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OverviewThe mini-course on competitive online algorithms consisted of three lectures. In the �rst lecturewe gave basic de�nitions and presented important techniques that are used in the study on onlinealgorithms. The paging problem was always the running example to explain and illustrate thematerial. We also discussed the k-server problem, which is a very well-studied generalization ofthe paging problem.The second lecture was concerned with self-organizing data structures, in particular self-orga-nizing linear lists. We presented results on deterministic and randomized online algorithms.Furthermore, we showed that linear lists can be used to build very e�ective data compressionschemes and reported on theoretical as well as experimental results.In the third lecture we discussed three application areas in which interesting online problemsarise. The areas were (1) distributed data management, (2) scheduling and load balancing, and(3) robot navigation and exploration. In each of these �elds we gave some important results.



1 Online algorithms and competitive analysis1.1 Basic de�nitionsFormally, many online problems can be described as follows. An online algorithm A is presentedwith a request sequence � = �(1); �(2); : : : ; �(m). The algorithm A has to serve each requestonline, i.e., without knowledge of future requests. More precisely, when serving request �(t),1 � t � m, the algorithm does not know any request �(t0) with t0 > t. Serving requests incurscost, and the goal is to serve the entire request sequence so that the total cost is as small aspossible. This setting can also be regarded as a request-answer game: An adversary generatesrequests, and an online algorithm has to serve them one at a time.In order to illustrate this formal model, we mention a concrete online problem.The paging problem: Consider a two-level memory system that consists of a small fastmemory and a large slow memory. Here, each request speci�es a page in the memory system. Arequest is served if the corresponding page is in fast memory. If a requested page is not in fastmemory, a page fault occurs. Then a page must be moved from fast memory to slow memory sothat the requested page can be loaded into the vacated location. A paging algorithms speci�eswhich page to evict on a fault. If the algorithm is online, then the decision which page to evictmust be made without knowledge of any future requests. The cost to be minimized is the totalnumber of page faults incurred on the request sequence.Sleator and Tarjan [48] suggested to evaluate the performance on an online algorithm usingcompetitive analysis. In a competitive analysis, an online algorithm A is compared to an optimalo�ine algorithm. An optimal o�ine algorithm knows the entire request sequence in advanceand can serve it with minimum cost. Given a request sequence �, let CA(�) denote the costincurred by A and let COPT (�) denote the cost paid by an optimal o�ine algorithm OPT. Thealgorithm A is called c-competitive if there exists a constant a such thatCA(�) � c � COPT (�) + afor all request sequences �. Here we assume that A is a deterministic online algorithm. Thefactor c is also called the competitive ratio of A.1.2 Results on deterministic paging algorithmsWe list three well-known deterministic online paging algorithms.� LRU (Least Recently Used): On a fault, evict the page in fast memory that was requestedleast recently.� FIFO (First-In First-Out): Evict the page that has been in fast memory longest.� LFU (Least Frequently Used): Evict the page that has been requested least frequently.Before analyzing these algorithms, we remark that Belady [12] exhibited an optimal o�inealgorithm for the paging problem. The algorithm is called MIN and works as follows.1



� MIN: On a fault, evict the page whose next request occurs furthest in the future.Belady showed that on any sequence of requests, MIN achieves the minimum number of pagefaults.Throughout these notes, when analyzing paging algorithms, we denote by k the number of pagesthat can simultaneously reside in fast memory. It is not hard to see that the algorithm LFU isnot competitive. Sleator and Tarjan [48] analyzed the algorithms LRU and FIFO and provedthe following theorem.Theorem 1 The algorithms LRU and FIFO are k-competitive.Proof: We will show that LRU is k-competitive. The analysis for FIFO is very similar. Consideran arbitrary request sequence � = �(1); �(2); : : : ; �(m). We will prove that CLRU (�) � k �COPT (�). Without loss of generality we assume that LRU and OPT initially start with thesame fast memory.We partition � into phases P (0); P (1); P (2); : : : such that LRU has at most k fault on P (0) andexactly k faults on P (i), for every i � 1. Such a partitioning can be obtained easily. We startat the end of � and scan the request sequence. Whenever we have seen k faults made by LRU,we cut o� a new phase. In the remainder of this proof we will show that OPT has at least onepage fault during each phase. This establishes the desired bound.For phase P (0) there is nothing to show. Since LRU and OPT start with the same fast memory,OPT has a page fault on the �rst request on which LRU has a fault.Consider an arbitrary phase P (i), i � 1. Let �(ti) be the �rst request in P (i) and let �(ti+1�1)be the last request in P (i). Furthermore, let p be the page that is requested last in P (i� 1).Lemma 1 P (i) contains requests to k distinct pages that are di�erent from p.If the lemma holds, then OPT must have a page fault in P (i). OPT has page p in its fastmemory at the end of P (i� 1) and thus cannot have all the other k pages request in P (i) in itsfast memory.It remains to prove the lemma. The lemma clearly holds if the k requests on which LRU has afault are to k distinct pages and if these pages are also di�erent from p. So suppose that LRUfaults twice on a page q in P (i). Assume that LRU has a fault on �(s1) = q and �(s2) = q, withti � s1 < s2 � ti+1 � 1. Page q is in LRU's fast memory immediately after �(s1) is served andis evicted at some time t with s1 < t < s2. When q is evicted, it is the least recently requestedpage in fast memory. Thus the subsequence �(s1); : : : ; �(t) contains requests to k + 1 distinctpages, at least k of which must be di�erent from p.Finally suppose that within P (i), LRU does not fault twice on page but on one of the faults,page p is request. Let t � ti be the �rst time when p is evicted. Using the same argumentsas above, we obtain that the subsequence �(ti � 1); �(ti); : : : ; �(t) must contain k + 1 distinctpages. 2The next theorem is also due to Sleator and Tarjan [48]. It implies that LRU and FIFO achievethe best possible competitive ratio. 2



Theorem 2 Let A be a deterministic online paging algorithm. If A is c-competitive, then c � k.Proof: Let S = fp1; p2; : : : ; pk+1g be a set of k + 1 arbitrary pages. We assume without loss ofgenerality that A and OPT initially have p1; : : : ; pk in their fast memories.Consider the following request sequence. Each request is made to the page that is not in A'sfast memory.Online algorithm A has a page fault on every request. Suppose that OPT has a fault on somerequest �(t). When serving �(t), OPT can evict a page is not requested during the next k � 1requests �(t+ 1); : : : ; �(t + k � 1). Thus, on any k consecutive requests, OPT has at most onefault. 2The competitive ratios shown for deterministic paging algorithms are not very meaningful froma practical point of view. Note that the performance ratios of LRU and FIFO become worseas the size of the fast memory increases. However, in practice, these algorithms perform betterthe bigger the fast memory is. Furthermore, the competitive ratios of LRU and FIFO are thesame, whereas in practice LRU performs much better. For these reasons, there has been a studyof competitive paging algorithms with access graphs [23, 36]. In an access graph, each noderepresents a page in the memory system. Whenever a page p is requested, the next requestcan only be to a page that is adjacent to p in the access graph. Access graphs can modelmore realistic request sequences that exhibit locality of reference. It was shown [23, 36] thatusing access graphs, one can overcome some negative aspects of conventional competitive pagingresults.2 Randomization in online algorithms2.1 General conceptsThe competitive ratio of a randomized online algorithm A is de�ned with respect to an adversary.The adversary generates a request sequence � and it also has to serve �. When constructing�, the adversary always knows the description of A. The crucial question is: When generatingrequests, is the adversary allowed to see the outcome of the random choices made by A onprevious requests?Ben-David et al. [17] introduced three kinds of adversaries.� Oblivious Adversary: The oblivious adversary has to generate a complete request se-quence in advance, before any requests are served by the online algorithm. The adversaryis charged the cost of the optimum o�ine algorithm for that sequence.� Adaptive Online Adversary: This adversary may observe the online algorithm andgenerate the next request based on the algorithm's (randomized) answers to all previousrequests. The adversary must serve each request online, i.e., without knowing the randomchoices made by the online algorithm on the present or any future request.� Adaptive O�ine Adversary: This adversary also generates a request sequence adap-tively. However, it is charged the optimum o�ine cost for that sequence.3



