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Preflows

Definition 53
An (s,1)-preflow is a function f : E — R that satisfies

1. For each edge e
0<f(e)<cl(e) .

(capacity constraints)

‘m 9.1 Generic Push Relabel
Harald Racke 338/358



Preflows

Definition 53
An (s,1)-preflow is a function f : E — R that satisfies

1. For each edge e
0<f(e)<cl(e) .

(capacity constraints)
2. Foreachv e V' \ {s,t}
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Preflows

Example 54
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A node that has > ,cout(v) f(€) < Xecinto(w) f (€) is called an active
node.
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Preflows

Definition:
A labelling is a function £ : V — N. It is valid for preflow f if

> {(u) < l(v) + 1 for all edges (u,v) in the residual graph G ¢
(only non-zero capacity edges!!!)
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Definition:
A labelling is a function £ : V — N. It is valid for preflow f if

> {(u) < l(v) + 1 for all edges (u,v) in the residual graph G ¢
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Preflows

Definition:
A labelling is a function £ : V — N. It is valid for preflow f if

> {(u) < l(v) + 1 for all edges (u,v) in the residual graph G ¢
(only non-zero capacity edges!!!)
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Preflows

Definition:
A labelling is a function £ : V — N. It is valid for preflow f if
> {(u) < l(v) + 1 for all edges (u,v) in the residual graph G ¢
(only non-zero capacity edges!!!)

> l(s)=n
> 0(t) =0
Intuition:

The labelling can be viewed as a height function. Whenever the
height from node u to node v decreases by more than 1 (i.e., it
goes very steep downhill from u to v), the corresponding edge
must be saturated.
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Preflows

Lemma 55
A preflow that has a valid labelling saturates a cut.
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Preflows

Lemma 55
A preflow that has a valid labelling saturates a cut.

Proof:
» There are n nodes but n + 1 different labels from O, ..., n.
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Preflows

Lemma 55
A preflow that has a valid labelling saturates a cut.

Proof:
» There are n nodes but n + 1 different labels from O, ..., n.

» There must exist a label d € {0,...,n} such that none of the
nodes carries this label.
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Preflows

Lemma 55
A preflow that has a valid labelling saturates a cut.
Proof:
» There are n nodes but n + 1 different labels from 0,..., n.

» There must exist a label d € {0,...,n} such that none of the
nodes carries this label.

> letA={veV|fwv)>dandB={veV|{v)<d}.
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Preflows

Lemma 55
A preflow that has a valid labelling saturates a cut.

Proof:
» There are n nodes but n + 1 different labels from O, ..., n.

» There must exist a label 4 € {0, ...,n} such that none of the
nodes carries this label.

> letA={veV|fwv)>dandB={veV|{v)<d}.

> We have s € A and t € B and there is no edge from A to B in
the residual graph G; this means that (A, B) is a saturated
cut.
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Preflows

Lemma 55
A preflow that has a valid labelling saturates a cut.

Proof:
» There are n nodes but n + 1 different labels from O, ..., n.

» There must exist a label 4 € {0, ...,n} such that none of the
nodes carries this label.

> letA={veV|fwv)>dandB={veV|{v)<d}.

> We have s € A and t € B and there is no edge from A to B in
the residual graph G; this means that (A, B) is a saturated
cut.

Lemma 56
A flow that has a valid labelling is a maximum flow.
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Push Relabel Algorithms

Idea:

> start with some preflow and some valid labelling
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Push Relabel Algorithms

Idea:
> start with some preflow and some valid labelling

> successively change the preflow while maintaining a valid
labelling
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Push Relabel Algorithms

Idea:
> start with some preflow and some valid labelling

> successively change the preflow while maintaining a valid
labelling

» stop when you have a flow (i.e., no more active nodes)
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Changing a Preflow

An arc (u,v) with cg(u,v) > 0 in the residual graph is admissible
if (u) =L€(v)+1 (i.e., it goes downwards w.r.t. labelling ¥).



Changing a Preflow

An arc (u,v) with cg(u,v) > 0 in the residual graph is admissible
if £(u) =L(v) +1 (i.e., it goes downwards w.r.t. labelling ).

