6 Priority Queues

A Priority Queue *S* is a dynamic set data structure that supports the following operations:

- ▶ S. build($x_1, ..., x_n$): Creates a data-structure that contains just the elements $x_1, ..., x_n$.
- \triangleright S. insert(x): Adds element x to the data-structure.
- ▶ element *S*. minimum(): Returns an element $x \in S$ with minimum key-value key[x].
- ▶ **element** *S.* **delete-min**(): Deletes the element with minimum key-value from *S* and returns it.
- **boolean** *S.* **is-empty**(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

▶ *S.* merge(S'): $S := S \cup S'$; $S' := \emptyset$.

Harald Räcke

19. Dec. 2022 280/335

Dijkstra's Shortest Path Algorithm

```
Algorithm 39 Shortest-Path(G = (V, E, d), s \in V)
 1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: key-field of every node contains distance from s;
 3: S.build(); // build empty priority queue
 4: for all v \in V \setminus \{s\} do
          v.\ker \leftarrow \infty;
          h_v \leftarrow S.insert(v);
 7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
 8: while S.is-empty() = false do
          v \leftarrow S. delete-min():
 9:
10:
          for all x \in V s.t. (v, x) \in E do
11:
                if x. key > v. key +d(v,x) then
12:
                      S.decrease-key(h_x, v. key +d(v,x));
                      x. \text{key} \leftarrow v. \text{key} + d(v, x);
13:
```

6 Priority Queues

An addressable Priority Queue also supports:

- ► handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- ► S. delete(h): Deletes element specified through handle h.
- ► *S.* decrease-key(*h*, *k*): Decreases the key of the element specified by handle *h* to *k*. Assumes that the key is at least *k* before the operation.

Harald Räcke

6 Priority Queues

19. Dec. 2022

281/335

Prim's Minimum Spanning Tree Algorithm

```
Algorithm 40 Prim-MST(G = (V, E, d), s \in V)
 1: Input: weighted graph G = (V, E, d); start vertex s;
 2: Output: pred-fields encode MST;
 3: S.build(); // build empty priority queue
 4: for all v \in V \setminus \{s\} do
          v.\text{kev} \leftarrow \infty:
          h_v \leftarrow S.insert(v);
 7: s. \text{key} \leftarrow 0; S. \text{insert}(s);
 8: while S.is-empty() = false do
          v \leftarrow S. delete-min():
          for all x \in V s.t. \{v, x\} \in E do
10:
11:
                if x. key > d(v, x) then
12:
                      S.decrease-key(h_x,d(v,x));
13:
                      x. key \leftarrow d(v, x);
14:
                      x. pred \leftarrow v;
```

19. Dec. 2022

282/335

Analysis of Dijkstra and Prim

Both algorithms require:

- ▶ 1 build() operation
- \triangleright |V| insert() operations
- ▶ |V| delete-min() operations
- ightharpoonup |V| is-empty() operations
- ► |*E*| decrease-key() operations

How good a running time can we obtain?

6 Priority Queues

19. Dec. 2022 284/335

6 Priority Queues

Using Binary Heaps, Prim and Dijkstra run in time $\mathcal{O}((|V|+|E|)\log|V|)$.

Using Fibonacci Heaps, Prim and Dijkstra run in time $\mathcal{O}(|V|\log|V|+|E|)$.

6 Priority Queues

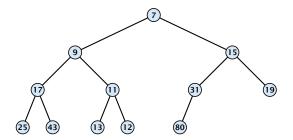
Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Note that most applications use **build()** only to create an empty heap which then costs time 1.

† * Fibonacci heaps only give an amor-† tized guarantee. 1** The standard version of binary heaps is not address-1 able. Hence, it does not support a delete.

6.1 Binary Heaps

- ► Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- ► Heap property: A node's key is not larger than the key of one of its children.



Binary Heaps

Operations:

- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** check whether root-pointer is null. Time O(1).

Harald Räcke

6.1 Binary Heaps

19. Dec. 202

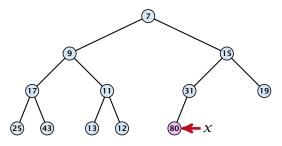
288/335

6.1 Binary Heaps

Maintain a pointer to the last element x.

We can compute the successor of x (last element when an element is inserted) in time $\mathcal{O}(\log n)$. go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



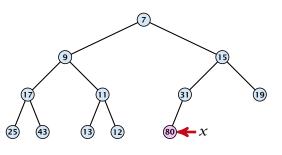
6.1 Binary Heaps

Maintain a pointer to the last element x.