A randomized online algorithm A is called c-competitive against any oblivious adversary ifthere is a constant a such for all request sequences � generated by an oblivious adversary,E[CA(�)] � c � COPT (�) + a: The expectation is taken over the random choices made by A.Given a randomized online algorithm A and an adaptive online (adaptive o�ine) adversaryADV, let E[CA] and E[CADV ] denote the expected costs incurred by A and ADV in serving arequest sequence generated by ADV. A randomized online algorithm A is called c-competitiveagainst any adaptive online (adaptive o�ine) adversary if there is a constant a such that forall adaptive online (adaptive o�ine) adversaries ADV, E[CA] � c � E[CADV ] + a, where theexpectation is taken over the random choices made by A.Ben-David et al. [17] investigated the relative strength of the adversaries with respect to anarbitrary online problem and showed the following statements.Theorem 3 If there is a randomized online algorithm that is c-competitive against any adaptiveo�ine adversary, then there also exists a c-competitive deterministic online algorithm.This theorem implies that randomization does not help against the adaptive o�ine adversary.Theorem 4 If A is a c-competitive randomized algorithm against any adaptive online adversary,and if there is a d-competitive algorithm against any oblivious adversary, then A is (c � d)-competitive against any adaptive o�ine adversary.An immediate consequence of the above two theorems in the following corollary.Corollary 1 If there exists a c-competitive randomized algorithm against any adaptive onlineadversary, then there is a c2-competitive deterministic algorithm.2.2 Randomized paging algorithms against oblivious adversariesWe will prove that, against oblivious adversaries, randomized online paging algorithms canconsiderably beat the ratio of k shown for deterministic paging. The following algorithm wasproposed by Fiat et al. [27].Algorithm MARKING: The algorithm processes a request sequence in phases. At the begin-ning of each phase, all pages in the memory system are unmarked. Whenever a page is requested,it is marked. On a fault, a page is chosen uniformly at random from among the unmarked pagesin fast memory, and this pages is evicted. A phase ends when all pages in fast memory aremarked and a page fault occurs. Then, all marks are erased and a new phase is started.Fiat et al. [27] analyzed the performance of the MARKING algorithm.Theorem 5 The MARKING algorithm is 2Hk-competitive against any oblivious adversary,where Hk =Pki=1 1=i is the k-th Harmonic number.Note that Hk is roughly lnk. Later, in Section 3.2, we will see that no randomized onlinepaging algorithm against any oblivious adversary can be better than Hk-competitive. Thus theMARKING algorithm is optimal, up to a constant factor. More complicated paging algorithmsachieving an optimal competitive ratio of Hk were given in [42, 1].4



Proof: Given a request sequence � = �(1); : : : ; �(m), we assume without of generality thatMARKING already has a fault on the �rst request �(1).MARKING divides the request sequence into phases. A phase starting with �(i) ends with �(j),where j, j > i, is the smallest integer such that the setf�(i); �(i + 1); : : : ; �(j + 1)gcontains k + 1 distinct pages. Note that at the end of a phase all pages in fast memory aremarked.Consider an arbitrary phase. Call a page stale if it is unmarked but was marked in the previousphase. Call a page clean if it is neither stale nor marked.Let c be the number of clean pages requested in the phase. We will show that1. the amortized number of faults made by OPT during the phase it at least c2 .2. the expected number of faults made by MARKING is at most cHk.These two statements imply the theorem.We �rst analyze OPT's cost. Let SOPT be the set of pages contained in OPT's fast memory,and let SM be the set of pages stored in MARKING's fast memory. Furthermore, let dI be thevalue of jSOPT n SM j at the beginning of the phase and let dF be the value of jSOPT n SM j atthe end of the phase. OPT has at least c� dI faults during the phase because at least c� dI ofthe c clean pages are not in OPT's fast memory. Also, OPT has at least dF faults during thephase because dF pages requested during the phase are not in OPT's fast memory at the endof the phase. We conclude that OPT incurs at leastmaxfc� dI ; dF g � 12(c� dI + dF ) = c2 � dI2 + dF2faults during the phase. Summing over all phases, the terms dI2 and dF2 telescope, except for the�rst and last terms. Thus the amortized number of page faults made by OPT during the phaseis at least c2 .Next we analyze MARKING's expected cost. Serving c requests to clean pages cost c. Thereare s = k � c � k � 1 requests to stale pages. For i = 1; : : : ; s, we compute the expected cost ofthe i-th request to a stale page. Let c(i) be the number of clean pages that were requested inthe phase immediately before the i-th request to a stale page and let s(i) denote the number ofstale pages that remain before the i-th request to a stale page.When MARKING serves the i-th request to a stale page, exactly s(i) � c(i) of the s(i) stalepages are in fast memory, each of them with equal probability. Thus the expected cost of therequest is s(i)� c(i)s(i) � 0 + c(i)s(i) � 1 � cs(i) = ck � i+ 1 :The last equation follows because s(i) = k� (i�1). The total expected cost for serving requeststo stale pages is sXi=1 ck + 1� i � kXi=2 ci = c(Hk � 1):We conclude that MARKING's total expected cost in the phase is bounded by cHk. 25



3 Proof techniques3.1 Potential functionsWe present an important proof technique that can be used to develop upper bounds for deter-ministic and randomized online algorithms. Consider an online algorithm A. In a competitiveanalysis we typically want to show that for all request sequences � = �(1); : : : ; �(m),CA(�) � c � COPT (�); (1)for some constant c. Assume for the moment that we deal with a deterministic online algorithm.Usually, a bound given in (1) cannot be established by comparing online and o�ine cost foreach request separately. For instance, if we consider the paging problem and concentrate on asingle request, it is possible that the online cost is 1 (the online algorithm has a page fault),whereas the optimal o�ine cost is 0 (the o�ine algorithm does not have page fault). Thus, ona single request, the ratio online cost/o�ine cost can be in�nity. However, on the entire requestsequence �, the bound given in (1) might hold. This implies that on the average,CA(t) � c � COPT (t)holds for every request �(t), 1 � t � m. Here CA(t) and COPT (t) denote the actual costsincurred by A and OPT on request �(t). In a competitive analysis, an averaging of cost amongrequests can be done using a potential function. We refer the reader to [50] for a comprehensiveintroduction to amortized analyses using potential functions.Given a request sequence � = �(1); : : : ; �(m) and a potential function �, the amortized onlinecost on request �(t), 1 � t � m, is de�ned as CA(t) + �(t) � �(t � 1). Here �(t) is the valueof the potential function after request �(t), i.e., �(t)� �(t� 1) is the change in potential thatoccurs during the processing of �(t). In an amortized analysis using a potential function weusually show that for any request �(t),CA(t) + �(t)� �(t� 1) � c � COPT (t): (2)If we can prove this inequality for all t, then it is easy to see that A is c-competitive. Summingup (2) for all t = 1; : : : ;m, we obtainmXt=1CA(t) + �(m)� �(0) � c mXt=1COPT (t); (3)where �(0) is the initial potential. Typically a potential function is chosen such that � is alwaysnon-negative and such that the initial potential is 0. Using these two properties, we obtain frominequality (3), as desired, CA(�) � c � COPT (�).The di�cult part in a competitive analysis using a potential function is to construct � andshow inequality (2) for all requests. If A is a randomized online algorithm, then the expectedamortized cost incurred by A has to be compared to the cost of the respective adversary, for allrequests �(t).We now apply potential functions to give an alternative proof that LRU is k-competitive.6



As usual let � = �(1); : : : ; �(m) be an arbitrary request sequence. At any time let SLRU bethe set of pages contains in LRU's fast memory, and let SOPT be the set of pages contained inOPT's fast memory. Set S = SLRU n SOPT . Assign integer weights from the range [1; k] to thepages in SLRU such that, for any two pages p; q 2 SLRU , w(p) < w(q) i� the last request to poccurred earlier than the last request to q. Let� =Xp2Sw(p):Consider an arbitrary request �(t) = p and assume without loss of generality that OPT servesthe request �rst and that LRU serves second. If OPT does not have a page fault on �(t), thenits cost is 0 and the potential does not change. On the other hand, if OPT has a page fault, thenits cost is 1. OPT might evict a page that is in LRU's fast memory, in which case the potentialincreases. However, the potential can increase by at most k.Next suppose that LRU does not have fault on �(t). Then its cost is 0 and the potential cannotchange. If LRU has a page fault, its cost on the request is 1. We show that the potentialdecreases by at least 1. Immediately before LRU serves �(t), page p is only in OPT's fastmemory. By symmetry, there must be a page that is only in LRU's fast memory, i.e, the mustexit a page q 2 S. If q is evicted by LRU during the operation, then the potential decreases byw(q) � 1. Otherwise, since p is loaded into fast memory, q's weight must decrease by 1, andthus the potential must decrease by 1.In summary we have shown: Every time OPT has a fault, the potential increases by at most k.Every time LRU has a fault, the potential decreases by at least 1. We conclude thatCLRU (t) + �(t)� �(t� 1) � k � COPT (t)must hold.3.2 Yao's minimax principleIn this section we describe a technique for proving lower bounds on the competitive ratio thatis achieved by randomized online algorithms against oblivious adversaries. The techniques is anapplication of Yao's minimax theorem [53]. In the context of online algorithms, Yao's minimaxtheorem can be formulated as follows: Given an online problem, the competitive ratio of thebest randomized online algorithm against any oblivious adversary is equal to the competitiveratio of the best deterministic online algorithm under a worst-case input distribution.More formally, let cR denote the smallest competitive ratio that is achieved by randomized onlinealgorithm R against any oblivious adversary. Furthermore, let P be a probability distributionfor choosing a request sequence. Given a deterministic online algorithm A, we denote by cPAthe smallest competitive ratio of A under P , i.e., cPA is the in�mum of all c such that E[CA] �c �E[COPT ]+a. Here E[CA] and E[COPT ] denote the expected costs incurred by A and OPT onrequest sequences that are generated according to P . As usual, the constant a may not dependon the request sequence �. Yao's minimax principle implies thatinfR cR = supP infA cPA: (4)7