The push operation
Consider an active node u with excess flow

S ) = ecinto) f(€) = Zecoutw) S (e) and suppose e = (u,v)
is an admissible arc with residual capacity cr(e).



Changing a Preflow

An arc (u,v) with ¢y (u,v) > 0 in the residual graph is admissible
if £(u) =L(v) +1 (i.e., it goes downwards w.r.t. labelling ).

The push operation
Consider an active node u with excess flow

Sfu) = Zeeinto(u)f(e) - zeeout(u)f(e) and suppose e = (u, V)
is an admissible arc with residual capacity cr(e).

We can send flow min{cs(e), f(u)} along e and obtain a new
preflow. The old labelling is still valid (I!!).



Changing a Preflow

An arc (u,v) with ¢y (u,v) > 0 in the residual graph is admissible
if £(u) =L(v) +1 (i.e., it goes downwards w.r.t. labelling ).

The push operation
Consider an active node u with excess flow

Sfu) = Zeeinto(u)f(e) - zeeout(u)f(e) and suppose e = (u, V)
is an admissible arc with residual capacity cr(e).

We can send flow min{cs(e), f(u)} along e and obtain a new
preflow. The old labelling is still valid (I!!).
> saturating push: min{f(u),cy(e)} = cr(e)
the arc e is deleted from the residual graph



Changing a Preflow

An arc (u,v) with cg(u,v) > 0 in the residual graph is admissible
if £(u) =L(v) +1 (i.e., it goes downwards w.r.t. labelling ).

The push operation
Consider an active node u with excess flow

S ) = ecinto) f(€) = Zecoutw) S (e) and suppose e = (u,v)
is an admissible arc with residual capacity cr(e).

We can send flow min{cs(e), f(u)} along e and obtain a new
preflow. The old labelling is still valid (I!!).
> saturating push: min{f(u),cy(e)} = cr(e)
the arc e is deleted from the residual graph
> deactivating push: min{f(u),cr(e)} = f(u)
the node u becomes inactive
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Push Relabel Algorithms

The relabel operation
Consider an active node u that does not have an outgoing
admissible arc.
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Push Relabel Algorithms

The relabel operation
Consider an active node u that does not have an outgoing
admissible arc.

Increasing the label of u by 1 results in a valid labelling.
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Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing
admissible arc.

Increasing the label of u by 1 results in a valid labelling.

» Edges (w,u) incoming to u still fulfill their constraint
fL(w) <L(u)+1.
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Push Relabel Algorithms

The relabel operation
Consider an active node u that does not have an outgoing
admissible arc.

Increasing the label of u by 1 results in a valid labelling.

» Edges (w,u) incoming to u still fulfill their constraint
fL(w) <L(u)+1.

> An outgoing edge (u,w) had £(u) < £(w) + 1 before since
it was not admissible. Now: £(u) < {(w) + 1.
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Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a
height/label of n and the target a height/label of 0. If we see an
active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we
do not have an admissible arc but excess flow into u it should
roughly mean that the level/height/label of u should rise. (If we
consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are
integral, i.e., they cannot really be seen as the height of a node.
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Reminder

> |n a preflow nodes may not fulfill conservation constraints; a
node may have more incoming flow than outgoing flow.

> Such a node is called active.

> A labelling is valid if for every edge (u,v) in the residual
graph f(u) < £(v) + 1.

> An arc (u,v) in residual graph is admissible if
L(u)=L(v)+ 1.

> A saturating push along e pushes an amount of c(e) flow
along the edge, thereby saturating the edge (and making it
dissappear from the residual graph).