• We can compute the predecessor of x (last element when x is deleted) in time $\mathcal{O}(\log n)$.

go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element



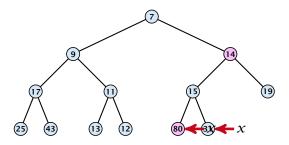
Harald Räcke

6.1 Binary Heaps

19. Dec. 2022 289/335

Insert

- 1. Insert element at successor of x.
- 2. Exchange with parent until heap property is fulfilled.

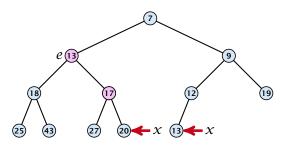


Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

6.1 Binary Heaps

Delete

- 1. Exchange the element to be deleted with the element e pointed to by x.
- 2. Restore the heap-property for the element e.



At its new position e may either travel up or down in the tree (but not both directions).

Harald Räcke

6.1 Binary Heaps

19. Dec. 2022

292/335

Binary Heaps

Operations:

- **minimum():** return the root-element. Time $\mathcal{O}(1)$.
- **is-empty**(): check whether root-pointer is null. Time $\mathcal{O}(1)$.
- insert(k): insert at successor of x and bubble up. Time $\mathcal{O}(\log n)$.
- **delete**(h): swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.

Harald Räcke

6.1 Binary Heaps

19. Dec. 2022

293/335

Binary Heaps

Operations:

- **minimum():** Return the root-element. Time $\mathcal{O}(1)$.
- **is-empty():** Check whether root-pointer is null. Time $\mathcal{O}(1)$.
- ▶ insert(k): Insert at x and bubble up. Time $O(\log n)$.
- **delete**(h): Swap with x and bubble up or sift-down. Time $\mathcal{O}(\log n)$.
- **build** (x_1, \ldots, x_n) : Insert elements arbitrarily; then do sift-down operations starting with the lowest layer in the tree. Time $\mathcal{O}(n)$.

Binary Heaps

The standard implementation of binary heaps is via arrays. Let $A[0,\ldots,n-1]$ be an array

- ▶ The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- ▶ The left child of i-th element is at position 2i + 1.
- ▶ The right child of *i*-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

6.1 Binary Heaps

19. Dec. 2022 294/335 6.1 Binary Heaps

19. Dec. 2022 295/335

6.2 Binomial Heaps

Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	$\log n$	1

Harald Räcke

6.2 Binomial Heaps

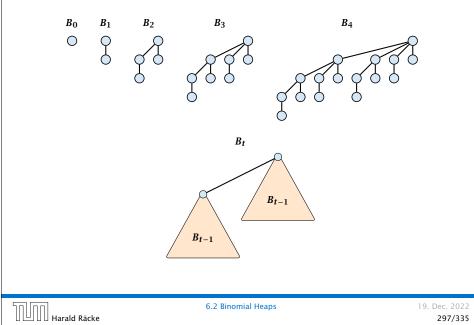
19. Dec. 2022

19. Dec. 2022

298/335

296/335

Binomial Trees

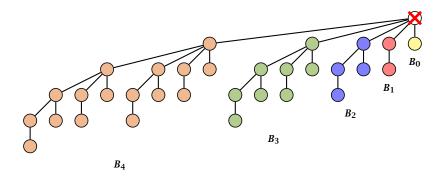


Binomial Trees

Properties of Binomial Trees

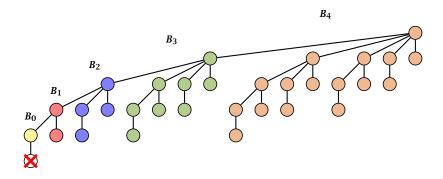
- $ightharpoonup B_k$ has 2^k nodes.
- \triangleright B_k has height k.
- ▶ The root of B_k has degree k.
- ▶ B_k has $\binom{k}{\ell}$ nodes on level ℓ .
- ▶ Deleting the root of B_k gives trees $B_0, B_1, ..., B_{k-1}$.

Binomial Trees



Deleting the root of B_5 leaves sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .

Binomial Trees



Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4 , B_3 , B_2 , B_1 , and B_0 .

