Scheduling with Unexpected Machine Breakdowns

Susanne Albers* Giinter Schmidt!

Abstract

We investigate an online version of a basic scheduling problem where a set of jobs has
to be scheduled on a number of identical machines so as to minimize the makespan. The
job processing times are known in advance and preemption of jobs is allowed. Machines
are non-continuously available, i.e., they can break down and recover at arbitrary time
instances not known in advance. New machines may be added as well. Thus machine
availabilities change online.

We first show that no online algorithm can construct optimal schedules. We also
show that no online algorithm can achieve a bounded competitive ratio if there may be

time intervals where no machine is available. Then we present an online algorithm that
COPT

max if a lookahead of one is given,

constructs schedules with an optimal makespan of
i.e., the algorithm always knows the next point in time when the set of available machines
changes. Finally we give an online algorithm without lookahead that constructs schedules
with a nearly optimal makespan of COET + ¢, for any e > 0, if at any time at least one
machine is available. Our results demonstrate that not knowing machine availabilities in
advance is of little harm.

1 Introduction

In scheduling theory the basic model assumes that a fixed set of machines is continuously
available for processing throughout the planning horizon. This assumption might be justified
in some cases but it does not apply if certain maintenance requirements, breakdowns or other
constraints that cause the machines not to be available for processing have to be considered.

Machine availability constraints appear very often. Clearly, machines may be faulty and
break down. Moreover, availability constraints arise on the operational level of production
scheduling. Here some jobs are fixed in terms of starting and finishing times and resource
assignment. When new jobs become available for processing, there are already jobs assigned
to time intervals and corresponding machines while the new ones have to be processed using
the remaining free processing intervals. A similar problem occurs in operating systems for
single- and multi-processors when subprograms with higher priority have to be scheduled
before subprograms with lower priority.

*Max-Planck-Institut fiir Informatik, Im Stadtwald, 66123 Saarbriicken, Germany. E-mail:
albers@mpi-sb.mpg.de. Part of this work was done while visiting the Freie Universitdt Berlin.

tInformation and Technology Management, University of Saarland, 66041 Saarbriicken, Germany. Email:
gs@itm.uni-sb.de. Part of this work was done while visiting the ICSI Berkeley. This research was partially
supported by INTAS (Project INTAS-96-0812).

Thus, limited machine availability is common in practice. Knowledge about machine avail-
abilities might be complete or incomplete. In an online setting machine availabilities are not
known in advance. Machine breakdowns are a typical example of events that arise online.
Sometimes a scheduler has partial knowledge of the availabilities, i.e, he has some lookahead.
He might know of the next time interval where a machine requires maintenance or he might
know when a broken machine will be available again. In an offline setting all machine avail-
abilities are known prior to schedule generation.

In this paper we study a very basic scheduling problem with respect to limited machine
availability: A set of jobs has to be scheduled on a set of identical machines so as to minimize
the makespan. More specifically, let 7 = {J;|i = 1,...,n} be a set of independent jobs to be
scheduled. Job J; has a processing time of p; time units known in advance, 1 < i < n. The
jobs have to be scheduled on a set of machines that operate with the same speed. At any time
preemption of jobs is allowed at no penalty. Also, the minimum time slice for preemption
may be arbitrarily small. The current state of a preempted job is saved for the machine
system. If a job is preempted, then it may be resumed later on a any machine. Each machine
may work only on one job at a time, and each job may be processed by only one machine
at a time. We wish to minimize the makespan, i.e., the completion time of the last job that
finishes. Machines may have different time intervals of availability. We emphasize here that
we are interested in the online version of the problem where the machine availabilities are
not known in advance. We also call an interval where a machine is not available a machine
break down. Machines may break down or recover at arbitrary time instances. New machines
may be added as well. If a machine breaks down, then the job currently being processed is
simply preempted. We also consider the online problem with lookahead one, i.e., a scheduler
always knows the next point in time where the set of available machines changes. However,
he does not have to know which machines break down or become available. In the previous
literature [4, 6], this setting is also referred to as nearly online.