» A deactivating push along e = (u,v) pushes a flow of f(u),
where f(u) is the excess flow of u. This makes u inactive.
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Push Relabel Algorithms

Algorithm 1 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do
3 if there is admiss. arc e out of u then
4: push(G,e, f,c)
5 else

6 relabel (1)
7: return f
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Push Relabel Algorithms

Algorithm 1 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do
3 if there is admiss. arc e out of u then
4: push(G,e, f,c)
5 else

6 relabel (1)
7: return f

In the following example we always stick to the same active node
u until it becomes inactive but this is not required.
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Preflow Push

0 0
a 0|4 c
200° 0/5\
6 0[2 % 0|7 A 0
Io/lo oe
b 012 d
0 0
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Preflow Push

1 0
a 0|4 c
200° 0/5\
6 0[2 % 0|7 A 0
Io/lo oe
b 012 d
0 0
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Preflow Push

0
a 0|4 c
®<M "

‘m 9.1 Generic Push Relabel
Harald Racke 349/358



Preflow Push

1 0
a 0|4 c
200° 0/5\
6 2|2 % 0|7 A 0
10/10 oe
b 012 d
0 0
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Preflow Push

0
a 0|4 c
200° 0/5\

6 2|2 Us 0|7 /@o
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Preflow Push

1 0
a 414 c
200° 0/5\
6 2|2 Us 0|7 /@o
Io/lo oe
b 0112 d
0 0
0
6@/
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Preflow Push

1 0
a 414 c
200° s
6 212 Us ol7 >®°
Io/lo oe
b on2 d
0 0

saturating push
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Preflow Push

414
10\7’0

6 22 s /@o
Io/lo ow
b 0/12 d
0 0
116
L@ ) 0
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Preflow Push

0
a 414 c
200° 0/5\

6 2|2 s 0|7 A 0
Io/lo o
b 012 d
0 0
relabel to 7
116
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Preflow Push

7 0
a 414 c
200° Ols
\
e®< 202 s o7 /@o
10/10 oe
b on2 d
0 0
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Preflow Push

7 0
a 414 c
200° 0/5\
6 2|2 s 0|7 A 0
Io/lo oe
b 012 d
0 0

deactivating push
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Preflow Push

N - 0
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Preflow Push

~U 0
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Preflow Push
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Preflow Push

/f\ P
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10/10 0\%/
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Preflow Push
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Preflow Push

7 0
a 414 c
\A\?'o 0/5\
6 2|2 s 0|7 A 0
Io/lo oe
b 0[12 d
1 0

saturating and deactivating push

Do 0 ...

6/T3 - %
e@/% 2\“’ = ‘
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Preflow Push
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Preflow Push
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Preflow Push

0
a 414 c
A A\?‘o O/s
o >

10/10

e
I
~
o
%
©
[=]

710
6 =T
6@/% ZT\

‘m 9.1 Generic Push Relabel
Harald Racke 349/358



Preflow Push

A A\?‘o

®< 212
io/,o\é \é/o\s
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Preflow Push

7 1
a 4|4 c
\A\?‘o 0/5
6 212 s o7 >®°
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Preflow Push

\A«\?—0 ?\
®< 212
7
%10
12]12

deactivating push
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Preflow Push

C
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Preflow Push
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Preflow Push
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Preflow Push

\A«\?—0 ?\
@ 20

]0/10

12112
relabel to 1
710 110
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Preflow Push
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Preflow Push

A A\?‘o

j&
o<
"~ \k

saturating push

110
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Preflow Push

A A\?‘o

j&
o<
"~ \k

‘m 9.1 Generic Push Relabel
Harald Racke 349/358



Preflow Push

A A\?‘o
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"~ \k

relabel to 2
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Preflow Push
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Preflow Push

A A\?‘o

j&
o<
"~ \k

saturating and deactivating push

0

, 7
6 ‘/ § >(t)o
™~ 0 K\
—0,—,‘—‘,""/%
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Preflow Push

\A«\?—0 ?\
®< 212
7
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1
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Preflow Push

4\ i&
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Preflow Push

4\ i&
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Preflow Push

4\ i&

212

]0/10
012

relabel to 3

710 110
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Preflow Push

4\ i&
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Preflow Push

a 4|4 c
\A\?‘o s
@ w0 2@

]0/10 %\%/
b 0|12 d
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saturating and deactivating push

710 110
D0 e
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Preflow Push
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Preflow Push
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saturating push