Harald Räcke

6.2 Binomial Heaps

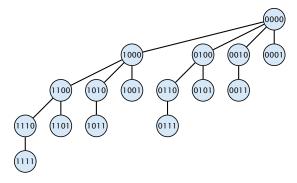
19. Dec. 2022

302/335

300/335

Binomial Trees

Harald Räcke

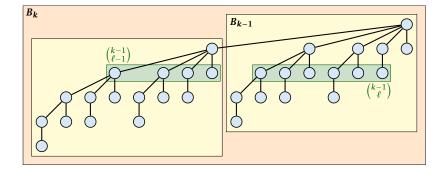


The binomial tree B_k is a sub-graph of the hypercube H_k .

The parent of a node with label b_k, \ldots, b_1 is obtained by setting the least significant 1-bit to 0.

The ℓ -th level contains nodes that have ℓ 1's in their label.

Binomial Trees



The number of nodes on level ℓ in tree B_k is therefore

$$\begin{pmatrix} k-1\\ \ell-1 \end{pmatrix} + \begin{pmatrix} k-1\\ \ell \end{pmatrix} = \begin{pmatrix} k\\ \ell \end{pmatrix}$$

Harald Räcke

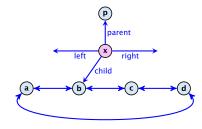
6.2 Binomial Heaps

19. Dec. 2022 301/335

6.2 Binomial Heaps

How do we implement trees with non-constant degree?

- ► The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x. left and x. right point to the left and right sibling of x (if x does not have siblings then x. left = x. right = x).



6.2 Binomial Heaps

- Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.
- ► We can add a child-tree *T* to a node *x* in constant time if we are given a pointer to *x* and a pointer to the root of *T*.

6.2 Binomial Heaps

19. Dec. 202

304/335

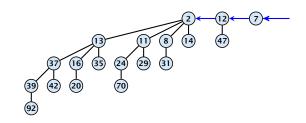
Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_i 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.

Binomial Heap



In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0 , B_1 , and B_4 .

6.2 Binomial Heaps

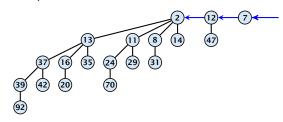
19. Dec. 2022

305/335

Binomial Heap

Properties of a heap with n keys:

- Let $n = b_d b_{d-1}, \dots, b_0$ denote binary representation of n.
- ▶ The heap contains tree B_i iff $b_i = 1$.
- ► Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- ▶ The minimum must be contained in one of the roots.
- ▶ The height of the largest tree is at most $\lfloor \log n \rfloor$.
- ► The trees are stored in a single-linked list; ordered by dimension/size.



6.2 Binomial Heaps

19. Dec. 2022

306/335

6.2 Binomial Heaps

19. Dec. 2022 307/335

Binomial Heap: Merge

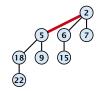
The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Note that we do not just do a concatenation as we want to keep the trees in the list sorted according to size.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.



For more trees the technique is analogous to binary addition.

Harald Räcke

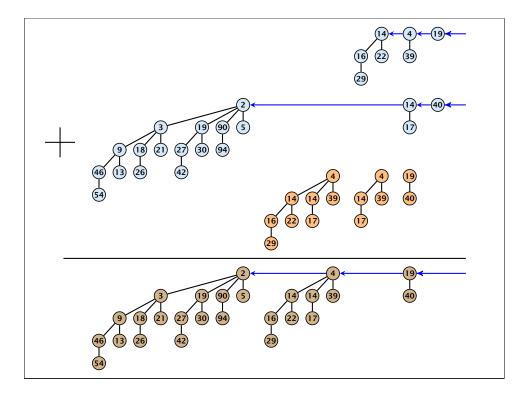
6.2 Binomial Heaps

308/335

6.2 Binomial Heaps

S_1 . merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- ▶ Time: $O(\log n)$.



6.2 Binomial Heaps

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- **Execute** S. merge(S').
- ▶ Time: $O(\log n)$.

6.2 Binomial Heaps

S. minimum():

- Find the minimum key-value among all roots.
- ▶ Time: $O(\log n)$.

Harald Räcke

6.2 Binomial Heaps

19. Dec. 2022

312/335

6.2 Binomial Heaps

S. decrease-key(handle *h*):

- ightharpoonup Decrease the key of the element pointed to by h.
- ▶ Bubble the element up in the tree until the heap property is fulfilled.
- ▶ Time: $O(\log n)$ since the trees have height $O(\log n)$.

6.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- ightharpoonup Remove the corresponding tree T_{\min} from the heap.
- ▶ Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $\mathcal{O}(\log n)$ trees).
- ightharpoonup Compute S. merge(S').
- ▶ Time: $O(\log n)$.