Given a scheduling algorithm A and a problem instance, let CA

max
OPT
Cmax

denote the makespan of
the schedule produced by A. In particular, denotes the makespan of an optimal offline

algorithm that knows the machine availabilities in advance. Following [9] we call an online

COPT

scheduling algorithm A c-competitive if, for all problem instances, C4, < c¢-C9OLT.

Related work: Schmidt [7] was the first who studied scheduling problems with limited ma-
chine availability. He concentrated on the offline version of the above problem when all the
machine breakdown times are known in advance. Note that if the down times are identical
for all the machines, then an optimal schedule can be constructed using McNaughton’s al-
gorithm [3]. The algorithm runs in O(n) time and uses no more than S — 1 preemptions,
where S is the total number of intervals where machines are available. Schmidt [7] studied the
problem with arbitrary machine availabilities and gave an algorithm that always constructs
an optimal schedule. His algorithm has a running time of O(n + mlogm) and uses at most
S — 1 preemptions if the intervals of availability are rearranged such that they form a staircase
pattern. Again, S is the total number of intervals where machines are available. In [8] the
problem is generalized taking into account different job release times or deadlines.

There are results for nearly online problems, i.e., the next point in time when a machine breaks
down or recovers is known. In [4], Sanlaville presents an algorithm for the problem variant
that jobs have release and due dates and the goal is to minimize maximum lateness. At any
point in time, the algorithm also has to know the next release date. The algorithm constructs
optimal schedules for zigzag machine availability patterns (only m or m — 1 machines are
available at any point in time) but not for arbitrary patterns. The running time of the
algorithm is O(n2pmax + T"P), where pmay is the longest processing time of the jobs and T%?
is the total time needed to update the set of available machines. Sanlaville [4] also reports
that his algorithm constructs optimal schedules for arbitrary availability patterns if there are
no release dates and the objective to minimize the makespan. However, neither the paper
nor a private communication [5] contains any additional information regarding the optimality
proof.

As for the online setting, scheduling with unexpected machine breakdowns was studied by
Kalyanasundaram and Pruhs [1, 2]. In [1] online algorithms with optimal competitive ratios
are given for various numbers of faulty machines. The authors assume that if a machine
breaks down, the job currently being processed has to be restarted later from the beginning.
Also two specific types of breakdowns are considered. In a permanent breakdown a machine
does not recover again; in a transient breakdown the machine is available again right after the
breakdown. This is different from the problem setting we consider. In [2] Kalyanasundaram
examine to which extent redundancy can help in online scheduling with faulty machines.

Our contribution: In this paper we study the scheduling problem defined above. As men-
tioned before we are mainly interested in the online version of the problem. In Section 2 we
prove that no online algorithm can construct optimal schedules if machines can break down
and recover at arbitrary time instances. We also show that no online algorithm can achieve
a bounded competitive ratio if there may be time intervals where no machine is available. In
Section 3 we present an online algorithm that constructs schedules with an optimal makespan
of CQET if a lookahead of one is given, i.e., the algorithm always knows the next point in
time when the set of available machines changes. However, the algorithm does not need to
know which machines break down or become available. Our algorithm has a running time of
O(an 4 T"P), where a is the number of time instances where the set of available machines
changes and T"P is again the time to update the set of available machines. Note that our
algorithm has a better running time than Sanlaville’s if @ < npmax, which will be true in
practical applications. If a > nppax, then the set of available machines changes after each

time unit. Finally, in Section 4 we give an online algorithm without lookahead that constructs
COPT

max 1€ for any € > 0, if at any time at least

schedules with a nearly optimal makespan of
one machine is available. This implies that not knowing machine availabilities does not really

hurt the performance of an algorithm.