‘m 9.1 Generic Push Relabel
Harald Racke 349/358



Preflow Push
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Preflow Push

\A«\?—0 ?\
®< 212
7
%10
12]12

relabel to 4
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Preflow Push
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Preflow Push

\A«\?—0 ?\
O >®
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deactivating push
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Preflow Push
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Preflow Push
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Preflow Push
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Preflow Push
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Preflow Push

a 4|4 c
\A\?‘o 5/5
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relabel to 5
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Preflow Push

5
a 414 c
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Preflow Push

a0 ?\
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Preflow Push

5
a 414 c
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Preflow Push

5
a 414 c
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Preflow Push

5
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Preflow Push
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Preflow Push

5
a 414 c
A A\?‘o /5

10/10 20
b 7112 d
5 4
710 510
0 e

‘m 9.1 Generic Push Relabel
Harald Racke 349/358



Preflow Push
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Preflow Push
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Preflow Push
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Preflow Push
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Preflow Push

5
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Preflow Push
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Preflow Push

5
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Preflow Push

5
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Preflow Push

5
a 414 c
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Preflow Push
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Preflow Push

5
a 414 c
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Analysis

Lemma 57
An active node has a path to s in the residual graph.
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Analysis

Lemma 57
An active node has a path to s in the residual graph.

Proof.

> Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s € A.
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Analysis

Lemma 57
An active node has a path to s in the residual graph.

Proof.

> Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s € A.

> In the following we show that a node b € B has excess flow
f(b) = 0 which gives the lemma.
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Analysis

Lemma 57
An active node has a path to s in the residual graph.

Proof.

> Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s € A.

> In the following we show that a node b € B has excess flow
f(b) = 0 which gives the lemma.

> In the residual graph there are no edges into A, and, hence,
no edges leaving A/entering B can carry any flow.
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Analysis

Lemma 57
An active node has a path to s in the residual graph.

Proof.

> Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s € A.

> In the following we show that a node b € B has excess flow
f(b) = 0 which gives the lemma.

> In the residual graph there are no edges into A, and, hence,
no edges leaving A/entering B can carry any flow.

> Let f(B) = > ,cp.f(v) be the excess flow of all nodes in B.
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Let f: E — R be a preflow. We introduce the notation

10 (x,y) ¢ E
f(x’y)‘{ Fx, ) (x,y) €E
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Let f: E — R be a preflow. We introduce the notation

10 (x,y) ¢ E
f(x’y)‘{ Fx, ) (x,y) €E

We have

S (B)
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Let f: E — R be a preflow. We introduce the notation

10 (x,y) ¢ E
foey) = { Fx, ) (x,y) €E
We have
f(B)=> f(b)
beB
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Let f: E — R be a preflow. We introduce the notation

10 (x,y) ¢ E
Feey) ‘{ Fx, ) (x,y) €E
We have
f(B)=> f(b)
beB
=> ( > fu,b) = > f(b,v))
beB \veV vev
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Let f: E — R be a preflow. We introduce the notation

(o (x,¥) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
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Let f: E — R be a preflow. We introduce the notation

(o (x,y) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
=D > fw,b) = > > fb,v)+> D fu,b) - > > f(bv)
beBveA beBveA beBvVEB beBveB
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Let f: E — R be a preflow. We introduce the notation

(o (x,y) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
- S fun -3 Y f(b,v){z S fwb) - S Zf(b,v)]
beBveA beBveA beBvEB beBvEB
=0
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Let f: E — R be a preflow. We introduce the notation

(o (x,y) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
=> > fw,b)-> > fb,v)
beBveA beBveA
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Let f: E — R be a preflow. We introduce the notation

10 (x,y) ¢ E
f“”‘{ﬂmw>uymE
We have
f(B)=> f(b)
beB
=Z(mem—2fmm)
beB \veV vev
-5
beB \veA veEB veEA
- 5, @@ 5. 5. 0.
beBveA _ beBVEA

Y fw,b)+ > fu,b) - > f(b,v)- > f(bv

)
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Let f: E — R be a preflow. We introduce the notation

(o (x,¥) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
= - > > fbv)
beBveA

