387/426

10 Mincost Flow

Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of

negative cost if and only if it has a negative cycle w.r.t.

edge-weights c : E → R.

Proof.

ñ Suppose that we have a negative cost circulation.

ñ Find directed cycle only using edges that have non-zero flow.

ñ If this cycle has negative cost you are done.

ñ Otherwise send flow in opposite direction along the cycle

until the bottleneck edge(s) does not carry any flow.

ñ You still have a circulation with negative cost.

ñ Repeat.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 388/426

10 Mincost Flow

Algorithm 45 CycleCanceling(G = (V , E), c,u, b)
1: establish a feasible flow f in G
2: while Gf contains negative cycle do

3: use Bellman-Ford to find a negative circuit Z
4: δ←min{uf (e) | e ∈ Z}
5: augment δ units along Z and update Gf

10 Mincost Flow 15. Dec. 2022

Harald Räcke 389/426

How do we find the initial feasible flow?

x1

x2

x3

x4

x5

x6

x7

ts −b(x1)−b(x1)
−b(x2)−b(x2)

−b(x3)
−b(x3)

b(x4)b(x4)

b(x5)b(x5)

b(x6)
b(x6)

b(x7)b(x7)

ñ Connect new node s to all nodes with negative b(v)-value.

ñ Connect nodes with positive b(v)-value to a new node t.
ñ There exist a feasible flow in the original graph iff in the

resulting graph there exists an s-t flow of value

∑

v :b(v)<0

(−b(v)) =
∑

v :b(v)>0

b(v) .

10 Mincost Flow

1

2

3

4

(2
, 4
)

3

(1, 2)0

1(2, 2)
1

(1
, 5
)

(3, 3)3

0

-4 4

0

demand

cost

capacity

flow

10 Mincost Flow 15. Dec. 2022

Harald Räcke 391/426

10 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 3)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 4
)

(-1
, 1
)

0

-4 4

0

10 Mincost Flow 15. Dec. 2022

Harald Räcke 392/426

10 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 3)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 4
)

(-1
, 1
)

0

-4 4

0

10 Mincost Flow 15. Dec. 2022

Harald Räcke 392/426

10 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 1)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 2
)

(-1
, 3
)

0

-4 4

0

10 Mincost Flow 15. Dec. 2022

Harald Räcke 392/426

10 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 1)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 2
)

(-1
, 3
)

0

-4 4

0

10 Mincost Flow 15. Dec. 2022

Harald Räcke 392/426

10 Mincost Flow

1

2

3

4

(2
, 2
)

(-2
, 2
) (-3, 1)

(3, 3)

(1, 2)(-1, 2)
(2, 1)(-2, 2)

(1
, 1
)

(-1
, 4
)

0

-4 4

0

10 Mincost Flow 15. Dec. 2022

Harald Räcke 392/426

10 Mincost Flow

Lemma 75

The improving cycle algorithm runs in time O(nm2CU), for

integer capacities and costs, when for all edges e, |c(e)| ≤ C and

|u(e)| ≤ U .

ñ Running time of Bellman-Ford is O(mn).
ñ Pushing flow along the cycle can be done in time O(n).
ñ Each iteration decreases the total cost by at least 1.

ñ The true optimum cost must lie in the interval

[−mCU, . . . ,+mCU].

Note that this lemma is weak since it does not allow for edges

with infinite capacity.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 393/426

10 Mincost Flow

A general mincost flow problem is of the following form:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

Lemma 76 (without proof)

A general mincost flow problem can be solved in polynomial time.

10 Mincost Flow 15. Dec. 2022

Harald Räcke 394/426

11 Gomory Hu Trees

Given an undirected, weighted graph G = (V , E, c) a cut-tree

T = (V , F,w) is a tree with edge-set F and capacities w that

fulfills the following properties.

1. Equivalent Flow Tree: For any pair of vertices s, t ∈ V ,

f(s, t) in G is equal to fT (s, t).

2. Cut Property: A minimum s-t cut in T is also a minimum

cut in G.

Here, f(s, t) is the value of a maximum s-t flow in G, and fT (s, t)
is the corresponding value in T .

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 395/426

Overview of the Algorithm

The algorithm maintains a partition of V , (sets S1, . . . , St), and a

spanning tree T on the vertex set {S1, . . . , St}.