On the left-hand side of the equation, the in�mum is taken over all randomized online algorithms.On the right-hand side, the supremum is taken over all probability distributions for choosing arequest sequence and the in�mum is taken over all deterministic online algorithms.Using equation (4), we can construct a lower bound on the competitiveness of randomized onlinealgorithms as follows: First we explicitly construct a probability distribution P . Then we developa lower bound on infA cPA for any deterministic online algorithm A.We can apply this strategy to prove a lower bound for randomized online paging algorithms.Theorem 6 If R is a randomized online paging algorithm that is c-competitive against anyoblivious adversary, then c � Hk.The theorem was �rst proved by Fiat et al. [27]. Here we give an alternative proof presented in[43].Proof: Let S = fp1; : : : ; pk+1g be a set of k + 1 pages. We construct a probability distributionfor choosing a request sequence. The �rst request �(1) is made to a page that is chosen uniformlyat random from S. Every other request �(t), t > 1, it made to a page that is chosen uniformlyat random from S n f�(t� 1)g.We partition the request sequence into phases. A phase starting with �(i) ends with �(j), wherej, j > i, is the smallest integer such thatf�(i); �(i + 1); : : : ; �(j + 1)gcontains k + 1 distinct pages.OPT incurs one page fault during each phase.Consider any deterministic online paging algorithm A. What is the expected cost of A on aphase? The expected cost on each request is 1k because at any time exactly one page is not inA's fast memory. The probability that the request sequence hits this page is 1k . We have todetermine the expected length of the phase and study a related problem. Consider a randomwalk on the complete graph Kk+1. We start at some vertex of the graph and in each step moveto a neighboring vertex; each neighboring vertex is chosen with equal probability. Clearly, theexpected number steps until all vertices are visited is equal to the expected length of the phase.A well-known result in the theory of random walks states that the expected number of steps tovisit all vertices is kHk. 24 The k-server problemIn the k-server problem we are given a metric space S and k mobile servers that reside on pointsin S. Each request speci�es a point x 2 S. To serve a request, one of the k server must bemoved to the requested point unless a server is already present. Moving a server from point xto point y incurs a cost equal to the distance between x and y. The goal is to serve a sequenceof requests so that the total distance traveled by all serves is as small as possible.The k-server problem contains paging as a special case. Consider a metric space in which thedistance between any two points in 1; each point in the metric space represents a page in the8



memory system and the pages covered by servers are those that reside in fast memory. Thek-server problem also models more general caching problem, where the cost of loading an iteminto fast memory depends on the size of the item. Such a situation occurs, for instance, whenfont �les are loaded into the cache of printers. More generally, the k-server problem can also beregarded as a vehicle routing problem.The k-server problem was introduced by Manasse et al. [41] in 1988 who also showed a lowerbound for deterministic k-server algorithms.Theorem 7 Let A be a deterministic online k-server algorithm in a arbitrary metric space. IfA is c-competitive, then c � k.Proof: We will construct a request sequence � and k algorithms B1; : : : ; Bk such thatCA(�) = kXj=1CBj (�):Thus, there must exist a j0 such that 1kCA(�) � CBj0 (�). Let S be the set of points initiallycovered by A's servers plus one other point. We can assume that A initially covers k distinctpoints so that S has cardinality k + 1.A request sequence � = �(1); : : : ; �(m) is constructed in the following way. At any time arequest is made to the point not covered by A's servers.For t = 1; : : : ;m, let �(t) = xt. Let xm+1 be the point that is �nally uncovered. ThenCA(�) = mXt=1 dist(xt+1; xt) = mXt=1 dist(xt; xt+1):Let y1; : : : ; yk be the points initially covered by A. Algorithm Bj, 1 � j � k, is de�ned asfollows. Initially, Bj covers all points in S except for yj. Whenever a requested point xt is notcovered, Bj moves the server from xt�1 to xt.Let Sj, 1 � j � k, be the set of points covered by Bj 's servers. We will show that throughoutthe execution of �, the sets Sj are pairwise di�erent. This implies that at any step, only one ofthe algorithms Bj has to move that thuskXj=1CBj (�) = mXt=2 dist(xt�1; xt) = m�1Xt=1 dist(xt; xt+1):The last sum is equal to A's cost, except for the last term, which can be neglected on longrequest sequences.Consider two indices j; l with 1 � j; l � k. We show by induction on the number of requestsprocessed so far that Sj 6= Sl. The statement is true initially. Consider request xt = �(t). If xtis in both sets, then the sets do not change. If xt is not present in one of the sets, say Bj, thena server is moved from xt�1 to xt. Since xt�1 is still covered by Bl, the statement holds afterthe request. 2Manasse et al. also conjectured that there exists a deterministic k-competitive online k-serveralgorithm. Only very recently, Koutsoupias and Papadimitriou [37] showed that there is a9



(2k� 1)-competitive algorithm. Before, k-competitive algorithms were known for special metricspaces and special values of k. It is worthwhile to note that the greedy algorithm, which alwaysmoves the closest server to the requested point, is not competitive.Koutsoupias and Papadimitriou analyzed the WORK FUNCTION algorithm. Let X be acon�guration of the servers. Given a request sequence � = �(1); : : : ; �(t), the work functionw(X) is the minimal cost to serve � and end in con�guration X.Algorithm WORK FUNCTION: Suppose that the algorithm has served � = �(1); : : : ; �(t�1) and that a new request r = �(t) arrives. Let X be the current con�guration of the serversand let xi be the point where server si, 1 � i � k, is located. Serve the request by moving theserver si that minimizes w(Xi) + dist(xi; r);where Xi = X � fxig+ frg.As mentioned above, the algorithm achieves the following performance [37].Theorem 8 The WORK FUNCTION algorithm is (2k � 1)-competitive in an arbitrary metricspace.A very elegant randomized rule for moving servers was proposed by Raghavan and Snir [45].Algorithm HARMONIC: Suppose that there is a new request at point r and that server si,1 � i � k, is currently at point xi. Move server si with probabilitypi = 1=dist(xi; r)Pkj=1 1=dist(xj ; r)to the request.Intuitively, the closer a server is to the request, the higher the probability that it will be moved.Grove [32] proved that the HARMONIC algorithm has a competitive ratio of c � 54k � 2k � 2k.The competitiveness of HARMONIC is not better than k(k + 1)=2, see [43].The main open problem in the area of the k-server problem is to develop randomized onlinealgorithms that have a competitive ratio of c < k in an arbitrary metric space.5 The list update problemThe list update problem is to maintain a dictionary as an unsorted linear list. Consider a setof items that is represented as a linear linked list. We receive a request sequence �, where eachrequest is one of the following operations. (1) It can be an access to an item in the list, (2) itcan be an insertion of a new item into the list, or (3) it can be a deletion of an item.To access an item, a list update algorithm starts at the front of the list and searches linearlythrough the items until the desired item is found. To insert a new item, the algorithm �rst scansthe entire list to verify that the item is not already present and then inserts the item at the endof the list. To delete an item, the algorithm scans the list to search for the item and then deletesit. 10



In serving requests a list update algorithm incurs cost. If a request is an access or a deleteoperation, then the incurred cost is i, where i is the position of the requested item in the list.If the request is an insertion, then the cost is n+ 1, where n is the number of items in the listbefore the insertion. While processing a request sequence, a list update algorithm may rearrangethe list. Immediately after an access or insertion, the requested item may be moved at no extracost to any position closer to the front of the list. These exchanges are called free exchanges.Using free exchanges, the algorithm can lower the cost on subsequent requests. At any timetwo adjacent items in the list may be exchanged at a cost of 1. These exchanges are called paidexchanges.With respect to the list update problem, we require that a c-competitive online algorithm has aperformance ratio of c for all size lists. More precisely, a deterministic online algorithm for listupdate is called c-competitive if there is a constant a such that for all size lists and all requestsequences �, CA(�) � c � COPT (�) + a:The competitive ratios of randomized online algorithms are de�ned similarly.Linear lists are one possibility to represent a dictionary. Certainly, there are other data struc-tures such as balanced search trees or hash tables that, depending on the given application, canmaintain a dictionary in a more e�cient way. In general, linear lists are useful when the dictio-nary is small and consists of only a few dozen items [19]. Furthermore, list update algorithmshave been used as subroutines in algorithms for computing point maxima and convex hulls[18, 30]. Recently, list update techniques have been very successfully applied in the developmentof data compression algorithms [24]. We discuss this application in detail in Section 6.5.1 Deterministic online algorithmsThere are three well-known deterministic online algorithms for the list update problem.� Move-To-Front: Move the requested item to the front of the list.� Transpose: Exchange the requested item with the immediately preceding item in the list.� Frequency-Count: Maintain a frequency count for each item in the list. Whenever anitem is requested, increase its count by 1. Maintain the list so that the items always occurin nonincreasing order of frequency count.The formulations of list update algorithms generally assume that a request sequence consists ofaccesses only. It is obvious how to extend the algorithms so that they can also handle insertionsand deletions. On an insertion, the algorithm �rst appends the new item at the end of the listand then executes the same steps as if the item was requested for the �rst time. On a deletion,the algorithm �rst searches for the item and then just removes it.In the following, we discuss the algorithms Move-To-Front, Transpose and Frequency-Count.We note that Move-To-Front and Transpose are memoryless strategies, i.e., they do not needany extra memory to decide where a requested item should be moved. Thus, from a practicalpoint of view, they are more attractive than Frequency-Count. Sleator and Tarjan [48] analyzedthe competitive ratios of the three algorithms.11