Harald Räcke

6.2 Binomial Heaps

19. Dec. 2022

313/335

6.2 Binomial Heaps

S. delete(handle *h*):

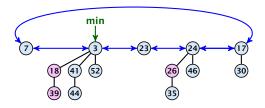
- **Execute** *S*. decrease-key $(h, -\infty)$.
- ► Execute *S*. delete-min().
- ▶ Time: $O(\log n)$.

6.2 Binomial Heaps 19. Dec. 2022
Harald Räcke 314/335

6.2 Binomial Heaps 19. Dec. 2022 315/335

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.



Harald Räcke

6.3 Fibonacci Heaps

19. Dec. 202

19. Dec. 2022

318/335

316/335

6.3 Fibonacci Heaps

Additional implementation details:

- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- ► Every node stores a boolean value *x*. marked that specifies whether *x* is marked or not.

Harald Räcke

6.3 Fibonacci Heaps

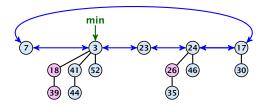
19. Dec. 2022

317/335

6.3 Fibonacci Heaps

The potential function:

- ightharpoonup t(S) denotes the number of trees in the heap.
- \blacktriangleright m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

6.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use c to denote the amount of work that a unit of potential can pay for.

S. minimum()

- Access through the min-pointer.
- ightharpoonup Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Amortized cost $\mathcal{O}(1)$.

Harald Räcke

6.3 Fibonacci Heaps

19. Dec. 2022 320/335

19. Dec. 2022

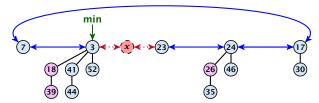
322/335

6.3 Fibonacci Heaps

x is inserted next to the min-pointer as this is our entry point into the root-list.

S. insert(x)

- ightharpoonup Create a new tree containing x.
- Insert x into the root-list.
- ▶ Update min-pointer, if necessary.



Running time:

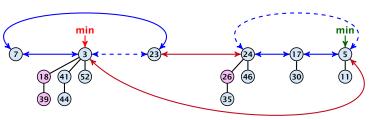
| igcup | | igcap | | igcap | igcap | Harald Räcke

- ▶ Actual cost $\mathcal{O}(1)$.
- ightharpoonup Change in potential is +1.
- ▶ Amortized cost is c + O(1) = O(1).

6.3 Fibonacci Heaps

S. merge(S')

- Merge the root lists.
- ► Adjust the min-pointer



Running time:

- ightharpoonup Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Hence, amortized cost is $\mathcal{O}(1)$.

Harald Räcke

6.3 Fibonacci Heaps

19. Dec. 2022 321/335

6.3 Fibonacci Heaps

 $D(\min)$ is the number of children of the node that stores the minimum.

• In the figure below the dashed edges are

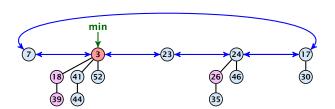
• The minimum of the left heap becomes

the new minimum of the merged heap.

replaced by red edges.

S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.



6.3 Fibonacci Heaps

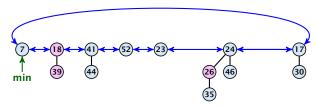
6.3 Fibonacci Heaps

19. Dec. 2022 323/335

 $D(\min)$ is the number of children of the node that stores the minimum.

S. delete-min(x)

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.



Consolidate root-list so that no roots have the same degree. Time $t \cdot \mathcal{O}(1)$ (see next slide).

Harald Räcke

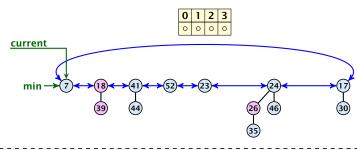
6.3 Fibonacci Heaps

19. Dec. 2022

323/335

6.3 Fibonacci Heaps

Consolidate:



During the consolidation we traverse the root list. Whenever we discover two trees that have the same degree we merge these trees. In order to efficiently check whether two trees have the same degree, we use an array that contains for every degree value d a pointer to a tree left of the current pointer whose root has degree d (if such a tree exist).

