6 Introduction

Flow Network

- directed graph $G=(V, E)$; edge capacities $c(e)$
- two special nodes: source s; target t;
- no edges entering s or leaving t;
- at least for now: no parallel edges;

Cuts

Definition 28

An (s, t)-cut in the graph G is given by a set $A \subset V$ with $s \in A$ and $t \in V \backslash A$.

Definition 29

The capacity of a cut A is defined as

$$
\operatorname{cap}(A, V \backslash A):=\sum_{e \in \operatorname{out}(A)} c(e),
$$

where $\operatorname{out}(A)$ denotes the set of edges of the form $A \times V \backslash A$ (i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum capacity.

Cuts

Example 30

The capacity of the cut is $\operatorname{cap}(A, V \backslash A)=28$.

Flows

Definition 31
An (s, t)-flow is a function $f: E \mapsto \mathbb{R}^{+}$that satisfies

1. For each edge e

$$
0 \leq f(e) \leq c(e)
$$

(capacity constraints)
2. For each $v \in V \backslash\{s, t\}$

$$
\sum_{e \in \operatorname{out}(v)} f(e)=\sum_{e \in \operatorname{into}(v)} f(e) .
$$

(flow conservation constraints)

Flows

Definition 32

The value of an (s, t)-flow f is defined as

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(s)} f(e)
$$

Maximum Flow Problem: Find an (s, t)-flow with maximum value.

Flows

Example 33

The value of the flow is $\operatorname{val}(f)=24$.

Flows

Lemma 34 (Flow value lemma)

Let f be a flow, and let $A \subseteq V$ be an (s, t)-cut. Then the net-flow across the cut is equal to the amount of flow leaving s, i.e.,

$$
\operatorname{val}(f)=\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e) .
$$

Proof.

$$
\begin{aligned}
\operatorname{val}(f) & =\sum_{e \in \operatorname{out}(s)} f(e) \\
& =\sum_{e \in \operatorname{out}(s)} f(e)+\sum_{v \in A \backslash\{s\}}\left(\sum_{e \in \operatorname{out}(v)} f(e)-\sum_{e \in \operatorname{in}(v)} f(e)\right) \\
& =\sum_{e \in \operatorname{out}(A)} f(e)-\sum_{e \in \operatorname{into}(A)} f(e)
\end{aligned}
$$

The last equality holds since every edge with both end-points in A contributes negatively as well as positively to the sum in Line 2. The only edges whose contribution doesn't cancel out are edges leaving or entering A.

Example 35

The net-flow across the cut is $\operatorname{val}(f)=24$.

Corollary 36

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

$$
\operatorname{val}(f)=\operatorname{cap}(A, V \backslash A)
$$

Then f is a maximum flow.

Proof.

Suppose that there is a flow f^{\prime} with larger value. Then

$$
\begin{aligned}
\operatorname{cap}(A, V \backslash A) & <\operatorname{val}\left(f^{\prime}\right) \\
& =\sum_{e \in \operatorname{out}(A)} f^{\prime}(e)-\sum_{e \in \operatorname{into}(A)} f^{\prime}(e) \\
& \leq \sum_{e \in \operatorname{out}(A)} f^{\prime}(e) \\
& \leq \operatorname{cap}(A, V \backslash A)
\end{aligned}
$$

