

Matching

- ▶ Input: undirected graph G = (V, E).
- $M \subseteq E$ is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

15 Augmenting Paths for Matchings

Definitions.

- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ► For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 84

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

15. Dec. 2022 430/488

15 Augmenting Paths for Matchings

Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- $\Leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

15. Dec. 2022 433/488

Augmenting Paths in Action

15 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 85

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

15 Augmenting Paths for Matchings

Proof

- Assume there is an augmenting path P' w.r.t. M' starting at u.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (£).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (2).

החוחר	15 Augmenting Paths for Matchings	15. Dec. 2022
UUU Harald Räcke		435/488

How to find an augmenting path?

Construct an alternating tree.

16 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- ▶ assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

		The lecture slid
Algo	orithm 48 BiMatch(G, match)	contain a step
1: f	for $x \in V$ do mate[x] $\leftarrow 0$;	step explanatio
2: 1	$r \leftarrow 0$; free $\leftarrow n$;	
3: N	while $free \ge 1$ and $r < n$ do	araph $C = (S \sqcup S' E)$
4:	$r \leftarrow r + 1$	graph $G = (S \cup S, L)$
5:	if $mate[r] = 0$ then	$S = \{1, \ldots, n\}$
6:	for $i = 1$ to n do $parent[i'] \leftarrow 0$	$S' = \{1', \dots, n'\}$
7:	$Q \leftarrow \emptyset$; Q . append (r) ; $aug \leftarrow$ false;	- ()) ·)
8:	while $aug = false$ and $Q \neq \emptyset$ do	
9:	$x \leftarrow Q.$ dequeue();	
10:	for $\mathcal{Y} \in A_{\mathcal{X}}$ do	
11:	if $mate[y] = 0$ then	
12:	augm(mate, parent, y);	
13:	$aug \leftarrow true;$	
14:	<i>free</i> \leftarrow <i>free</i> -1 ;	
15:	else	
16:	if $parent[y] = 0$ then	
17:	$parent[y] \leftarrow x;$	
18:	Q .enqueue(<i>mate</i> [γ]);	

15. Dec. 2022 441/488

Harald Räcke

Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - ▶ Let *S* denote a minimum cut and let $L_S ext{ if } L \cap S$ and $R_S ext{ if } R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

16 Weighted Bipartite Matching

```
15. Dec. 2022
444/488
```

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

```
x_u + x_v \ge w_e for every edge e = (u, v).
```

- Let H(x) denote the subgraph of G that only contains edges that are tight w.r.t. the node weighting x, i.e. edges e = (u, v) for which w_e = x_u + x_v.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

החוחו	
	Harald Räcke

15. Dec. 2022 445/488

Algorithm Outline Reason: • The weight of your matching M^* is $\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v .$ • Any other perfect matching M (in G, not necessarily in $H(\vec{x})$) has $\sum_{(u,v)\in M} w_{(u,v)} \leq \sum_{(u,v)\in M} (x_u + x_v) = \sum_v x_v .$

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Harald Räcke	16 Weighted Bipartite Matching

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from *S* to $R \Gamma(S)$ decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in $H(\vec{x})$, and hence would go between *S* and $\Gamma(S)$) we can do this decrement for small enough $\delta > 0$ until a new edge gets tight.

Analysis

Harald Räcke

15. Dec. 2022

447/488

How many iterations do we need?

- One reweighting step increases the number of edges out of *S* by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L - S and $R - \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

15. Dec. 2022
451/488

Analysis

How do we find *S*?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*.
 Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

How to find an augmenting path?

Construct an alternating tree.

Analysis

- The current matching does not have any edges from V_{odd} to L \ V_{even} (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we obtain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

15. Dec. 2022 453/488

How to find an augmenting path?

Construct an alternating tree.

Flowers and Blossoms

Definition 87

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Harald Räcke

17 Maximum Matching in General Graphs

15. Dec. 2022 456/488

Flowers and Blossoms Properties: A stem spans 2ℓ + 1 nodes and contains ℓ matched edges for some integer ℓ ≥ 0. A blossom spans 2k + 1 nodes and contains k matched edges for some integer k ≥ 1. The matched edges match all nodes of the blossom except the base. The base of a blossom is an even node (if the stem is part of an alternating tree starting at r).

Flowers and Blossoms

Properties:

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Harald Räcke

17 Maximum Matching in General Graphs

Shrinking Blossoms When during the alternating tree construction we discover a blossom *B* we replace the graph *G* by G' = G/B, which is obtained from *G* by contracting the blossom *B*. Delete all vertices in *B* (and its incident edges) from *G*. Add a new (pseudo-)vertex *b*. The new vertex *b* is connected to all vertices in *V* \ *B* that had at least one edge to a vertex from *B*.