Harald Räcke

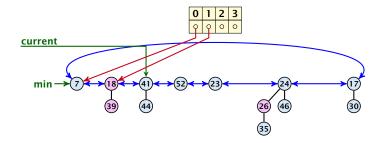
6.3 Fibonacci Heaps

19. Dec. 2022

324/335

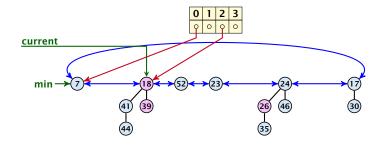
6.3 Fibonacci Heaps

Consolidate:



6.3 Fibonacci Heaps

Consolidate:



ПП

6.3 Fibonacci Heaps

19. Dec. 2022 324/335

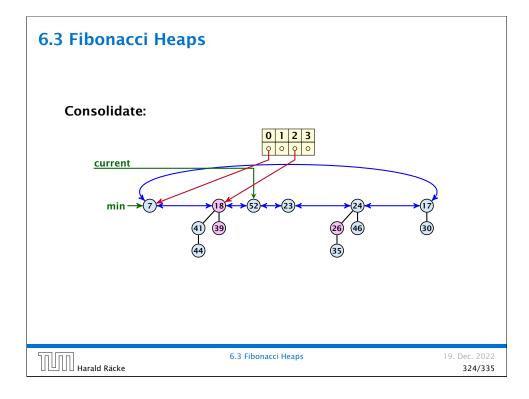
6.3 Fibonacci Heaps

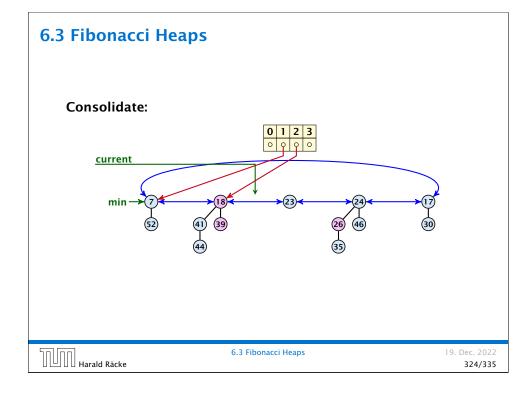
0.5 Fiboliacci

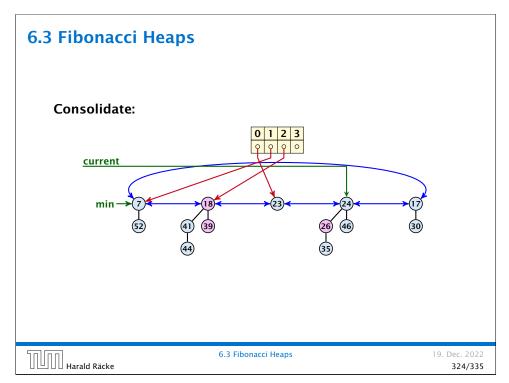
Harald Räcke

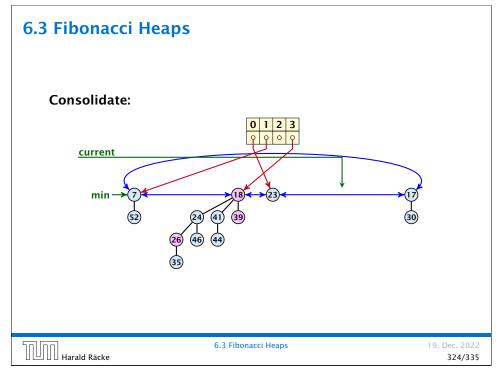
324/335

19. Dec. 2022

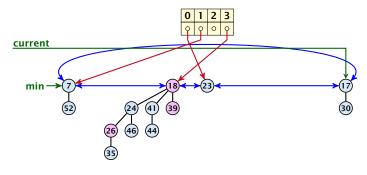








Consolidate:



6.3 Fibonacci Heaps

324/335

6.3 Fibonacci Heaps

t and t' denote the number of trees before and after the delete-min() operation, respectively. $^{1}_{1}D_{n}$ is an upper bound on the degree (i.e., number of children) of a tree node.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$
for $c > c_1$

for $c \ge c_1$.

Harald Räcke

6.3 Fibonacci Heaps

19. Dec. 2022

325/335

6.3 Fibonacci Heaps

Consolidate:



Harald Räcke

6.3 Fibonacci Heaps

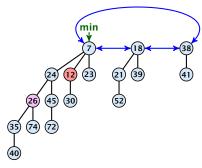
19. Dec. 2022 324/335

6.3 Fibonacci Heaps

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

Fibonacci Heaps: decrease-key(handle h, v)



Case 1: decrease-key does not violate heap-property

ightharpoonup Just decrease the key-value of element referenced by h. Nothing else to do.

