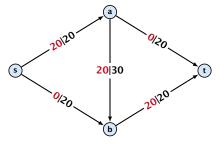

- **start with** f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible

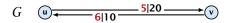

- **start with** f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible

- **start with** f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible

- **start with** f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):


Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

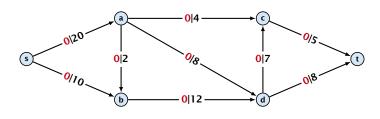
- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e_1' with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.

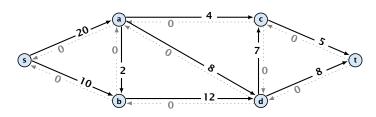
From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

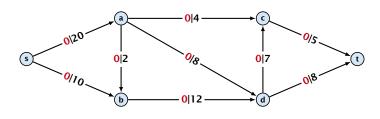
- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- ▶ G_f has edge e_1' with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) f(e_2) + f(e_1)\}$.

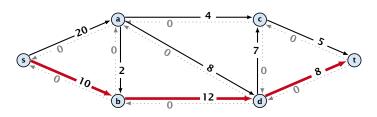
$$G_f = 0$$
 $\longrightarrow 0$ $\longrightarrow 0$

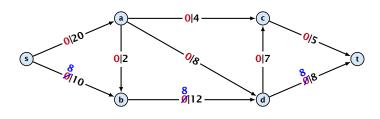
Definition 37

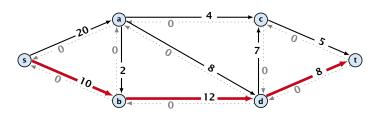

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

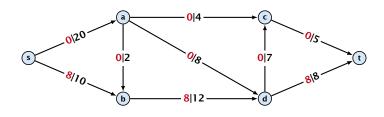

Definition 37

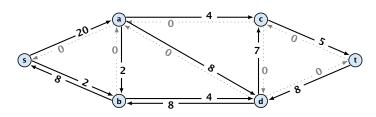

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

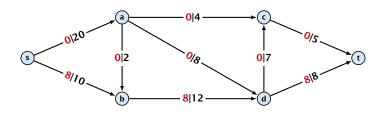

Algorithm 1 FordFulkerson(G = (V, E, c))

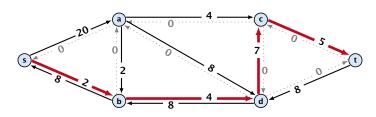

- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: **while** \exists augmenting path p in G_f **do**
- 3: augment as much flow along p as possible.

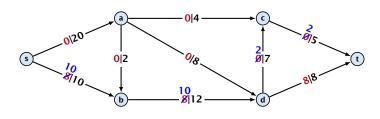


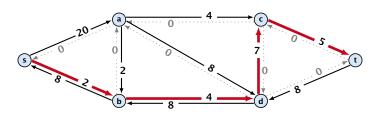


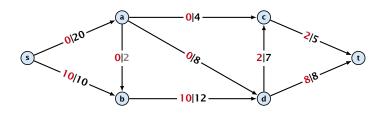


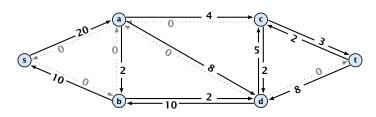


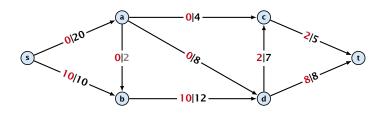


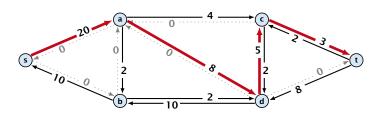


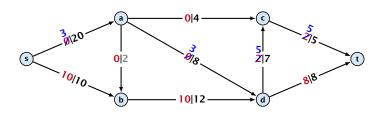


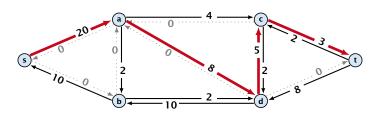


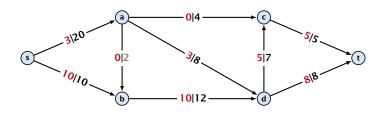


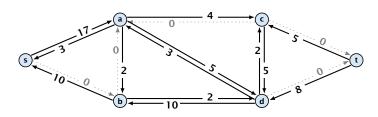












Theorem 38

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 38

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 39

The value of a maximum flow is equal to the value of a minimum cut.

Theorem 38

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 39

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A such that $val(f) = cap(A, V \setminus A)$.

Theorem 38

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 39

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- **1.** There exists a cut A such that $val(f) = cap(A, V \setminus A)$.
- 2. Flow f is a maximum flow.