2 The performance of online algorithms

First note that if at any time at most one machine is available, an optimal online schedule
is trivial to construct. In the following we concentrate on problems with an arbitrary set of
machines.

Theorem 1 No online algorithm can, in general, construct optimal schedules. If there may
be time intervals where no machines are available, then no online algorithm can achieve a
bounded competitive ratio.

Proof: Let A be any online algorithm. Initially, at time ¢ = 0 only one of m machines is
available. We consider n jobs Ji,..., J,, each of which has a processing time of 1 time unit.
We asume n = m. At time ¢t = 0, algorithm A starts processing one job J;,. Let ¢’ be the
first time instance such that A first preempts J;, or A finishes processing J;,. At that time
t' all machines become available. A’s makespan is at least ' + 1 because none of the jobs .J;,
i # ig, has been processed so far. An optimal algorithm will divide the interval from 0 to #'
evenly among the n jobs so that its makespan is C9PT = ¢/ +-1 — (#'/n). This proves the first
part of the theorem. For the proof of the second part we modify the problem instance so that
no machine is available during the interval (CQLT ¢ COFT] for any ¢ > 1. The algorithm A

cannot finish before ¢ - COET because it has jobs left at time COET. O

3 Optimal schedules

In this section we give an algorithm that constructs optimal schedules with a makespan of

COPT

max - The algorithm is online with a lookahead of one, i.e., the algorithm always knows the

next point in time when the set of available machines changes. The algorithm does not need
to know, however, which machines break down or become available.

Let Ji,...,J, be the given jobs and let p;, 1 < i < n, denote the processing time of J;. We
assume that p; is known in advance. Without loss of generality jobs are numbered such that
p1 > p2 > ... > pp. At any time during the scheduling process, r; denotes the remaining
processing time of J;, 1 < ¢ < n. We will show later that the algorithm always maintains the
mvariant ry >rg9 > ... > 1.

Starting at time ¢ = 0, the algorithm repeatedly schedules time intervals I = [¢,¢') in which
the set of available machines remains the same. The availability changed at ¢t and will next
change at time t. In each interval, the algorithm schedules as much load as possible while
minimizing the length of the largest remaining processing time.

More specifically, suppose that the algorithm has already scheduled the interval [0,¢) and
that the set of available machines changes at t. At time ¢, using lookahead information, the
algorithm determines the next point in time ¢ > ¢ at which the machine availability changes.
Let 6 = t' —t and m? be the number of available machines in I = [¢,¢'). Intuitively, the
algorithm now tries to determine the largest possible €, 71 > € > 0, such that, for all jobs Jj,

1 < k < n, the remaining processing time in excess to r; — € can be scheduled in /. Thus,
at the end of I, all jobs would have a remaining processing time of at most r; — €. Figure 1
shows an example. Pictorially, the algorithm determines a vertical line such that the total
shaded processing time to the right of this line is equal to total processing capacity available
in I. Note that the total processing time in excess to r; — € is

Z max{0,r; — (r1 —€)}

k=1

and that the total processing capacity available in I is m§. Thus the algorithm computes
an € such that > 7_; max{0,r; — (r; —€)} = m®4.

1

T2

T3

Tn

Figure 1: The choice of €

However, the algorithm has to satisfy the constraint that at most § time units of each job
can be scheduled in I. Thus, if > }_; max{0,r; — (r1 — €)} = m®§ for some € > §, then the
algorithm cannot schedule € time units of J; in I. Only ¢ time units are permissible.

For this reason, the algorithm first determines a set of jobs that are scheduled for § time
units in I, see lines 6-8 of the code in Figure 4. Suppose that the algorithm has already
scheduled ¢ time units of Ji,...,J;—1 in the interval I. Let m{’ be the current number of
available machines after these first ¢ — 1 jobs Ji,...,J;—1 have been scheduled. Note that
mi¥ = m®» — (i — 1). The total remaining processing capacity in I is equal to m$"§. The
algorithm also schedules § time units of J; in I if the total remaining processing time in excess
to r; — ¢ is not sufficient to fill the processing capacity still available and r; > §. (Formally,
if Y5, max{0,r — (r; —0)} <m0 and r; > 4.)

