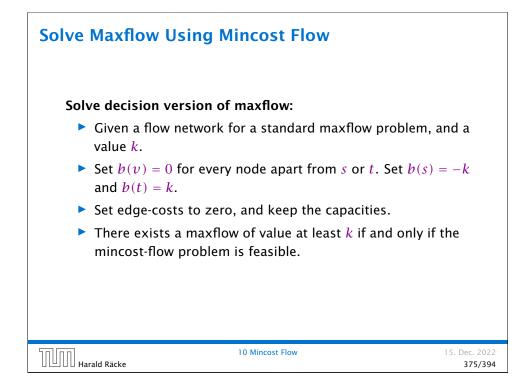
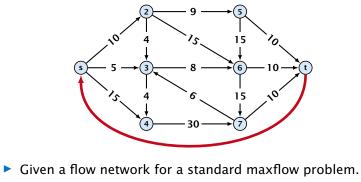
Problem Definition: $\begin{aligned}
& \min_{\substack{c} e} c(e) f(e) \\
& \text{s.t.} \quad \forall e \in E : \quad 0 \leq f(e) \leq u(e) \\
& \forall v \in V : \quad f(v) = b(v)
\end{aligned}$ $& G = (V, E) \text{ is a directed graph.} \\
& u : E \to \mathbb{R}_0^+ \cup \{\infty\} \text{ is the capacity function.} \\
& c : E \to \mathbb{R} \text{ is the cost function} \\
& (note that <math>c(e) \text{ may be negative}.
\end{aligned}$ $& b : V \to \mathbb{R}, \sum_{v \in V} b(v) = 0 \text{ is a demand function.}
\end{aligned}$



Solve Maxflow Using Mincost Flow



- Set b(v) = 0 for every node. Keep the capacity function u for all edges. Set the cost c(e) for every edge to 0.
- Add an edge from t to s with infinite capacity and cost -1.
- Then, $val(f^*) = -cost(f_{min})$, where f^* is a maxflow, and f_{min} is a mincost-flow.

החוהר	10 Mincost Flow	15. Dec. 2022
UUU Harald Räcke		374/394

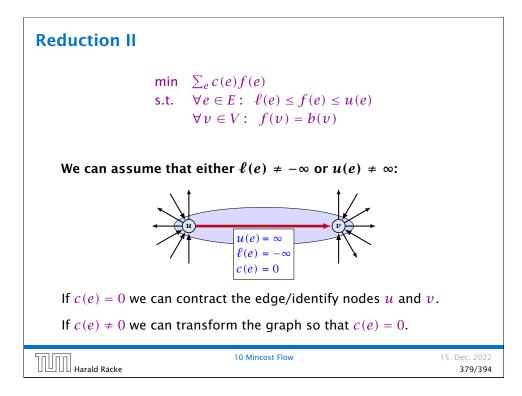
Generalization		
Our model:		
	in $\sum_{e} c(e) f(e)$ $\forall e \in E: 0 \le f(e) \le u(e)$ $\forall v \in V: f(v) = b(v)$	
where $b: V \to \mathbb{R}$, \sum	$\mathbb{L}_{v} b(v) = 0; u: E \to \mathbb{R}_{0}^{+} \cup \{\infty\}; c: E \to \mathbb{R}_{0}^{+}$	₿;
A more general m	odel?	
	$\sum_{e} c(e) f(e)$ $\forall e \in E: \ \ell(e) \le f(e) \le u(e)$ $\forall v \in V: \ a(v) \le f(v) \le b(v)$	
where $a: V \rightarrow \mathbb{R}$, $b c: E \rightarrow \mathbb{R}$;	$: V \to \mathbb{R}; \ \ell : E \to \mathbb{R} \cup \{-\infty\}, \ u : E \to \mathbb{R} \cup \{-\infty\}$	{∞}
Harald Räcke	10 Mincost Flow	15. Dec. 2022 376/394