‘m 9.1 Generic Push Relabel
Harald Racke 351/358



Let f: E — R be a preflow. We introduce the notation
10 (x,¥) ¢ E
foay) = { Fxy) (oy) ek
We have
f(B) =2 f(b)
beB
=D, ( > fw,b) -3 f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b)- > f(bv)- > f(bv
beB \veEA veEB vEA veB
- 3 M)
beBveEA
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Let f: E — R be a preflow. We introduce the notation

(o (x,¥) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
= - > > fbv)
beBveA
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Let f: E — R be a preflow. We introduce the notation

(o (x,y) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
= - > > fbv)
beBveA
<0
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Let f: E — R be a preflow. We introduce the notation

(o (x,¥) ¢ E
Foay) ‘{ Fxy) (oy) ek
We have
f(B)=> f(b)
beB
=> ( > fw,b) - > f(b,v))
beB \veV vev
=> ( S fw,b)+ > fv,b) = > flb,v) - > f(b,v))
beB \veA veEB veEA veEB
= - > > fbv)
beBveA
<0

Hence, the excess flow f(b) must be O for every node b € B.

‘m 9.1 Generic Push Relabel
Harald Racke 351/358



Analysis

Lemma 58
The label of a node cannot become larger than 2n — 1.
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Analysis

Lemma 58
The label of a node cannot become larger than 2n — 1.

Proof.

» When increasing the label at a node u there exists a path
from u to s of length at most n — 1. Along each edge of the
path the height/label can at most drop by 1, and the label of
the source is n.
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Analysis

Lemma 58
The label of a node cannot become larger than 2n — 1.

Proof.

» When increasing the label at a node u there exists a path
from u to s of length at most n — 1. Along each edge of the
path the height/label can at most drop by 1, and the label of
the source is n.

Lemma 59
There are only O(n?) relabel operations.
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Analysis

Lemma 60
The number of saturating pushes performed is at most O (mn).



Analysis

Lemma 60
The number of saturating pushes performed is at most O (mn).

Proof.

» Suppose that we just made a saturating push along (u, v).
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The number of saturating pushes performed is at most O (mn).

Proof.
» Suppose that we just made a saturating push along (u, v).

» Hence, the edge (u,v) is deleted from the residual graph.



Analysis

Lemma 60
The number of saturating pushes performed is at most O (mn).

Proof.
» Suppose that we just made a saturating push along (u, v).
» Hence, the edge (u,v) is deleted from the residual graph.

> For the edge to appear again, a push from v to u is required.



Analysis

Lemma 60
The number of saturating pushes performed is at most O (mn).

Proof.

» Suppose that we just made a saturating push along (u, v).

» Hence, the edge (u,v) is deleted from the residual graph.
> For the edge to appear again, a push from v to u is required.
>

Currently, £(u) = £(v) + 1, as we only make pushes along
admissible edges.



Analysis

Lemma 60
The number of saturating pushes performed is at most O (mn).

Proof.
» Suppose that we just made a saturating push along (u, v).
» Hence, the edge (u,v) is deleted from the residual graph.
> For the edge to appear again, a push from v to u is required.

» Currently, £(u) = £(v) + 1, as we only make pushes along
admissible edges.

» For a push from v to u the edge (v, 1) must become
admissible. The label of v must increase by at least 2.



Analysis

Lemma 60
The number of saturating pushes performed is at most O (mn).

Proof.

>

| 4
|
| 2

Suppose that we just made a saturating push along (u,v).
Hence, the edge (u,v) is deleted from the residual graph.
For the edge to appear again, a push from v to u is required.

Currently, £(u) = £(v) + 1, as we only make pushes along
admissible edges.

For a push from v to u the edge (v, u) must become
admissible. The label of v must increase by at least 2.

Since the label of v is at most 2n — 1, there are at most n
pushes along (u,v).



Lemma 61
The number of deactivating pushes performed is at most
Oon’m).



Lemma 61
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» Define a potential function ®(f) = > .ctive nodes v £ (V)



Lemma 61
The number of deactivating pushes performed is at most
Oon’m).