Theorem 9 The Move-To-Front algorithm is 2-competitive.Proof: Consider a request sequence � = �(1); �(2); : : : ; �(m) of length m. First suppose that� consists of accesses only. We will compare simultaneous runs of Move-To-Front and OPT on� and evaluate online and o�ine cost using a potential function �.The potential function we use is the number of inversions in Move-To-Front's list with respectto OPT's list. An inversion is a pair x; y of items such that x occurs before y Move-To-Front'slist and after y in OPT's list. We assume without loss of generality that Move-To-Front andOPT start with the same list so that the initial potential is 0.For any t, 1 � t � m, let CMTF (t) and COPT (t) denote the actual cost incurred by Move-To-Front and OPT in serving �(t). Furthermore, let �(t) denote the potential after �(t) is served.The amortized cost incurred by Move-To-Front on �(t) is de�ned as CMTF (t) +�(t)��(t� 1).We will show that for any t,CMTF (t) + �(t)� �(t� 1) � 2COPT (t)� 1: (5)Summing this expression for all t we obtainPmt=1 CMTF (t)+�(m)��(0) �Pmt=1 2COPT (t)�m,i.e., CMTF (�) � 2COPT (�) �m + �(0) � �(m). Since the initial potential is 0 and the �nalpotential is non-negative, the theorem follows.In the following we will show inequality (5) for an arbitrary t. Let x be the item requestedby �(t). Let k denote the number of items that precede x in Move-To-Front's and OPT's list.Furthermore, let l denote the number of items that precede x in Move-To-Front's list but followx in OPT's list. We have CMTF (t) = k + l + 1 and COPT (t) � k + 1.When Move-To-Front serves �(t) and moves x to the front of the list, l inversions are destroyedand at most k new inversions are created. ThusCMTF (t) + �(t)� �(t� 1) � CMTF (t) + k � l = 2k + 1� 2COPT (t)� 1:Any paid exchange made by OPT when serving �(t) can increase the potential by 1, but OPTalso pays 1. We conclude that inequality (5) holds.The above arguments can be extended easily to analyze an insertion or deletion. On an insertion,CMTF (t) = COPT (t) = n + 1, where n is the number of items in the list before the insertion,and at most n new inversions are created. On a deletion, l inversions are removed and no newinversion is created. 2Sleator and Tarjan [48] showed that, in terms of competitiveness, Move-To-Front is superior toTranspose and Frequency-Count.Proposition 1 The algorithms Transpose and Frequency-Count are not c-competitive for anyconstant c.Recently, Albers [2] presented another deterministic online algorithm for the list update problem.The algorithm belongs to the Timestamp(p) family of algorithms that were introduced in thecontext of randomized online algorithms and that are de�ned for any real number p 2 [0; 1]. Forp = 0, the algorithm is deterministic and can be formulated as follows.12



Algorithm Timestamp(0): Insert the requested item, say x, in front of the �rst item in thelist that precedes x and that has been requested at most once since the last request to x. If thereis no such item or if x has not been requested so far, then leave the position of x unchanged.Theorem 10 The Timestamp(0) algorithm is 2-competitive.Note that Timestamp(0) is not memoryless. We need information on past requests in orderto determine where a requested item should be moved. In fact, in the most straightforwardimplementation of the algorithm we need a second pass through the list to �nd the positionwhere the accessed item must be inserted. Timestamp(0) is interesting because it has a betteroverall performance than Move-To-Front. The algorithm achieves a competitive ratio of 2,as does Move-To-Front. However, as we shall see in Section 5.3, Timestamp(0) is considerablybetter than Move-To-Front on request sequences that are generated by probability distributions.Karp and Raghavan [39] developed a lower bound on the competitiveness that can be achievedby deterministic online algorithms. This lower bound implies that Move-To-Front and Times-tamp(0) have an optimal competitive ratio.Theorem 11 Let A be a deterministic online algorithm for the list update algorithm. If A isc-competitive, then c � 2.Proof: Consider a list of n items. We construct a request sequence that consist of accesses only.Each request is made to the item that is stored at the last position in A's list. On a requestsequence � of length m generated in this way, A incurs a cost of CA(�) = mn. Let OPT' be theoptimum static o�ine algorithm. OPT' �rst sorts the items in the list in order of nonincreasingrequest frequencies and then serves � without making any further exchanges. When rearrangingthe list, OPT' incurs a cost of at most n(n� 1)=2. Then the requests in � can be served ata cost of at most m(n+ 1)=2. Thus COPT (�) � m(n + 1)=2 + n(n � 1)=2. For long requestsequences, the additive term of n(n� 1)=2 can be neglected and we obtainCA(�) � 2nn+1 � COPT (�):The theorem follows because the competitive ratio must hold for all list lengths. 25.2 Randomized online algorithmsWe analyze randomized online algorithms for the list update problem against oblivious ad-versaries. It was shown by Reingold et al. [46] that against adaptive online adversaries, norandomized online algorithm for list update can be better than 2-competitive. Recall that, byTheorem 3, a lower bound of 2 also holds against adaptive o�ine adversaries.Many randomized online algorithms for list update have been proposed in the literature [34, 35,46, 2, 5]. We present the two most important algorithms. Reingold et al. [46] gave a very simplealgorithm, called BIT.Algorithm Bit: Each item in the list maintains a bit that is complemented whenever the itemis accessed. If an access causes a bit to change to 1, then the requested item is moved to thefront of the list. Otherwise the list remains unchanged. The bits of the items are initializedindependently and uniformly at random. 13



Theorem 12 The Bit algorithm is 1.75-competitive against any oblivious adversary.Reingold et al. analyzed Bit using an elegant modi�cation of the potential function given in theproof of Theorem 9. Again, an inversion is a pair of items x; y such that x occurs before y inBit's list and after y in OPT's list. An inversion has type 1 if y's bit is 0 and type 2 if y's bitis 1. Now, the potential is de�ned as the number of type 1 inversions plus twice the number oftype 2 inversions.Interestingly, it is possible to combine the algorithms Bit and Timestamp(0), see Albers et al. [5].This combined algorithm achieves the best competitive ratio that is currently known for the listupdate problem.Algorithm Combination: With probability 4/5 the algorithm serves a request sequence usingBit, and with probability 1/5 it serves a request sequence using Timestamp(0).Theorem 13 The algorithm Combination is 1.6-competitive against any oblivious adversary.Proof: The analysis consists of two parts. In the �rst part we show that given any requestsequence �, the cost incurred by Combination and OPT can be divided into costs that are causedby each unordered pair fx; yg of items x and y. Then, in the second part, we compare onlineand o�ine cost for each pair fx; yg. This method of analyzing cost by considering pairs of itemswas �rst introduced by Bentley and McGeoch [19] and later used in [2, 34]. In the following wealways assume that serving a request to the i-th item in the list incurs a cost of i�1 rather thani. Clearly, if Combination is 1.6-competitive in this i� 1 cost model, it is also 1:6-competitivein the i-cost model.Let � = �(1); �(2); : : : ; �(m) be an arbitrary request sequence of length m. For the reductionto pairs we need some notation. Let S be the set of items in the list. Consider any list updatealgorithm A that processes �. For any t 2 [1;m] and any item x 2 S, let CA(t; x) be the costincurred by item x when A serves �(t). More precisely, CA(t; x) = 1 if item x precedes the itemrequested by �(t) in A's list at time t; otherwise CA(t; x) = 0. If A does not use paid exchanges,then the total cost CA(�) incurred by A on � can be written asCA(�) = Xt2[1;m]Xx2SCA(t; x) =Xx2S Xt2[1;m]CA(t; x)= Xx2SXy2S Xt2[1;m]�(t)=y CA(t; x)= Xfx;ygx6=y ( Xt2[1;m]�(t)=x CA(t; y) + Xt2[1;m]�(t)=y CA(t; x)):For any unordered pair fx; yg of items x 6= y, let �xy be the request sequence that is obtainedfrom � if we delete all requests that are neither to x nor to y. Let CBIT (�xy) and CTS(�xy)denote the costs that Bit and Timestamp(0) incur in serving �xy on a two item list that consistof only x and y. Obviously, if Bit serves � on the long list, then the relative position of x andy changes in the same way as if Bit serves �xy on the two item list. The same property holdsfor Timestamp(0). This follows from Lemma 2, which can easily be shown by induction on thenumber of requests processed so far. 14