Initially, there exists only the set S1 = V .

Then the algorithm performs n− 1 split-operations:

ñ In each such split-operation it chooses a set Si with |Si| ≥ 2

and splits this set into two non-empty parts X and Y .

ñ Si is then removed from T and replaced by X and Y .

ñ X and Y are connected by an edge, and the edges that before

the split were incident to Si are attached to either X or Y .

In the end this gives a tree on the vertex set V .

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 396/426

Details of the Split-operation

ñ Select Si that contains at least two nodes a and b.

ñ Compute the connected components of the forest obtained

from the current tree T after deleting Si. Each of these

components corresponds to a set of vertices from V .

ñ Consider the graph H obtained from G by contracting these

connected components into single nodes.

ñ Compute a minimum a-b cut in H. Let A, and B denote the

two sides of this cut.

ñ Split Si in T into two sets/nodes Sai Í Si ∩A and Sbi Í Si ∩ B
and add edge {Sai , Sbi } with capacity fH(a, b).

ñ Replace an edge {Si, Sx} by {Sai , Sx} if Sx ⊂ A and by

{Sbi , Sx} if Sx ⊂ B.

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 397/426

Example: Gomory-Hu Construction

15

15

1
7

18

16

1
6

7
7

7

19

7

1
1

8

7

2

3

1

1

8

9

3

4

6

4

2

11

7

9

9

1

2

3

4

5

6

7

8

9

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 398/426

Analysis

Lemma 77

For nodes s, t, x ∈ V we have f(s, t) ≥min{f(s, x), f (x, t)}

Lemma 78

For nodes s, t, x1, . . . , xk ∈ V we have

f(s, t) ≥min{f(s, x1), f (x1, x2), . . . , f (xk−1, xk), f (xk, t)}

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 399/426

Lemma 79

Let S be some minimum r -s cut for some nodes r , s ∈ V (s ∈ S),

and let v,w ∈ S. Then there is a minimum v-w-cut T with T ⊂ S.

Proof: Let X be a minimum v-w cut with X ∩ S ≠ ∅ and

X ∩ (V \ S) ≠ ∅. Note that S \X and S ∩X are v-w cuts inside S.

We may assume w.l.o.g. s ∈ X.

First case r ∈ X.

ñ cap(X \ S)+ cap(S \X) ≤ cap(S)+ cap(X).
ñ cap(X \ S) ≥ cap(S) because X \ S is an r -s cut.

ñ This gives cap(S \X) ≤ cap(X).

Second case r ∉ X.

ñ cap(X ∪ S)+ cap(S ∩X) ≤ cap(S)+ cap(X).
ñ cap(X ∪ S) ≥ cap(S) because X ∪ S is an r -s cut.

ñ This gives cap(S ∩X) ≤ cap(X).

cap(S \ X) + cap(X \ S) ≤ cap(S) + cap(X)

S X

S \X X \ S

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 401/426

cap(X ∪ S) + cap(S ∩ X) ≤ cap(S) + cap(X)

S X

S ∪X
X ∩ S

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 402/426

Analysis

Lemma 79 tells us that if we have a graph G = (V , E) and we

contract a subset X ⊂ V that corresponds to some mincut, then

the value of f(s, t) does not change for two nodes s, t ∉ X.

We will show (later) that the connected components that we

contract during a split-operation each correspond to some mincut

and, hence, fH(s, t) = f(s, t), where fH(s, t) is the value of a

minimum s-t mincut in graph H.

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 403/426

Analysis

Invariant [existence of representatives]:

For any edge {Si, Sj} in T , there are vertices a ∈ Si and b ∈ Sj
such that w(Si, Sj) = f(a, b) and the cut defined by edge {Si, Sj}
is a minimum a-b cut in G.

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 404/426

Analysis
We first show that the invariant implies that at the end of the

algorithm T is indeed a cut-tree.

ñ Let s = x0, x1, . . . , xk−1, xk = t be the unique simple path

from s to t in the final tree T . From the invariant we get that

f(xi, xi+1) = w(xi, xi+1) for all j.
ñ Then

fT (s, t) = min
i∈{0,...,k−1}

{w(xi, xi+1)}

= min
i∈{0,...,k−1}

{f(xi, xi+1)} ≤ f(s, t) .