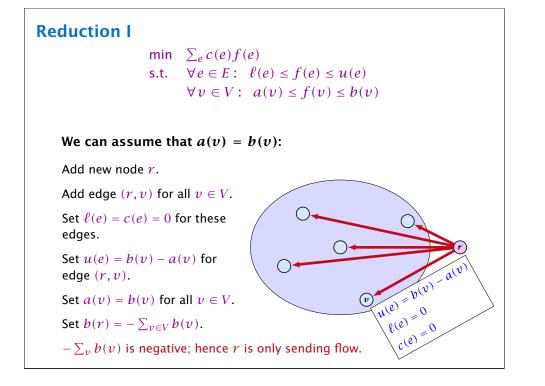
Generalization

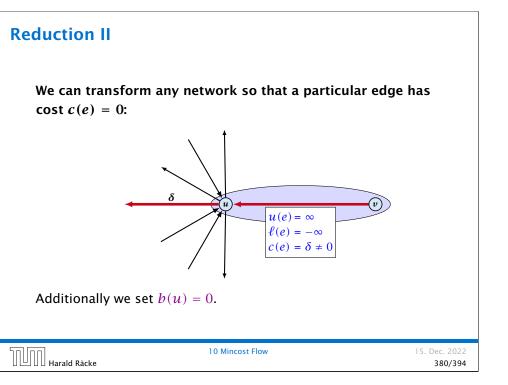
Differences

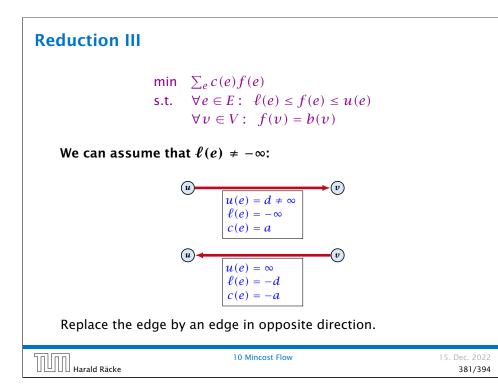
- Flow along an edge e may have non-zero lower bound $\ell(e)$.
- Flow along e may have negative upper bound u(e).
- The demand at a node v may have lower bound a(v) and upper bound b(v) instead of just lower bound = upper bound = b(v).