Proof.
» Define a potential function ®(f) = > .ctive nodes v £ (V)

> A saturating push increases ® by < 2n (when the target node
becomes active it may contribute at most 2n to the sum).



Lemma 61
The number of deactivating pushes performed is at most
Oon’m).

Proof.
» Define a potential function ®(f) = > .ctive nodes v £ (V)

> A saturating push increases ® by < 2n (when the target node
becomes active it may contribute at most 2n to the sum).

> A relabel increases ® by at most 1.



Lemma 61
The number of deactivating pushes performed is at most
Oon’m).

Proof.

» Define a potential function ®(f) = > .ctive nodes v £ (V)

> A saturating push increases ® by < 2n (when the target node
becomes active it may contribute at most 2n to the sum).

> A relabel increases ® by at most 1.

» A deactivating push decreases ® by at least 1 as the node
that is pushed from becomes inactive and has a label that is
strictly larger than the target.



Lemma 61
The number of deactivating pushes performed is at most
Oon’m).

Proof.
» Define a potential function ®(f) = > .ctive nodes v £ (V)

> A saturating push increases ® by < 2n (when the target node
becomes active it may contribute at most 2n to the sum).

> A relabel increases ® by at most 1.

» A deactivating push decreases ® by at least 1 as the node
that is pushed from becomes inactive and has a label that is
strictly larger than the target.

> Hence,
#deactivating_pushes < #relabels + 2n - #saturating_pushes
<0Onm’m) .



Analysis

Theorem 62
There is an implementation of the generic push relabel algorithm
with running time © (n’m).

‘m 9.1 Generic Push Relabel
Harald Racke 355/358



Analysis

Proof:
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Analysis
Proof:

For every node maintain a list of admissible edges starting at that
node. Further maintain a list of active nodes.
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Analysis
Proof:

For every node maintain a list of admissible edges starting at that
node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time
> check whether edge (v, 1) needs to be added to G ¢
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Analysis
Proof:
For every node maintain a list of admissible edges starting at that

node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time
> check whether edge (v, 1) needs to be added to G ¢

» check whether (1, v) needs to be deleted (saturating push)
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Analysis
Proof:

For every node maintain a list of admissible edges starting at that
node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time
> check whether edge (v, 1) needs to be added to G ¢
» check whether (1, v) needs to be deleted (saturating push)

» check whether uu becomes inactive and has to be deleted
from the set of active nodes
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Analysis
Proof:

For every node maintain a list of admissible edges starting at that
node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time
> check whether edge (v, 1) needs to be added to G ¢
» check whether (1, v) needs to be deleted (saturating push)

» check whether uu becomes inactive and has to be deleted
from the set of active nodes

A relabel at a node u can be performed in time O (n)

» check for all outgoing edges if they become admissible
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Analysis
Proof:

For every node maintain a list of admissible edges starting at that
node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time
> check whether edge (v, 1) needs to be added to G ¢
» check whether (1, v) needs to be deleted (saturating push)

» check whether u becomes inactive and has to be deleted
from the set of active nodes

A relabel at a node u can be performed in time O (n)
» check for all outgoing edges if they become admissible

» check for all incoming edges if they become non-admissible
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Analysis
For special variants of push relabel algorithms we organize the
neighbours of a node into a linked list (possible neighbours in the
residual graph G ). Then we use the discharge-operation:

Algorithm 2 discharge(u)

1: while u is active do

2 v < u.current-neighbour

3 if v = null then

4 relabel(u)

5: u.current-neighbour — u.neighbour-list-head
6

7
8

else
if (1, v) admissible then push(u,v)
else u.current-neighbour — v.next-in-list

Note that u.current-neighbour is a global variable. It is only
changed within the discharge routine, but keeps its value between
consecutive calls to discharge.



Lemma 63
If v =null in Line 3, then there is no
outgoing admissible edge from u.

Proof.

> While pushing from u the current-neighbour pointer is only
advanced if the current edge is not admissible.

» The only thing that could make the edge admissible again
would be a relabel at u.

» If we reach the end of the list (v = null) all edges are not
admissible. O

This shows that discharge(u) is correct, and that we can perform
a relabel in Line 4.
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