Lemma 2 At any time during the processing of �, x precedes y in Timestamp(0)'s list if andonly if one of the following statements holds: (a) the last requests made to x and y are of theform xx, xyx or xxy; (b) x preceded y initially and y was requested at most once so far.Thus, for algorithm A 2 fBit, Timestamp(0)g we haveCA(�xy) = Xt2[1;m]�(t)=x CA(t; y) + Xt2[1;m]�(t)=y CA(t; x)CA(�) = Xfx;ygx6=y CA(�xy): (6)Note that Bit and Timestamp(0) do not incur paid exchanges. For the optimal o�ine cost wehave COPT (�xy) � Xt2[1;m]�(t)=x COPT (t; y) + Xt2[1;m]�(t)=y COPT (t; x) + p(x; y)COPT (�) � Xfx;ygx6=y COPT (�xy); (7)where p(x; y) denotes the number of paid exchanges incurred by OPT in moving x in front of yor y in front of x. Here, only inequality signs hold because if OPT serves �xy on the two itemlist, then it can always arrange x and y optimally in the list, which might not be possible if OPTserves � on the entire list. Note that the expected cost E[CCB(�xy)] incurred by Combinationon �xy is E[CCB(�xy)] = 45E[CBIT (�xy)] + 15E[CTS(�xy)]: (8)In the following we will show that for any pair fx; yg of items E[CCB(�xy)] � 1:6COPT (�xy).Summing this inequality for all pairs fx; yg, we obtain, by equations (6),(7) and (8), thatCombination is 1.6-competitive.Consider a �xed pair fx; yg with x 6= y. We partition the request sequence �xy into phase.The �rst phase starts with the �rst request in �xy and ends when, for the �rst time, there aretwo requests to the same item and the next request is di�erent. The second phase starts withthat next request and ends in the same way as the �rst phase. The third and all remainingphases are constructed in the same way as the second phase. The phases we obtain are of thefollowing types: xk for some k � 2; (xy)kxl for some k � 1; l � 2; (xy)kyl for some k � 1, l � 1.Symmetrically, we have yk, (yx)kyl and (yx)kxl.Since a phase ends with (at least) two requests to the same item, the item requested last in thephase precedes the other item in the two item list maintained by Bit and Timestamp(0). Thusthe item requested �rst in a phase is always second in the list. Without loss of generality wecan assume the same holds for OPT, because when OPT serves two consecutive requests to thesame item, it cannot cost more to move that item to the front of the two item list after the �rstrequest. The expected cost incurred by Bit, Timestamp(0) (denoted by TS(0)) and OPT aregiven in the table below. The symmetric phases with x and y interchanged are omitted. We
15



assume without generality that at the beginning of �xy, y precedes x in the list.Phase Bit TS(0) OPTxk 32 2 1(xy)kxl 32k + 1 2k k + 1(xy)kyl 32k + 14 2k � 1 kThe entries for OPT are obvious. When Timestamp(0) serves a phase (xy)kxl, then the �rst tworequest xy incur a cost of 1 and 0, respectively, because x is left behind y on the �rst requestto x. On all subsequent requests in the phase, the requested item is always moved to the frontof the list. Therefore, the total cost on the phase is 1 + 0 + 2(k � 1) + 1 = 2k. Similarly,Timestamp(0) serves (xy)kyl with cost 2k � 1.For the analysis of Bit's cost we need two lemmata.Lemma 3 For any item x and any t 2 [1;m], after the t-th request in �, the value of x's bit isequally likely to be 0 or 1, and the value is independent of the bits of the other items.Lemma 4 Suppose that Bit has served three consecutive requests yxy in �xy, or two consecutiverequests xy where initially y preceded x. Then y is in front of x with probability 34 . The analogousstatement holds when the roles of x and y are interchanged.Clearly, the expected cost spent by Bit on a phase xk is 1 + 12 +0(k� 2) = 32 . Consider a phase(xy)kxl. The �rst two requests xy incur a expected cost of 1 and 12 , respectively. By Lemma4, each remaining request in the string (xy)k and the �rst request in xl have an expected costof 34 . Also by Lemma 4, the second request in xl costs 1 � 34 = 14 . All other requests in xl arefree. Therefore, Bit pays an expected cost of 1 + 12 + 32(k � 1) + 34 + 14 = 32k + 1 on the phase.Similarly, we can evaluate a phase (xy)kyl.The Combination algorithm serves a request sequence with probability 45 using Bit and withprobability 15 using Timestamp(0). Thus, by the above table, Combination has an expected costof 1.6 on a phase xk, a cost of 1:6k+0:8 on a phase (xy)kxl, and a cost 1:6k on a phase (xy)kyl.In each case this is at most 1.6 times the cost of OPT.In the above proof we assume that a request sequence consist of accesses only. However, theanalysis is easily extended to the case that insertions and deletions occur, too. For any item x,consider the time intervals during which x is contained in the list. For each of these intervals,we analyze the cost caused by any pair fx; yg, where y is an item that is (temporarily) presentduring the interval. 2 2Teia [49] presented a lower bound for randomized list update algorithms.Theorem 14 Let A be a randomized online algorithm for the list update problem. If A isc-competitive against any oblivious adversary, then c � 1:5.An interesting open problem is to give tight bounds on the competitive ratio that can be achievedby randomized online algorithms against oblivious adversaries.16



5.3 Average case analyses of list update algorithmsIn this section we study a restricted class of request sequences: request sequences that aregenerated by a probability distribution. Consider a list of n items x1; x2; : : : ; xn, and let ~p =(p1; p2; : : : ; pn) be a vector of positive probabilities pi with Pni=1 pi = 1. We study requestsequences that consist of accesses only, where each request it made to item xi with probabilitypi, 1 � i � n. It is convenient to assume that p1 � p2 � � � � � pn.There are many results known on the performance of list update algorithms when a requestsequence is generated by a probability distribution, i.e. by a discrete memoryless source. In fact,the algorithms Move-To-Front, Transpose and Frequency-Count given in Section 5.1 as well astheir variants were proposed as heuristics for these particular request sequences.We are now interested in the asymptotic expected cost incurred by a list update algorithm. Forany algorithm A, let EA(~p) denote the asymptotic expected cost incurred by A in serving a singlerequest in a request sequence generated by the distribution ~p = (p1; : : : ; pn). In this situation,the performance of an online algorithm has generally been compared to that of the optimalstatic ordering, which we call STAT. The optimal static ordering �rst arranges the items xi innonincreasing order by probabilities and then serves a request sequence without changing therelative position of items. Clearly, ESTAT (~p) =Pni=1 ipi for any distribution ~p = (p1; : : : ; pn).We �rst study the algorithms Move-To-Front(MTF), Transpose(T) and Frequency-Count(FC).By the strong law of large numbers we have EFC(~p) = ESTAT (~p) for any probability distribution~p [47]. However, as mentioned in Section 5.1, Frequency-Count may need a large amount of extramemory to serve a request sequence.Chung et al. [25] gave an upper bound of Move-To-Front's performance.Theorem 15 For any probability distribution ~p, EMTF (~p) � �2ESTAT (~p).This bound is tight as was shown by Gonnet et al. [28].Theorem 16 For any � > 0, there exists a probability distribution ~p� with EMTF (~p�) � (�2 ��)ESTAT (~p�):Rivest [47] proved that Transpose performs better than Move-To-Front on distributions.Theorem 17 For any distribution ~p = (p1; : : : ; pn), ET (~p) � EMTF (~p). The inequality is strictunless n = 2 or pi = 1=n for i = 1; : : : ; n.Finally, we consider the Timestamp(0) algorithm that was also presented in Section 5.1. Itwas shown in [4] that Timestamp(0) has a better performance then Move-To-Front if requestsequences are generated by probability distributions. Let ETS(~p) denote the asymptotic expectedcost incurred by Timestamp(0).Theorem 18 For any probability distribution ~p, ETS(~p) � 1:34ESTAT (~p).Theorem 19 For any probability distribution ~p, ETS(~p) � 1:5EOPT (~p).17



Note that EOPT (~p) is the asymptotic expected cost incurred by the optimal o�ine algorithmOPT, which may dynamically rearrange the list while serving a request sequence. Thus, thisalgorithm is much stronger than STAT. The algorithm Timestamp(0) is the only algorithmwhose asymptotic expected cost has been compared to EOPT (~p).The bound given in Theorem 19 holds with high probability. More precisely, for every distri-bution ~p = (p1; : : : ; pn), and � > 0, there exist constants c1; c2 and m0 dependent on ~p; n and �such that for any request sequence � of length m � m0 generated by ~p,ProbfCTS(�) > (1:5 + �)COPT (�)g � c1e�c2m:6 Data compression based on linear listsLinear lists can be used to build locally adaptive data compression schemes. This applicationof linear lists recently became of considerable importance, due to a paper by Burrows andWheeler. In [24], Burrows and Wheeler developed a data compression scheme using unsortedlists that achieves a better compression than Ziv-Lempel based algorithms. Before describingtheir algorithm, we �rst present a data compression scheme given by Bentley et al. [20] anddiscuss theoretical as well as experimental results.6.1 Theoretical resultsIn data compression we are given a string S that shall be compressed, i.e., that shall be repre-sented using fewer bits. The string S consists of symbols, where each symbol is an element ofthe alphabet � = fx1; : : : ; xng. The idea of data compression schemes using linear lists it toconvert the string S of symbols into a string I of integers. An encoder maintains a linear listof symbols contained in � and reads the symbols in the string S. Whenever the symbol xi hasto be compressed, the encoder looks up the current position of xi in the linear list, outputs thisposition and updates the list using a list update rule. If symbols to be compressed are movedcloser to the front of the list, then frequently occurring symbols can be encoded with smallintegers.A decoder that receives I and has to recover the original string S also maintains a linear list ofsymbols. For each integer j it reads from I, it looks up the symbol that is currently stored atposition j. Then the decoder updates the list using the same list update rule as the encoder.Clearly, when the string I is actually stored or transmitted, each integer in the string should becoded again using a variable length pre�x code.In order to analyze the above data compression scheme one has to specify how an integer j inI shall be encoded. Elias [26] presented several coding schemes that encode an integer j withessentially log j bits. The simplest version of his schemes encodes j with 1 + 2blog jc bits. Thecode for j consists of a pre�x of blog jc 0's followed by the binary representation of j, whichrequires 1+blog jc bits. A second encoding scheme is obtained if the pre�x of blog jc 0's followedby the �rst 1 in the binary representation of j is coded again using this simple scheme. Thus,the second code uses 1 + blog jc+ 2blog(1 + log j)c bits to encode j.Bentley et al. [20] analyzed the above data compression algorithm if encoder and decoder useMove-To-Front as list update rule. They assume that an integer j is encoded with f(j) =18