ñ Let {xj , xj+1} be the edge with minimum weight on the path.

ñ Since by the invariant this edge induces an s-t cut with

capacity f(xj , xj+1) we get f(s, t) ≤ f(xj , xj+1) = fT (s, t).

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 405/426

Analysis

ñ Hence, fT (s, t) = f(s, t) (flow equivalence).

ñ The edge {xj , xj+1} is a mincut between s and t in T .

ñ By invariant, it forms a cut with capacity f(xj , xj+1) in G
(which separates s and t).

ñ Since, we can send a flow of value f(xj , xj+1) btw. s and t,
this is an s-t mincut (cut property).

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 406/426

Proof of Invariant

The invariant obviously holds at the beginning of the algorithm.

Now, we show that it holds after a split-operation provided that it

was true before the operation.

Let Si denote our selected cluster with nodes a and b. Because of

the invariant all edges leaving {Si} in T correspond to some

mincuts.

Therefore, contracting the connected components does not

change the mincut btw. a and b due to Lemma 79.

After the split we have to choose representatives for all edges. For

the new edge {Sai , Sbi } with capacity w(Sai , S
b
i) = fH(a, b) we can

simply choose a and b as representatives.

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 407/426

Proof of Invariant

For edges that are not incident to Si we do not need to change

representatives as the neighbouring sets do not change.

Consider an edge {X, Si}, and suppose that before the split it

used representatives x ∈ X, and s ∈ Si. Assume that this edge is

replaced by {X, Sai } in the new tree (the case when it is replaced

by {X, Sbi } is analogous).

If s ∈ Sai we can keep x and s as representatives.

Otherwise, we choose x and a as representatives. We need to

show that f(x,a) = f(x, s).

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 408/426

Proof of Invariant

Because the invariant was true before the split we know that the

edge {X, Si} induces a cut in G of capacity f(x, s). Since, x and a
are on opposite sides of this cut, we know that f(x,a) ≤ f(x, s).

The set B forms a mincut separating a from b. Contracting all

nodes in this set gives a new graph G′ where the set B is

represented by node vB. Because of Lemma 79 we know that

f ′(x,a) = f(x,a) as x,a ∉ B.

We further have f ′(x,a) ≥min{f ′(x,vB), f ′(vB , a)}.

Since s ∈ B we have f ′(vB , x) ≥ f(s, x).

Also, f ′(a,vB) ≥ f(a, b) ≥ f(x, s) since the a-b cut that splits Si
into Sai and Sbi also separates s and x.

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 409/426

Analysis

a

b

x

s

s

SiSai

Sbi

11 Gomory Hu Trees 15. Dec. 2022

Harald Räcke 410/426

12 Global Mincut

Given an undirected, capacitated graph G = (V , E, c) find a

partition of V into two non-empty sets S, V \ S s.t. the capacity of

edges between both sets is minimized.

1

2

3

4

5

6

7

8
9

12 Global Mincut 15. Dec. 2022

Harald Räcke 411/426

12 Global Mincut

We can solve this problem using standard maxflow/mincut.

ñ Construct a directed graph G′ = (V , E′) that has edges (u,v)
and (v,u) for every edge {u,v} ∈ E.

ñ Fix an arbitrary node s ∈ V as source. Compute a minimum

s-t cut for all possible choices t ∈ V, t ≠ s. (Time: O(n4))
ñ Let (S, V \ S) be a minimum global mincut. The above

algorithm will output a cut of capacity cap(S, V \ S) whenever

|{s, t} ∩ S| = 1.

1

2

3

4

5

6

7t

8
9s

12 Global Mincut 15. Dec. 2022

Harald Räcke 412/426

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 80

1

4

5

6

7

9

8

2

21

4

5

6

7

9

8

3

2

ñ Edge-contractions do not decrease the size of the mincut.

12 Global Mincut 15. Dec. 2022

Harald Räcke 413/426

Edge Contractions

We can perform an edge-contraction in time O(n).

12 Global Mincut 15. Dec. 2022

Harald Räcke 414/426

Randomized Mincut Algorithm

Algorithm 1 KargerMincut(G = (V , E, c))
1: for i = 1→ n− 2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: return only cut in G

ñ Let Gt denote the graph after the (n− t)-th iteration, when t
nodes are left.