Theorem 38

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 39

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- **1.** There exists a cut A such that $val(f) = cap(A, V \setminus A)$.
- 2. Flow f is a maximum flow.
- 3. There is no augmenting path w.r.t. f.

 $1. \Rightarrow 2.$

This we already showed.

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

$$1. \Rightarrow 2.$$

This we already showed.

$$2. \Rightarrow 3.$$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.

$$1. \Rightarrow 2.$$

This we already showed.

$$2. \Rightarrow 3.$$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.

$$1. \Rightarrow 2.$$

This we already showed.

$$2. \Rightarrow 3.$$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

val(f)

$$\operatorname{val}(f) = \sum_{e \in \operatorname{out}(A)} f(e) - \sum_{e \in \operatorname{into}(A)} f(e)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

Augmenting Path Algorithm

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Analysis

Assumption:

All capacities are integers between 1 and C.

Analysis

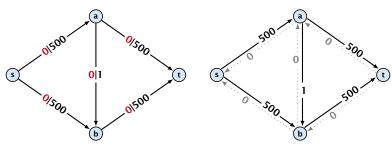
Assumption:

All capacities are integers between 1 and C.

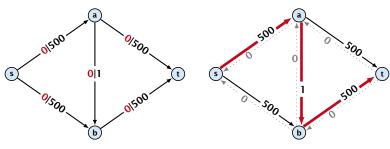
Invariant:

Every flow value $f(\emph{e})$ and every residual capacity $\emph{c}_f(\emph{e})$ remains integral troughout the algorithm.

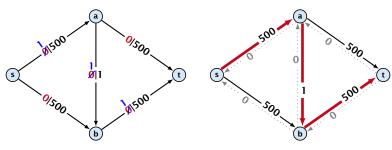
Lemma 40

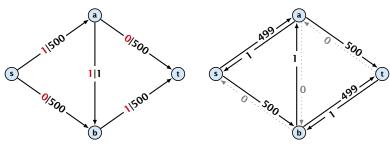

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(nmC)$.

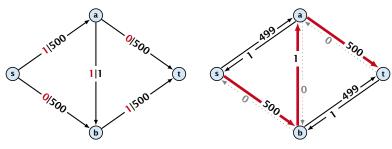
Lemma 40

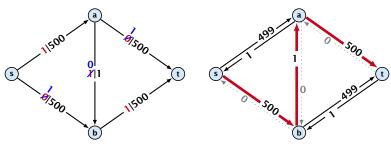

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time $\mathcal{O}(m)$. This gives a total running time of $\mathcal{O}(nmC)$.