1 + blog jc + 2blog(1 + log j)c bits. For a string S, let AMTF (S) denote the average number ofbits needed by the compression algorithm to encode one symbol in S. Let m denote the lengthof S and let mi, 1 � i � n, denote the number of occurrences of the symbol xi in S.Theorem 20 For any input sequence S,AMTF (S) � 1 +H(S) + 2 log(1 +H(S));where H(S) =Pni=1 mim log( mmi ).The expression H(S) =Pni=1 mim log( mmi ) is the \empirical entropy" of S. The empirical entropyis interesting because it corresponds to the average number of bits per symbol used by theoptimal static Hu�man encoding for a sequence. Thus, Theorem 20 implies that Move-To-Frontbased encoding is almost as good as static Hu�man encoding.Proof of Theorem 20: We assume without loss of generality that the encoder starts with anempty linear list and inserts new symbols as they occur in the string S. Let f(j) = 1+ blog jc+2blog(1 + log j)c. Consider a �xed symbol xi, 1 � i � n, and let q1; q2; : : : ; qmi be the positionsat which the symbol xi occurs in the string S. The �rst occurrence of xi in S can the encodedwith f(q1) bits and the k-th occurrence of xi can be encoded with f(qk � qk�1) bits. The mioccurrences of xi can be encoded with a total off(q1) + miXk=1 f(qk � qk�1)bits. Note that f is a concave function. We now apply Jensen's inequality, which states that forany concave function f and any set fw1; : : : ; wng of positive reals whose sum is 1,Pni=1 wif(yi) �f(Pni=1 wiyi) [33]. Thus, the mi occurrences of xi can be encoded with at mostmif( 1mi (q1 + miXk=2(qk � qk�1)) =mif(qmimi ) � mif( mmi )bits. Summing the last expression for all symbols xi and dividing by m, we obtainAMTF (S) = nXi=1 mim f(mmi ):The de�nition of f givesAMTF (S) � nXi=1 mim + nXi=1 mim log( mmi ) + nXi=1 mim 2 log(1 + log( mmi ))� nXi=1 mim + nXi=1 mim log( mmi ) + 2 log( nXi=1 mim + nXi=1 mim log(mmi ))= 1 +H(S) + 2 log(1 +H(S)):The second inequality follows again from Jensen's inequality. 2Bentley et al. [20] also considered strings that are generated by probability distributions, i.e.,by discrete memoryless sources ~p = (p1; : : : ; pn). The pi's are positive probabilities that sumto 1. In a string S generated by ~p = (p1; : : : ; pn), each symbol is equal to xi with probabilitypi, 1 � i � n. Let BMTF (~p) denote the expected number of bits needed by Move-To-Front toencode one symbol in a string generated by ~p = (p1: : : : ; pn).19



Theorem 21 For any ~p = (p1; : : : ; pn),BMTF (~p) � 1 +H(~p) + 2 log(1 +H(~p));where H(~p) =Pni=1 pi log(1=pi) is the entropy of the source.Shannon's source coding theorem (see e.g. Gallager [32]) implies that the number BMTF (~p) ofbits needed by Move-To-Front encoding is optimal, up to a constant factor.Albers and Mitzenmacher [4] analyzed the data compression algorithm if encoder and decoder useTimestamp(0) as list update algorithm. They showed that a statement analogous to Theorem 20holds. More precisely, for any string S, let AMTF (S) denote the average number of bits neededby Timestamp(0) to encode one symbol in S. Then, ATS(S) � 1 + H(S) + 2 log(1 + H(S));where H(S) is the empirical entropy of S. For strings generated by discrete memoryless sources,Timestamp(0) achieves a better compression than Move-To-Front.Theorem 22 For any ~p = (p1; p2; : : : ; pn),BTS(~p) � 1 +H(~p) + 2 log(1 +H(~p));where H(~p) =Pni=1 pi log(1=pi) + log(1�Pi�j pipj(pi � pj)2=(pi + pj)2).Note that 0 �Pi�j pipj(pi � pj)2=(pi + pj)2 < 1.6.2 Experimental resultsThe above data compression algorithm, based on Move-To-Front or Timestamp(0), was analyzedexperimentally [4, 20]. In general, the algorithm can be implemented in two ways. In a byte-levelscheme, each ASCII character in the input string is regarded as a symbol that is encoded individ-ually. In contrast, in a word-level scheme each word, i.e. each longest sequence of alphanumericand nonalphanumeric characters, represents a symbol. Albers and Mitzenmacher [4] comparedMove-To-Front and Timestamp(0) based encoding on the Calgary Compression Corpus [52],which consists of �les commonly used to evaluate data compression algorithms. In the byte-level implementations, Timestamp(0) achieves a better compression than Move-To-Front. Theimprovement is typically 6{8%. However, the byte-level schemes perform far worse than standardUNIX utilities such as pack or compress. In the word-level implementations, the compressionachieved by Move-To-Front and Timestamp(0) is comparable to that of the UNIX utilities. How-ever, in this situation, the improvement achieved by Timestamp(0) over Move-To-Front is onlyabout 1%.Bentley et al. [20] implemented a word-level scheme based on Move-To-Front that uses a linearlist of limited size. Whenever the encoder reads a word from the input string that is not containedin the list, the word is written in non-coded form onto the output string. The word is insertedas new item at the front of the list and, if the current list length exceeds the allowed length, thelast item of the list is deleted. Such a list acts like a cache. Bentley et al. tested the compressionscheme with various list lengths on several text and Pascal �les. If the list may contain up to256 items, the compression achieved is comparable to that of word-based Hu�man encoding andsometimes better. 20



6.3 The compression algorithm by Burrows and WheelerAs mentioned in the beginning of this section, Burrows and Wheeler [24] developed a verye�ective data compression algorithm using self-organizing lists that achieves a better compressionthan Ziv-Lempel based schemes. The algorithm by Burrows andWheeler �rst applies a reversibletransformation to the string S. The purpose of this transformation is to group together instancesof a symbol xi occurring in S. The resulting string S0 is then encoded using the Move-To-Frontalgorithm.More precisely, the transformed string S0 is computed as follows. Let m be the length of S. Thealgorithm �rst computes the m rotations (cyclic shifts) of S and sorts them lexicographically.Then it extracts the last character of these rotations. The k-th symbol of S0 is the last symbolof the k-th sorted rotation. The algorithm also computes the index J of the original string Sin the sorted list of rotations. Burrows and Wheeler gave an e�cient algorithm to compute theoriginal string S given only S0 and J .In the sorting step, rotations that start with the same symbol are grouped together. Notethat in each rotation, the initial symbol is adjacent to the �nal symbol in the original stringS. If in the string S, a symbol xi is very often followed by xj , then the occurrences of xj aregrouped together in S0. For this reason, S0 generally has a very high locality of reference andcan be encoded very e�ectively with Move-To-Front. The paper by Burrows and Wheeler givesa very detailed description of the algorithm and reports of experimental results. On the CalgaryCompression Corpus, the algorithm outperforms the UNIX utilities compress and gzip and theimprovement is 13% and 6%, respectively.7 Distributed data managementConsider a network of processors, each of which has its local memory. A global shared memoryis modeled by distributing the physical pages among the local memories. Accesses to the globalmemory are accomplished by accessing the local memories. Suppose a processor p wants to reada memory address from page B. If B is stored in p's local memory, then this read operationcan be executed locally. Otherwise, p determines a processor q holding the page and sends arequest to q. The desired information is then transmitted from q to p, and the communicationcost incurred thereby is proportional to the distance from q to p. If p has to access page Bfrequently, it may be worthwhile to move or copy B from q to p because subsequent accesseswill become cheaper. However, transmitting an entire page incurs a high communication costproportional to the page size times the distance from q to p.If a page is writable, it is reasonable to store only one copy of the page in the entire system. Thisavoids the problem of keeping multiple copies of the page consistent. The migration problemis to decide in which local memory the single copy of the writable page should be stored sothat a sequence of memory accesses can be processed at low cost. On the other hand, if a pageis read-only, it is possible to keep several copies of the page in the system, i.e., a page maybe copied from one local memory to another. In the replication problem we have to determinewhich local memories should contain copies of the read-only page. Finding e�cient migrationand replication strategies is an important problem that has been studied from a practical and21



