A Fast Matching Algorithm

Algo	Algorithm 52 Bimatch-Hopcroft-Karp(G)							
1: N	$1: M \leftarrow \varnothing$							
2: repeat								
3:	let $\mathcal{P} = \{P_1, \dots, P_k\}$ be maximal set of							
4:	vertex-disjoint, shortest augmenting path w.r.t. M .							
5:	$M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k)$							
6: u	6: until $\mathcal{P} = \varnothing$							
7: r	7: return <i>M</i>							

We call one iteration of the repeat-loop a phase of the algorithm.

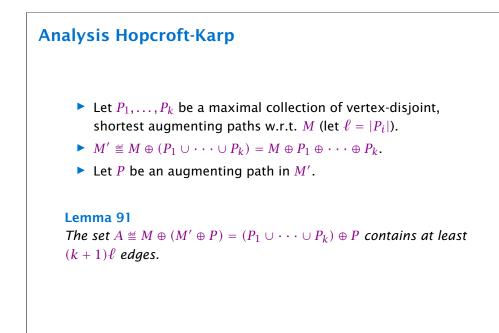
הם הר	
	Harald Räcke

|||||||| Harald Räcke

15. Dec. 2022 477/488

15. Dec. 2022

479/488



18 The Hopcroft-Karp Algorithm

Analysis Hopcroft-Karp

Lemma 90

Given a matching M and a matching M^* with $|M^*| - |M| \ge 0$. There exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^* .
- ▶ The connected components of *G* are cycles and paths.
- ► The graph contains $k \leq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

Harald Räcke	18 The Hopcroft-Karp Algorithm	15. Dec. 2022
UUU Harald Räcke		478/488

Analysis Hopcroft-Karp Proof. The set describes exactly the symmetric difference between matchings *M* and *M'* ⊕ *P*. Hence, the set contains at least *k* + 1 vertex-disjoint augmenting paths w.r.t. *M* as |*M'*| = |*M*| + *k* + 1. Each of these paths is of length at least *ℓ*.

Analysis Hopcroft-Karp

Lemma 92

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- Otherwise, at least one edge from P coincides with an edge from paths {P₁,..., P_k}.
- This edge is not contained in A.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

				Harald	Räcke

18 The Hopcroft-Karp Algorithm

Analysis Hopcroft-Karp

Lemma 93

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ▶ After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching *M* has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

Harald Räcke

18 The Hopcroft-Karp Algorithm

15. Dec. 2022 482/488

Analysis Hopcroft-Karp

Lemma 94

One phase of the Hopcroft-Karp algorithm can be implemented in time $\mathcal{O}(m)$.

construct a "level graph" G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ▶ ...
- stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

5. Dec. 2022 483/488

15. Dec. 2022

481/488

Analysis Hopcroft-Karp

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges

15. Dec. 2022 485/488

487/488

ЪП	Г	П		
	1		Harald	Räcke

|||||||| Harald Räcke

18 The Hopcroft-Karp Algorithm

Analysis: Shortest Augmenting Path for Flows cost for searches during a phase is 𝒪(mn) a search (successful or unsuccessful) takes time 𝒪(n) a search deletes at least one edge from the level graph there are at most n phases Time: 𝒪(mn²).

18 The Hopcroft-Karp Algorithm

Analysis Hopcroft-Karp

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is $\mathcal{O}(m)$

an edge/vertex is traversed at most twice

need at most $\mathcal{O}(\sqrt{n})$ phases

- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- hence at most \sqrt{n} additional augmentations required

Time: $\mathcal{O}(m\sqrt{n})$.