ñ Note that the final graph G2 only contains a single edge.

ñ The cut in G2 corresponds to a cut in the original graph G
with the same capacity.

ñ What is the probability that this algorithm returns a mincut?

12 Global Mincut 15. Dec. 2022

Harald Räcke 415/426

Example: Randomized Mincut Algorithm

12 Global Mincut 15. Dec. 2022

Harald Räcke 416/426

Analysis

What is the probability that a given mincut A is still possible

after round i?

ñ It is still possible to obtain cut A in the end if so far no edge

in (A,V \A) has been contracted.

12 Global Mincut 15. Dec. 2022

Harald Räcke 417/426

Analysis

What is the probability that we select an edge from A in

iteration i?
ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E
c(e) =

∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.

12 Global Mincut 15. Dec. 2022

Harald Räcke 418/426

Analysis

The probability that we do not choose an edge from the cut in

iteration i is

1− 2
n− i+ 1

= n− i− 1
n− i+ 1

.

The probability that the cut is alive after iteration n− t (after

which t nodes are left) is at most

n−t∏

i=1

n− i− 1
n− i+ 1

= t(t − 1)
n(n− 1)

.

Choosing t = 2 gives that with probability 1/
(
n
2

)
the algorithm

computes a mincut.

12 Global Mincut 15. Dec. 2022

Harald Räcke 419/426

Analysis

Repeating the algorithm c lnn
(
n
2

)
times gives that the probability

that we are never successful is

(
1− 1(

n
2

)
)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 81

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).

12 Global Mincut 15. Dec. 2022

Harald Räcke 420/426

Improved Algorithm

Algorithm 2 RecursiveMincut(G = (V , E, c))
1: for i = 1→ n−n/√2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: if |V | = 2 return cut-value;

5: cuta ← RecursiveMincut(G);

6: cutb ← RecursiveMincut(G);

7: return min{cuta, cutb}

Running time:

ñ T(n) = 2T
(n√

2

)
+O(n2)

ñ This gives T(n) = O(n2 logn).
Note that the above implementation
only works for very special values of n.

12 Global Mincut 15. Dec. 2022

Harald Räcke 421/426

Probability of Success

The probability of not contracting an edge from the mincut during

one iteration through the for-loop is at least

t(t − 1)
n(n− 1)

≥ t
2

n2 =
1
2
,

as t = n√
2
.

12 Global Mincut 15. Dec. 2022

Harald Räcke 422/426

Probability of Success

Gn

G n√
2

n

n√
2

(n√
2

)2

(n√
2

)3

(n√
2

)4

size of
rest graph

recursion
tree

The probability of con-
tracting an edge of the
mincut during these it-
erations is 1

2 .

We can estimate the success probability by using the following

game on the recursion tree. Delete every edge with probability 1
2 .

If in the end you have a path from the root to at least one leaf

node you are successful.

12 Global Mincut 15. Dec. 2022

Harald Räcke 423/426

Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height

(distance to leaf level) of the parent-node of e (end-point that is

higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of

e to a descendant leaf, after we randomly deleted edges. Note

that an edge can only be alive if it hasn’t been deleted.

Lemma 82

The probability that an edge e is alive is at least 1
h(e)+1 .

12 Global Mincut 15. Dec. 2022

Harald Räcke 424/426

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Pr[A∨ B] = Pr[A]+ Pr[B]− Pr[A∧ B]

x−x2/2 is monotonically
increasing for x ∈ [0,1]

12 Global Mincut 15. Dec. 2022

Harald Räcke 425/426

12 Global Mincut

Lemma 83

One run of the algorithm can be performed in time O(n2 logn)
and has a success probability of Ω(1

logn).

Doing Θ(log2n) runs gives that the algorithm succeeds with high

probability. The total running time is O(n2 log3n).

12 Global Mincut 15. Dec. 2022

Harald Räcke 426/426

	Flows and Cuts
	Introduction
	Augmenting Path Algorithms
	The Generic Augmenting Path Algorithm
	Shortest Augmenting Paths
	Capacity Scaling

	Flow Applications
	Matching
	Baseball Elimination
	Project Selection

	Push Relabel Algorithms
	Generic Push Relabel
	Relabel to Front
	Highest Label

	Mincost Flow
	Gomory Hu Trees
	Global Mincut