theoretical point of view. In this section we study on-line algorithms for page migration andreplication.7.1 Formal de�nition of migration and replication problemsFormally, the page migration and replication problems can be described as follows. We aregiven an undirected graph G. Each node in G corresponds to a processor and the edges rep-resent the interconnection network. Associated with each edge is a length that is equal to thedistance between the connected processors. We assume that the edge lengths satisfy the triangleinequality.In page migration and replication we generally concentrate on one particular page. We say thata node v has the page if the page is contained in v's local memory. A request at a node v occursif v wants to read or write an address from the page. The request can be satis�ed at zero costif v has the page. Otherwise the request is served by accessing a node w holding the page andthe incurred cost equals the distance from v to w. After the request is satis�ed, the page maybe migrated or replicated from node w to any other node v0 that does not hold the page (nodev0 may coincide with node v). The cost incurred by this migration or replication is d times thedistance from w to v0. Here d denotes the page size factor. In practical applications, d is a largevalue, usually several hundred or thousand. (The page may only be migrated or replicated aftera request because it is impossible to delay the service of the memory access while the entire pageis transmitted.)A page migration or replication algorithm is usually presented with an entire sequence of requeststhat must be served with low total cost. An algorithm is on-line if it serves every request withoutknowledge of any future requests.In these notes we only consider centralized migration and replication algorithms, i.e., each nodealways knows where the closest node holding the page is located in the network.7.2 Page migrationRecall that in the migration problem we have to decide where the single copy of a page shouldreside in the network over time. There are deterministic online migration algorithms that achievecompetitive ratios of 7 and 4:1, respectively, see [10, 14]. We describe an elegant randomizedalgorithm due to Westbrook [51].Algorithm COUNTER: The algorithm maintains a global counter C that takes integer valuesin [0; k], for some positive integer k to be speci�ed later. Counter C is initialized uniformly atrandom to an integer in [1; k]. On each request, C is decremented by 1. If C = 0 after theservice of the request, then the page is moved to the requesting node and C is reset to k.Theorem 23 The COUNTER algorithm is c-competitive, where c = maxf2 + 2dk ; 1 + k+12d g.Westbrook showed that the best value for k is d + 12(p20d2 � 4d+ 1 � 1). As d increases, thebest competitive ratio decreases and tends to 1 + �, where � = 1+p52 � 1:62 is the GoldenRatio. 22



Proof: Let � = �(1); : : : ; �(m) be an arbitrary request sequence. We analyze the COUNTERalgorithm using a potential function � and show thatE[CCT (t) + �(t)� �(t� 1)] � c � COPT (t);where c is the value speci�ed above. Here CCT (t) denotes the actual cost incurred by theCOUNTER algorithm on request �(t).We classify the actions that can occur during the processing of �(t) into two types of events.I: COUNTER and OPT serve the request. This event may involve COUNTER moving thepage.II: OPT moves the page.Let uC be the node where COUNTER has the page and let uOPT be the node where OPT hasthe page. Let � = (d+C)dist(uC ; uOPT );where C is the value of the global counter maintained by the online algorithm.We �rst analyze event I. Let v be the node that issues the request. OPT incurs a cost ofl0 = dist(v; uOPT ). Let l1 = dist(uC ; uOPT ) and l2 = dist(v; uC ). The actual cost incurred byCOUNTER is l2. Since the global counter decreases by 1, the potential decreases by l1, and theamortized cost incurred by COUNTER is l2 � l1. By the triangle inequality, l2 � l1 � l0.With probability 1k , C = 1 before the request and thus C = 0 after the request. The cost ofmoving the page is d � l2. The potential before the move is d � l1 and after the move (d + k)l0since the global counter is reset to k. Thus the amortized cost of moving the page isd � l2 + (d+ k)l0 � d � l1 � d � l0 + (d+ k)l0 � (2d+ k)l0:In total, the expected amortized cost of the request isl0 + 1k (2d+ k)l0 � (2dk + 2)l0:Next we analyze event II. Suppose that OPT moves the page from node uOPT to node u0OPT .Let l0 = dist(uOPT ; u0OPT ), l1 = dist(uC ; uOPT ) and l2 = dist(uC ; u0OPT ). OPT incurs a cost ofd � l0. The change in potential is (d+ C)(l2 � l1) � (d+ C)l0:The inequality follows again from the triangle inequality. The expected value of the globalcounter is k+12 . Thus, the expected change in potential is(d+ k + 12 )l0:This is (1 + k+12d ) times the cost incurred by OPT. 223



7.3 Page replicationIt turns out that in terms of competitiveness, page replication is more complex than pagemigration. Online replication algorithms achieving a constant competitive ratio are only knownfor speci�c network topologies, such as trees, uniform networks and rings. A uniform networkis a complete graph in which all edges have length 1. It was shown by Bartal et al. [16] thaton general graphs, no deterministic or randomized online replication algorithm can a achieve acompetitive ratio smaller than 
(log n), where n is the number of nodes in the network.On trees and uniform networks, the best deterministic online replication algorithm is 2-competi-tive, see Black and Sleator [21]. The best randomized algorithm achieves a competitive ratio ofee�1 � 1:58 against any oblivious adversary, see Albers and Koga [3]. Both upper bounds aretight. For rings, the best online replication algorithm currently known is 4-competitive [3].In the following we concentrate on trees. The general online replication strategy given belowwas used in [21, 3]. We assume that initially only the root of the tree has a copy of the page.Algorithm COUNTER (for trees): The algorithm �rst chooses an integer C from the range[1; d]. We will specify the exact value of C later. While processing the request sequence, thealgorithm maintains a counter for each node of the tree. Initially, all counters are set to 0. Ifthere is a request at a node v that does not have the page, then all counters along the path fromv to the closest node with the page are incremented by 1. When a counter reaches the value C,the page is replicated to the corresponding node.In the above algorithm we can assume without loss of generality that whenever the page isreplicated from node u to node v, then the page is also replicated to all other nodes on the pathfrom u to v. This does not incur a higher cost.Theorem 24 If C = d, then for any tree, the COUNTER algorithm is 2-competitive.Theorem 25 Suppose that C is chosen randomly, where C = i, 1 � i � d, with probabilitypi = � � �i�1. Here � = (d+ 1)=d and � = (� � 1)=(�d � 1). Then, for any tree, the COUNTERalgorithm is ( �d�d�1)-competitive against any oblivious adversary.Note that �d�d�1 goes to ee�1 � 1:58 as d tends to in�nity. We will only give a proof of Theorem 24.Proof of Theorem 24: Let r denote the root of the tree. We start with some observationsregarding the COUNTER algorithm.� At any time, the counters of the nodes on a path from r to any other node in the tree arenon-increasing.� After each request, the nodes with the page are exactly those whose counters are (at least)C.� If a node v has the page, then all nodes on the path from v to the root also have the page.Thus, the nodes with the page always form a connected component of the tree.
24



The above observations allow us to analyze the COUNTER algorithm as follows. We partitioncost into parts corresponding to the edges of the tree. An edge e incurs a cost (equal to thelength of e) for a request if the path from the requested node to the closest node with the pagepasses through e. Otherwise the cost is 0. An edge also incurs the cost of a replication across it.Consider an arbitrary edge e and let l(e) be the length of e. After e has incurred d times a costof l(e), a replication occurs across e in the COUNTER algorithm.Suppose that there are indeed d requests on which e incurs a cost. Then the total cost incurredby e in the COUNTER algorithm is 2 � d � l(e):There are at least d requests at nodes below e in the tree. Thus, with respect to OPT's cost, eincurs a cost of d � l(e), and we obtain a cost ratio of 2.Suppose that there are only k, k < d, requests on which e incurs a cost in the COUNTERalgorithm. The the total cost incurred by e isk � l(e):In OPT's cost, e causes a cost of at least k � l(e) because there are at least k requests at nodesbelow e. In this case we have a cost ratio of 1. 2Bartal et al. [16] and Awerbuch et al. [10] developed deterministic and randomized online al-gorithms for page replication on general graphs. The algorithms have an optimal competitiveratio of O(log n), where n is the number of nodes in the graph. We describe the randomizedalgorithm [16].Algorithm COINFLIP: If a requesting node v does not have the page, then with probability1=d the page is replicated to v from the closest node with the page.Theorem 26 The COINFLIP algorithm is O(log n)-competitive on an arbitrary graph.7.4 Page allocationIn the last two sections we studied page migration and replication problems separately. It is alsopossible to investigate a combined version of migration and replication. Here we are allowed tomaintain several copies of a page, even in the presence of write requests. However, if there isa write request, then all page replicas have to be updated at a cost. More precisely, the costmodel is as follows. Consider an arbitrary graph.� As usual, migrating or replicating a page from node u to node v incurs a cost of dist(u; v).� A page replica may be erased at 0 cost.� If there is a read request at v and v does not have the page, then the incurred cost isdist(u; v), where u is the closest node with the page.� The cost of a write request at node v is equal to the cost of communicating from v to allother nodes with a page replica. 25