10 Mincost Flow	15. Dec. 2022 377/394
	10 Mincost Flow



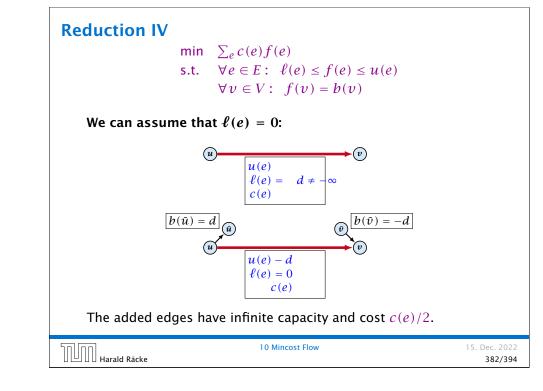


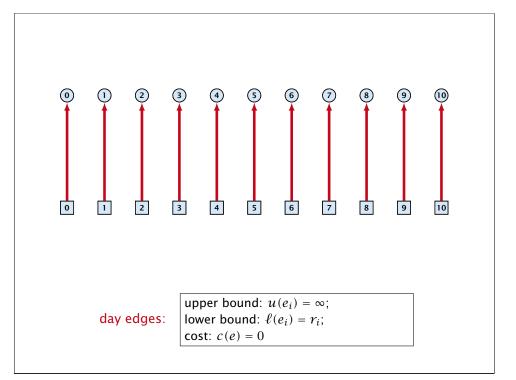




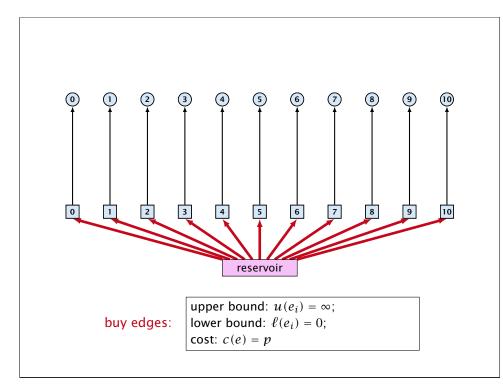
Caterer Problem

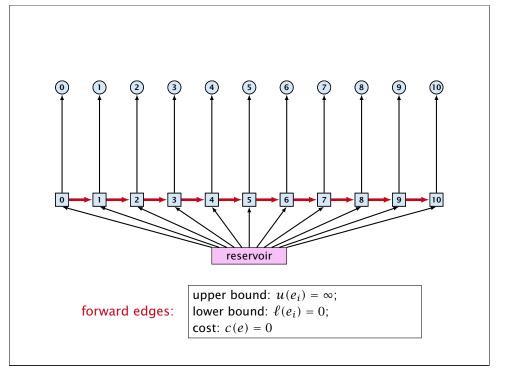
- She needs to supply r_i napkins on N successive days.
- She can buy new napkins at *p* cents each.
- She can launder them at a fast laundry that takes m days and cost f cents a napkin.
- She can use a slow laundry that takes k > m days and costs s cents each.
- At the end of each day she should determine how many to send to each laundry and how many to buy in order to fulfill demand.
- Minimize cost.

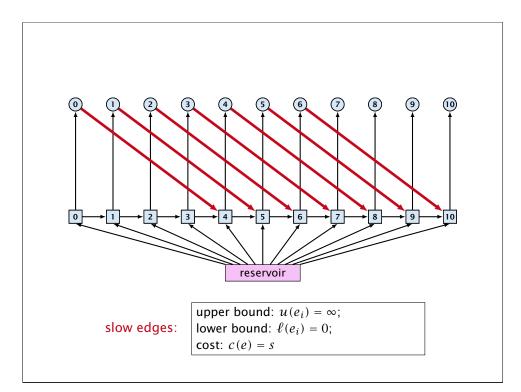


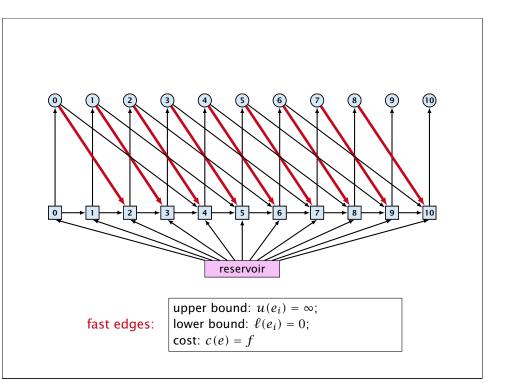


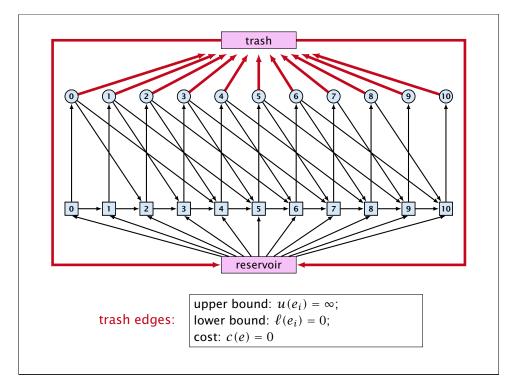
15. Dec. 2022 383/394











Harald Räcke

A circulation in a graph G = (V, E) is a function $f : E \to \mathbb{R}^+$ that has an excess flow f(v) = 0 for every node $v \in V$.

A circulation is feasible if it fulfills capacity constraints, i.e., $f(e) \le u(e)$ for every edge of *G*.

Residual Graph

Version A:

The residual graph G' for a mincost flow is just a copy of the graph G.

If we send f(e) along an edge, the corresponding edge e' in the residual graph has its lower and upper bound changed to $\ell(e') = \ell(e) - f(e)$ and u(e') = u(e) - f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the residual graph for standard flows, with the only exception that one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, u) has capacity z and a cost of -c((u, v)).

10 Mincost Flow

15. Dec. 2022 385/394

Lemma 73

A given flow is a mincost-flow if and only if the corresponding residual graph G_f does not have a feasible circulation of negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in the residual graph.