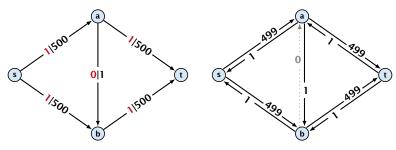
Theorem 41

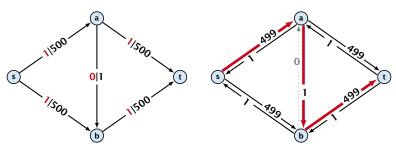

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

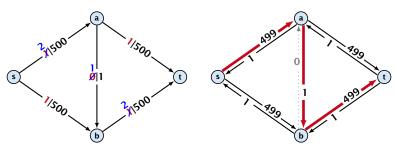

flow value: 0

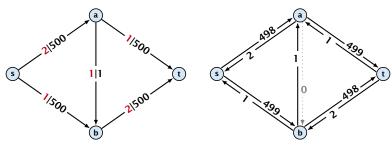

flow value: 0

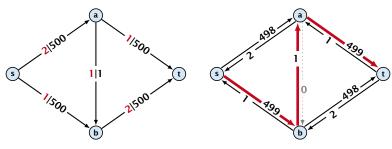

flow value: 0

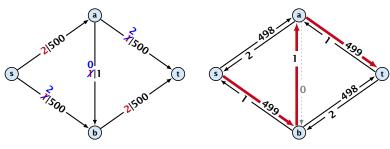

flow value: 1

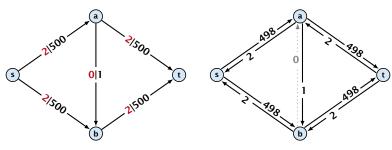

flow value: 1

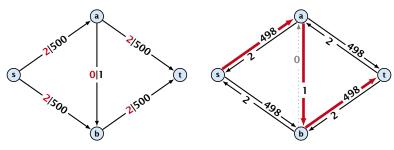

flow value: 1

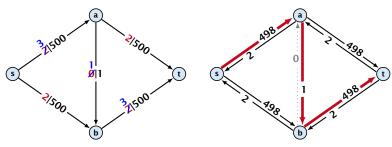

flow value: 2

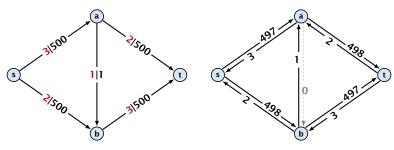

flow value: 2

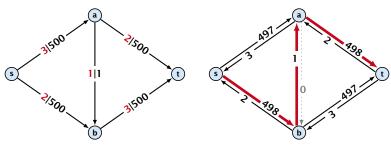

flow value: 2

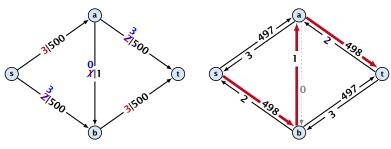

flow value: 3

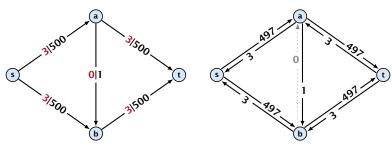

flow value: 3


flow value: 3

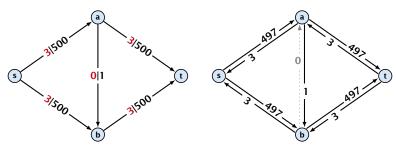

flow value: 4


flow value: 4


flow value: 4


flow value: 5

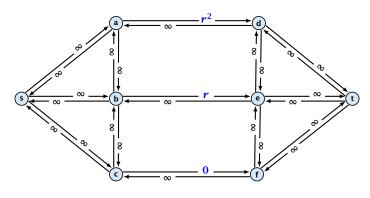
flow value: 5



flow value: 5

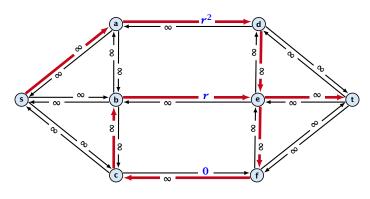
flow value: 6

Problem: The running time may not be polynomial

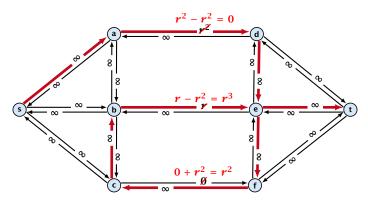


flow value: 6

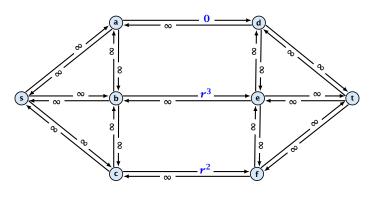
Question:


Can we tweak the algorithm so that the running time is polynomial in the input length?

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.


flow value: 0

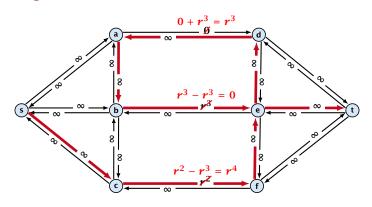
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.


flow value: 0

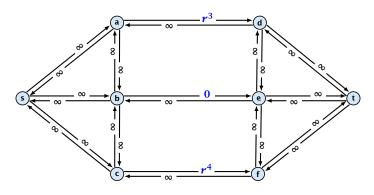
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

flow value: 0

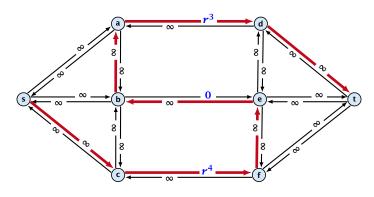
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.


flow value: r^2

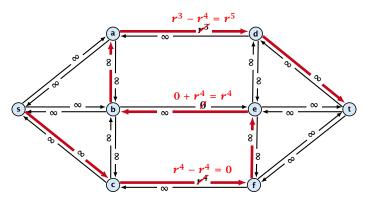
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.


flow value: r^2

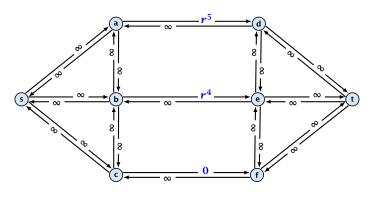
Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.


flow value: r^2

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.


flow value: $r^2 + r^3$

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.


flow value: $r^2 + r^3$

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

flow value: $r^2 + r^3$

Let
$$r = \frac{1}{2}(\sqrt{5} - 1)$$
. Then $r^{n+2} = r^n - r^{n+1}$.

flow value: $r^2 + r^3 + r^4$

Running time may be infinite!!!

We need to find paths efficiently.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

Choose path with maximum bottleneck capacity.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.