This model was introduced and studied by Bartal et al. [16] and Awerbuch et al. [10] whopresented deterministic and randomized online algorithms achieving an optimal competitiveratio of O(log n), where n is the number of nodes in the graph. We describe the randomizedsolution [16].Algorithm COINFLIP: If there is a read request at node v and v does not have the page,then with probability 1d , replicate the page to v. If there is a write request at node v, then withprobability 1p3d , migrate the page to v and erase all other page replicas.Theorem 27 The COINFLIP algorithm is O(log n)-competitive on an arbitrary graph with nnodes.8 Scheduling and load balancing8.1 SchedulingThe general situation in online scheduling is as follows. We are given a set of m machines. Asequence of jobs � = J1; J2; : : : ; Jn arrives online. Each job Jk has a processing pk time that mayor may not be known in advance. As each job arrives, it has to be scheduled immediately on ofthe m machines. The goal is to optimize, i.e. usually to minimize, a given objective function.There are many problem variants. We can study various machine types and various objectivefunctions.We consider a classical setting. Suppose that we are given m identical machines. As each jobarrives, its processing time is known in advance. The goal is to minimize the makespan, i.e., thecompletion time of the last job that �nishes.Graham [31] analyzed the GREEDY algorithm.Algorithm GREEDY: Always assign a new job to the least loaded machine.Theorem 28 The GREEDY algorithm is (2� 1m )-competitive.Proof: Given an arbitrary job sequence �, let TG(�) denote makespan of the schedule producedby GREEDY and let TOPT (�) be the optimum makespan. Let t1 denote the length of the timeinterval (starting from time 0) during which all machines are busy in the online schedule. Lett2 = TG(�) � t1. By the de�nition of the GREEDY algorithm, the job that �nishes last in theGREEDY schedule starts at some time t � t1, i.e., its processing time is at least t2. Thus,t2 � max1�k�n pk. It is not hard to see that t1 � 1mPnk=1 pk.Clearly, TOPT (�) � maxf 1mPnk=1 pk;max1�k�n pkg. Thus,TG(�) = t1 + t2 � 2maxf 1m nXk=1 pk; max1�k�n pkg � 2 � TOPT (�)and this shows that GREEDY is 2-competitive. A more re�ned analysis of t1 and t2 gives thatcompetitive ratio is 2� 1m . Details are omitted here. 226



Graham already analyzed GREEDY in 1966. It was unknown for a long time whether GREEDYachieves the best possible competitive ratio. Recently, a number of improved algorithms werepresented. Bartal et al. [15] gave an algorithm that is 1:986-competitive. The best algorithmcurrently known is due to Karger et al. [38] and achieves a competitive ratio of 1.945. Wedescribe their algorithm and �rst explain the intuition behind the improvement. The GREEDYalgorithm always tries to maintain a at schedule, i.e., all machine should be equally loaded.Problems arise if the schedule is completely at and a large job comes in. On the other hand,the improved algorithms try to maintain some heavily loaded and some lightly loaded machines.Now, when a large job arrives, it can be assigned to a lightly loaded machine so that themakespan does not increase too much.Algorithm IMBALANCE. Set � = 1:945. A new incoming job Jk is scheduled as follows.Let hi be the height of the i-th smallest machine, 1 � i � m, and let Ai be the average heightof the i� 1 smallest machines. Set A0 =1. Schedule job Jk on the tallest machine j such thathj + pk � �Aj .Next we discuss some extensions of the scheduling problem studied above.Identical machines, restricted assignment We have a set ofm identical machines, but noweach job can only be assigned to one of a subset of admissible machines. Azar et al. [9] showedthat the GREEDY algorithm, which always assigns a new job to the least loaded machine amongthe admissible machines, is O(logm)-competitive.Related machines Each machine i has a speed si, 1 � i � m. The processing time of jobJk on machine i is equal to pk=si. Aspnes et al. [6] showed that the GREEDY algorithm, thatalways assigns a new job to a machine so that the load after the assignment in minimized, isO(logm)-competitive. They also presented an algorithm that is 8-competitive.Unrelated machines The processing time of job Jk on machine i is pk;i, 1 � k � n,1 � i � m. Aspnes et al. [6] showed that GREEDY is only m-competitive. However, they alsogave an algorithm that is O(logm)-competitive.8.2 Load balancingIn online load balancing we have again a set of m machines and a sequence of jobs � =J1; J2; : : : ; Jn that arrives online. However, each job Jk has a weight w(k) and an unknownduration. For any time t, let li(t) denote the load of machine i, 1 � i � m, at time t, which isthe sum of the weights of the jobs present on machine i at time t. The goal is to minimize themaximum load that occurs during the processing of �.We concentrate on settings with m identical machines. Azar and Epstein showed that theGREEDY algorithm is (2 � 1m)-competitive. In the following we will study the situation withidentical machines and restricted assignment, i.e., each job can only be assigned to a subset ofadmissible machines. Azar et al. [7] proved that GREEDY is �(m2=3)-competitive. They alsoproved that no online algorithm can be better than 
(pm)-competitive. Azar et al. [8] gave amatching upper bound. The algorithm is called ROBIN HOOD.Algorithm ROBIN HOOD: Let OPT be the optimum load achieved by the o�ine algorithm.ROBIN HOOD maintains an estimate L for OPT satisfying L � OPT . At any time t, machine27



i is called rich if li(t) � pmL; otherwise machine i is called poor. When a new job Jk arrives,the estimate L is updated, i.e.,L := maxfL;w(k); 1m(w(k) + mXi=1 li(t))g:If possible, Jk is assigned to a poor machine. Otherwise it is assigned to the rich machine thatbecame rich most recently.Azar et al. [8] analyzed the performance of ROBIN HOOD.Theorem 29 ROBIN HOOD is O(pm)-competitive.Lemma 5 At most dpme machine can be rich at any time.Proof: If more than dpme machines were rich, then the aggregate load on the machines wouldbe greater than dpmepmL � mL. However, by the de�nition of L, L � 1m(w(k) +Pmi=1 li(t)),i.e., mL is a lower bound on the aggregate load. 2Lemma 6 At all times L � OPT .Proof: The proof is by induction on the number of assigned jobs. We only have to consider thetimes when L changes. The lemma follows because w(k) � OPT and 1m (w(k) +Pmi=1 li(t)) �OPT . 2Proof of Theorem 29: Consider a �xed time t. We show that for any machine i, li(t) �dpme(L+OPT ). If machine i is poor, then the inequality is obvious. So suppose that machinei is rich and let t0 be the most recent time when machine i became rich. Let M(t0) be the setof machines that are rich at time t and the last instance at which they became rich is no laterthen t0. Note that i 2M(t0).Let S be the set of jobs that were assigned to machine i after t0. All these jobs could only bescheduled on machines in M(t0). Let j = jM(t0)j. We have OPT � 1j PJk2S w(k).First suppose that j � dpme � 1. Let Jq be the job assigned to machine i that caused machinei to become rich. Thenli(t) � dpmeL+w(q) + XJk2Sw(k) � dpme(L+OPT ):The last inequality follows because w(q) � OPT .Now suppose that j = dpme. Then li(t0) = pmL since otherwise the aggregate load in thesystem would exceed mL. Thus,li(t) � pmL+ XJk2Sw(k) � dpme(L+OPT ): 2
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9 Robot navigation and explorationSuppose that a robot is placed in an unknown environment. In navigation problems the robothas to �nd a path from a source point s to a target t. In exploration problems the robot has toconstruct a complete map of the environment. In each case, the goal is to minimize the distancetraveled by the robot.In the following we concentrate on robot navigation and study a simple problem introduced byBaeza-Yates et al. [11]. Assume that the robot is placed on a line. It starts at some point s andhas to �nd a point t on the line that is a distance of n away. The robot is tactile, i.e., it hasno vision and only knows that is has reached the target when it is actually located on t. Wecall a robot strategy c-competitive if the length of the path of the robot is at most c times thedistance between s and t.Since the robot does not know whether t is located to the left or to the right of s, it shouldnot move into one direction for a very long time. Rather, after the robot has traveled a certaindistance into one direction, it should return to the start point s and move into the other direction.For i = 1; 2; : : :, let f(i) be the distance walked by the robot before the i-th turn since its lastvisit to s. Baeza-Yates et al. [11] proposed a \doubling" strategy, i.e., they considered f(i) = 2i.It is easy to verify that the total distance traveled by the robot is bounded by2 blog nc+1Xi=1 2i + n � 9n:Baeza-Yates et al. also proved that this robot strategy is optimal.A more complex navigation problem can be described as follows. A robot is placed in a 2-dimensional scene with obstacles. It starts at some point s and has to �nd a short path to atarget t. When traveling through the scenes of obstacles, the robot always knows its currentposition and the position of t. However, the robot does not know the positions and extends of theobstacles in advance. Rather, it learns about the obstacles as it walks through the scene. Againwe have tactile robot that learns about an obstacle by touching it. We call a robot strategyc-competitive, if for all scenes of obstacles, the length of the path traveled by the robot is atmost c times the shortest path from s to t.Most previous work on this problem has concentrated on the case that the obstacles are axis-parallel rectangles. Papadimitriou and Yannakakis [44] gave a lower bound.Theorem 30 No deterministic online navigation algorithm in a general scene with n rectangu-lar, axis parallel obstacles can have a competitive ratio smaller than 
(pn).Proof: We consider a relaxed problem. A robot has to reach an arbitrary point on a vertical,in�nitely long wall. The wall is a distance of n away. We place long thin obstacles of width 1and length 2n at integer coordinates. Whenever the robot circumvents an obstacle and makesa progress of 1 into x-direction, we place a new obstacle in front of him. After having placed nobstacles, we stop this process. The robot has traveled a distance of at least n � n2 .Since n obstacles were placed, the must be a y-coordinate of at most n3=2 that has at most pnobstacles. Thus, the optimal path to the wall has a length of O(n3=2). 229
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