Then f + g is a feasible flow with cost cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

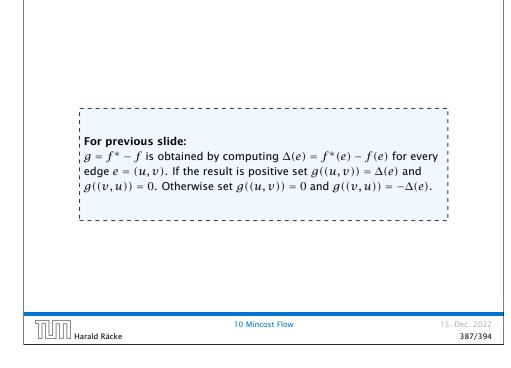
⇐ Let f be a non-mincost flow, and let f* be a min-cost flow. We need to show that the residual graph has a feasible circulation with negative cost.

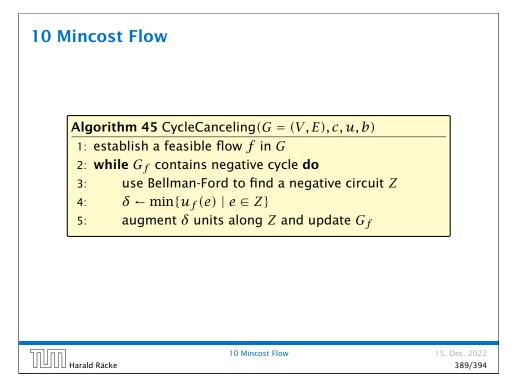
Clearly $f^* - f$ is a circulation of negative cost. One can also easily see that it is feasible for the residual graph. (after sending -f in the residual graph (pushing all flow back) we arrive at the original graph; for this f^* is clearly feasible)

1

10 Mincost Flow

15. Dec. 2022 386/394





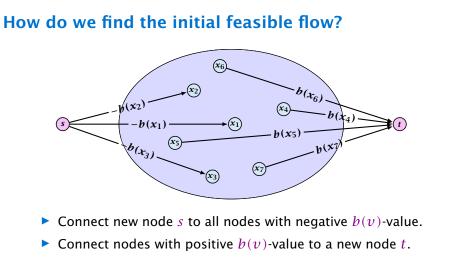
Lemma 74

A graph (without zero-capacity edges) has a feasible circulation of negative cost if and only if it has a negative cycle w.r.t. edge-weights $c : E \to \mathbb{R}$.

Proof.

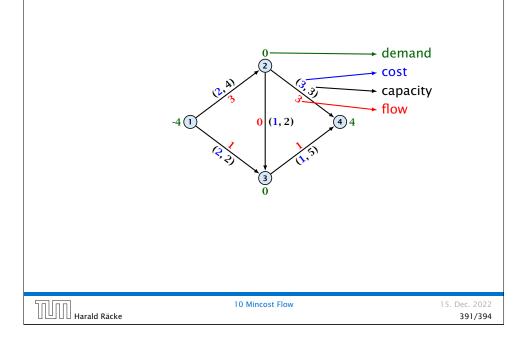
- Suppose that we have a negative cost circulation.
- Find directed cycle only using edges that have non-zero flow.
- If this cycle has negative cost you are done.
- Otherwise send flow in opposite direction along the cycle until the bottleneck edge(s) does not carry any flow.
- > You still have a circulation with negative cost.
- Repeat.

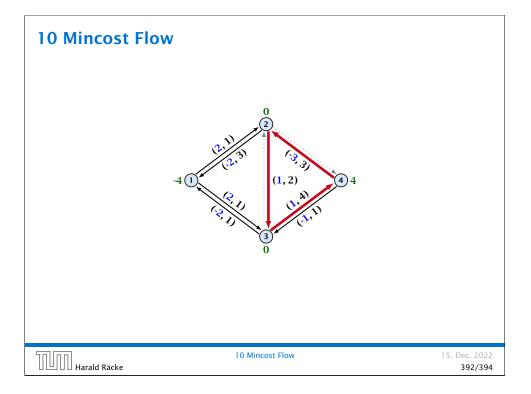
	10 Mincost Flow	15. Dec. 2022
UUU Harald Räcke		388/394