 $\left|\left|\left|\left|\right|\right|\right|\right|$ Harald Räcke

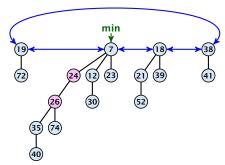
6.3 Fibonacci Heaps

19. Dec. 2022

327/335

327/335

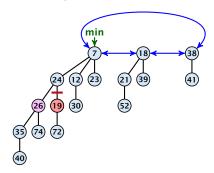
Fibonacci Heaps: decrease-key(handle h, v)



Case 2: heap-property is violated, but parent is not marked

- Decrease key-value of element *x* reference by *h*.
- If the heap-property is violated, cut the parent edge of x, and make *x* into a root.
- Adjust min-pointers, if necessary.
- \blacktriangleright Mark the (previous) parent of x (unless it's a root).

Fibonacci Heaps: decrease-key(handle h, v)



Case 2: heap-property is violated, but parent is not marked

- \triangleright Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

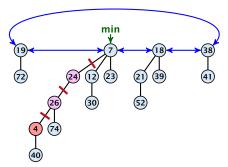
Harald Räcke

6.3 Fibonacci Heaps

19. Dec. 2022

327/335

Fibonacci Heaps: decrease-key(handle h, v)



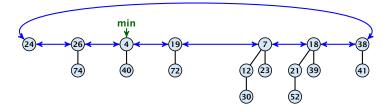
Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- ► Continue cutting the parent until you arrive at an unmarked node.

6.3 Fibonacci Heaps

19. Dec. 2022 327/335

Fibonacci Heaps: decrease-key(handle h, v)



Case 3: heap-property is violated, and parent is marked

- \triangleright Decrease key-value of element x reference by h.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

6.3 Fibonacci Heaps

19. Dec. 2022

327/335

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- ightharpoonup Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1)+c(4-\ell) \leq (c_2-c)\ell+4c+c_2=\mathcal{O}(1)$$
, m and m' : number of marked nodes before if $c \geq c_2$.

t and t': number of trees before and after operation.

marked nodes before and after operation.

329/335

Fibonacci Heaps: decrease-key(handle h, v)

Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element *x* reference by *h*.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

```
p \leftarrow parent[x];
                                           marked; the second time it loses a
                                           child it is made into a root.
while (p is marked)
     pp \leftarrow parent[p];
     cut of p; make it into a root; unmark it;
     p \leftarrow pp;
```

if p is unmarked and not a root mark it;

6.3 Fibonacci Heaps

19 Dec 2022

Marking a node can be viewed as a first step towards becoming a root.

The first time x loses a child it is

328/335

Delete node

H. delete(x):

- ▶ decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- \triangleright $\mathcal{O}(1)$ for decrease-key.
- \triangleright $\mathcal{O}(D_n)$ for delete-min.

Lemma 28

Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then

$$degree(y_i) \ge \begin{cases} 0 & if i = 1\\ i - 2 & if i > 1 \end{cases}$$

The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.

6.3 Fibonacci Heaps

19. Dec. 2022

331/335

6.3 Fibonacci Heaps

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$= 2 + \sum_{i=0}^{k-2} s_i$$

6.3 Fibonacci Heaps

Proof

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- \triangleright Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

6.3 Fibonacci Heaps

19. Dec. 2022 332/335

6.3 Fibonacci Heaps

 $\phi=rac{1}{2}(1+\sqrt{5})$ denotes the *golden ratio*. Note that $\phi^2=1+\phi$.

Definition 29

Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

- 1. $F_k \geq \phi^k$.
- **2.** For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

k=0:
$$1 = F_0 \ge \Phi^0 = 1$$

k=1:
$$2 = F_1 \ge \Phi^1 \approx 1.61$$

k=0:
$$1 = F_0 \ge \Phi^0 = 1$$

k=1: $2 = F_1 \ge \Phi^1 \approx 1.61$
k-2,k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi^{+1}) = \Phi^k$

$$k=2$$
: $3 = F_2 = 2 + 1 = 2 + F_0$

k=2:
$$3 = F_2 = 2 + 1 = 2 + F_0$$

k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$

19. Dec. 2022

335/335



Priority Queues

Bibliography

[CLRS90] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:

Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009

[MS08] Kurt Mehlhorn, Peter Sanders:

Algorithms and Data Structures — The Basic Toolbox,

Springer, 2008

Binary heaps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fibonacci heaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial heaps.

Chapter 6 in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps are dealt with in Exercise 6.11.

6.3 Fibonacci Heaps

336/335