Flowers and Blossoms

Harald Räcke

15. Dec. 2022 461/488

15. Dec. 2022

459/488

17 Maximum Matching in General Graphs

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

Harald Räcke

17 Maximum Matching in General Graphs

Correctness

Assume that in *G* we have a flower w.r.t. matching *M*. Let *r* be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

Lemma 88

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Example: Bloss	om Algorithm	Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.
Harald Räcke	17 Maximum Matching in Ger	neral Graphs 15. Dec. 2022 463/488

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

15. Dec. 2022 464/488

15. Dec. 2022

462/488

Correctness

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- ▶ If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

17 Maximum Matching in General Graphs	15. Dec. 2022

Correctness

Lemma 89

|||||||| Harald Räcke

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

17 Maximum Matching in General Graphs

15. Dec. 2022 468/488

Correctness

Proof.

Case 2: empty stem

• If the stem is empty then after expanding the blossom, w = r.

Correctness

Proof.

- ▶ If *P* does not contain a node from *B* there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i,j) \circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

		The lecture contain a s	slides tep by
Algorit	hm 49 search(r, found)	step explar	nation.
1: set	$\bar{A}(i) \leftarrow A(i)$ for all nodes i		
2: four	<i>nd</i> ← false		
3: unla	ıbel all nodes;		
4: give	an even label to r and initialize $list \leftarrow \{r\}$		
5: whi	le list $\neq \emptyset$ do		
6:	delete a node <i>i</i> from <i>list</i>		
7:	examine(<i>i</i> , <i>found</i>)		
8:	<pre>if found = true then return</pre>		

Search for an augmenting path starting at r.

Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

Alg	orithm 50 examine(<i>i</i> , <i>found</i>)	The lecture contain a s	slides tep by
1: 1	for all $j\in ar{A}(i)$ do	step explar	nation.
2:	if j is even then contract (i, j) and return	L	
3:	if <i>j</i> is unmatched then		
4:	$q \leftarrow j;$		
5:	$\operatorname{pred}(q) \leftarrow i;$		
6:	<i>found</i> ← true;		
7:	return		
8:	if <i>j</i> is matched and unlabeled then		
9:	$\operatorname{pred}(j) \leftarrow i;$		
10:	$pred(mate(j)) \leftarrow j;$		
11:	add mate (j) to <i>list</i>		

Examine the neighbours of a node *i*

<section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Algorith	$\frac{11131}{11131} = \frac{1}{111} \frac{1}{1111} \frac{1}{1111} \frac{1}{1111} \frac{1}{1111} \frac{1}{1111} \frac{1}{1111} \frac{1}{1111}$	
1: trace	pred-indices of i and j to identify a biossom B	
2: create	e new node b and set $A(b) \leftarrow \bigcup_{x \in B} A(x)$	
3: label	b even and add to <i>list</i>	
4: updat	te $\overline{A}(j) \leftarrow \overline{A}(j) \cup \{b\}$ for each $j \in \overline{A}(b)$	
5: form	a circular double linked list of nodes in B	
6: delet	e nodes in <i>B</i> from the graph	
	<i>b</i> will be an even node, and it has unexamined neighbours.	
	<i>b</i> will be an even node, and it has unexamined neighbours.	

Algorithm 51 contract(i, j)1: trace pred-indices of i and j to identify a blossom B2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$ 3: label b even and add to list4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$ 5: form a circular double linked list of nodes in B6: delete nodes in B from the graphOnly delete links from nodes not in B to B.When expanding the blossom again we can
recreate these links in time $\mathcal{O}(m)$.

Analysis

- A contraction operation can be performed in time O(m). Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time O(m).
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

```
n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2).
```


Example: Blosso	om Algorithm	Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.
Harald Räcke	17 Maximum Matching in Gen	eral Graphs 15. Dec. 2022 476/488

Analysis Hopcroft-Karp

Lemma 90

Given a matching M and a matching M^* with $|M^*| - |M| \ge 0$. There exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ► The graph contains $k \leq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

15. Dec. 2022 478/488

A Fast Matching Algorithm

We call one iteration of the repeat-loop a phase of the algorithm.

Harald Räcke

18 The Hopcroft-Karp Algorithm

15. Dec. 2022 477/488

Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

٦		
	Harald Räcke	

חטחל

18 The Hopcroft-Karp Algorithm

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Analysis Hopcroft-Karp

Lemma 92

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- Otherwise, at least one edge from P coincides with an edge from paths {P₁,..., P_k}.
- This edge is not contained in A.
- ▶ Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

Harald Räcke	18 The Hopcroft-Karp Algorithm
--------------	--------------------------------

```
15. Dec. 2022
481/488
```

Analysis Hopcroft-Karp Lemma 93 The Hopcroft-Karp algorithm requires at most 2√|V| phases. Proof. After iteration [√|V|] the length of a shortest augmenting path must be at least [√|V|] + 1 ≥ √|V|. Hence, there can be at most |V|/(√|V| + 1) ≤ √|V| additional augmentations.

Harald Räcke

15. Dec. 2022 482/488

15. Dec. 2022

480/488

Harald Räcke

Analysis Hopcroft-Karp

Lemma 94

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

construct a "level graph" G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ▶ ...

stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

החוהי	18 The Hopcroft-Karp Algorithm	15. Dec. 2022
UUU Harald Räcke		484/488

Analysis Hopcroft-Karp

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges
- Harald Räcke

18 The Hopcroft-Karp Algorithm

15. Dec. 2022 485/488