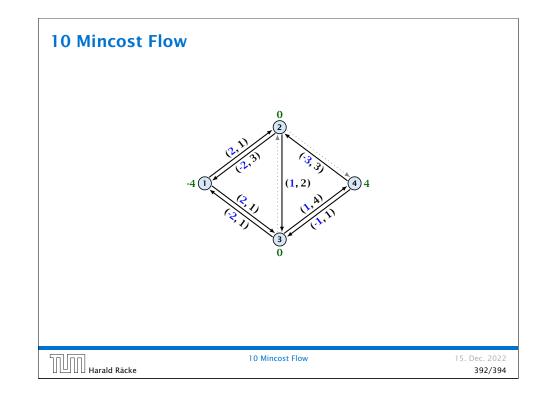


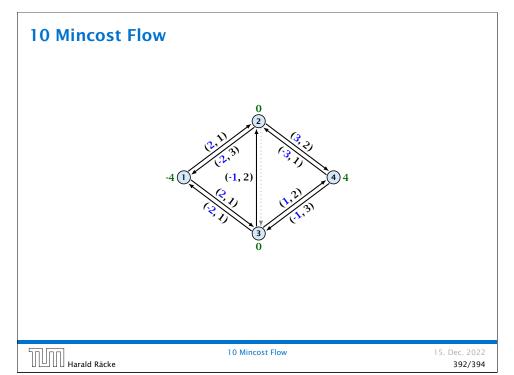
There exist a feasible flow in the original graph iff in the resulting graph there exists an *s*-*t* flow of value

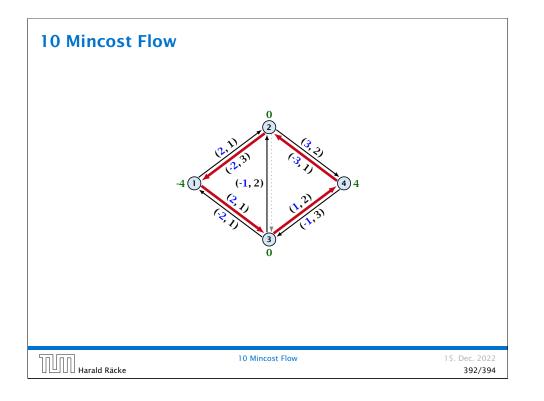
 $\sum (-b(v)) =$ $\sum b(v)$.









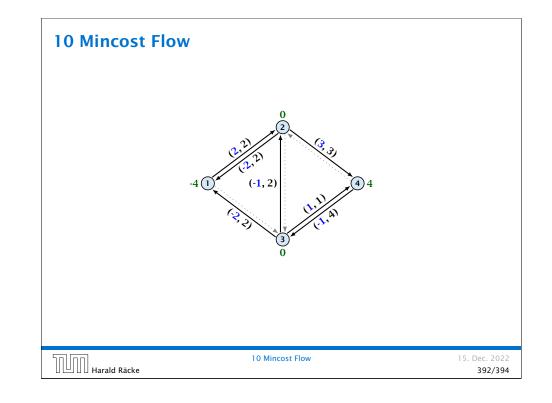


Lemma 75

The improving cycle algorithm runs in time $O(nm^2CU)$, for integer capacities and costs, when for all edges e, $|c(e)| \le C$ and $|u(e)| \le U$.

- Running time of Bellman-Ford is $\mathcal{O}(mn)$.
- Pushing flow along the cycle can be done in time O(n).
- Each iteration decreases the total cost by at least 1.
- The true optimum cost must lie in the interval [-mCU, ..., +mCU].

Note that this lemma is weak since it does not allow for edges with infinite capacity.



10 Mincost Flow A general mincost flow problem is of the following form: $\begin{aligned} \min & \sum_{e} c(e) f(e) \\ \text{s.t.} & \forall e \in E: \quad \ell(e) \leq f(e) \leq u(e) \\ \forall v \in V: \quad a(v) \leq f(v) \leq b(v) \end{aligned}$ where $a: V \to \mathbb{R}, b: V \to \mathbb{R}; \ell: E \to \mathbb{R} \cup \{-\infty\}, u: E \to \mathbb{R} \cup \{\infty\} \\ c: E \to \mathbb{R}; \end{aligned}$ Lemma 76 (without proof) A general mincost flow problem can be solved in polynomial time.

15. Dec. 2022 393/394