Suppose that the while-loop in lines 6—8 terminates and i > n. Then, the algorithm can
schedule no more jobs in I. If ¢ < n, then there are two cases to consider.

(a) Yg—imax{0,rg — (ri — 0)} = m{"é
In this case, the algorithm determines the ¢, 0 < € < §, such that for all jobs J,

|
~=ggt

ri—1

Til r;

Tn | T
Figure 2: An example of case a) Figure 3: An example of case b)

i < k < n, the total remaining processing time in excess to r; —e is exactly equal to m;"4,
see Figure 2. Each of these jobs is scheduled in I to an extent of max{0,r; — (r; —¢€)}.

(b) ZZ:z ma'X{O) Ty — (ri - 5)} < m;-wé and r; <)
In this case, the algorithm can schedule the rest of J;,...,J,, if it exists, in I, see
Figure 3.

In each case, the scheduling of the jobs is done using McNaughton’s algorithm.

Algorithm Lookahead (LA)

1. t:=0;

2. ri:=p;, for 1 <i<my

3. while there exist jobs with positive remaining processing time do

4. t' := next point in time when set of available machines changes;

5. d:=t' —t; i:=1; m$¥ := number of machines available in [t, + §);

6. while i <n and > }_; max{0,ry — (r; —)} < m$§ and r; > § do

7. Schedule § time units of J; in [¢,t + §);

8. ri =1 —0; mi{yi=mi’ —1; i:=i+1;

9. if ; < n then

10. Compute the maximum e, ¢ < min{4, r; }, such that
Yr—imax{0,7; — (r; —€)} < m4;

11. For k = i,...,n, schedule max{0,r; — (r; — €)} time units of J; in

[t,t + 0) using McNaughton’s algorithm and set ry = min{ry,r; — €};
12. t:=t;

Figure 4: The online algorithm with a lookahead of one

We analyze the running time of the algorithm and first argue that within an iteration of
the outer while-loop, all executions of lines 6-8 take O(n) time. The critical part are the
computations of the sums S; = Y p_, max{0,r;, — (r; — d)}. Set Sp = 0. We show that S;11

can be easily derived from S;. When computing S; we determine the largest job index [; such
that v, — (r; —6) > 0. We will show below that r; > ry > ... > ry, see Lemma 1. Given [;, we
can easily find /;11 by going through the jobs starting with Jj, ;1 and find the largest index /; 1
such that Tligy — (T’i+1 —5) > 0. Then S;11 = S;—d+ (lz —i)(ri —T’i+1)+2§;i;i+1 (Tk - (T’i+1 —5))
Thus all sums can be computed in O(n) time. Similarly, in line 10, we can compute the desired
€ in O(n) time. Hence, the scheduling process in each interval I = [t,t') can be done in O(n)
time. Thus the total running time of our algorithm is O(an + T"P), where a is the number of
times instances where the set of available machines changes and T"P is the time to update the

set of available machines. If we represent the set of active machines as a balanced tree, then

av
max

av

each machine availability change can be implemented in O(logm&’,) time, where m&, is
the maximum number of machines ever available. Let B denote the total number of machine

breakdowns. Then T"P = O(Blogm2..).

max
In the analysis of the algorithm we consider the sequence of intervals in which LA sched-
ules jobs. Within each interval, the set of available machines remains the same. Machine
availability only changes at the beginning of an interval.

We first show that the algorithm works correctly. When the algorithm terminates, all jobs
have a remaining processing time of zero, i.e. the scheduling process is complete. The condition
in line 6 of the algorithm ensures that at most § = #' — ¢ time units of each job are scheduled
in an interval. The assignment m{?; := m{" —1 in line 8 and the constraint Y ;_; max{0,r; —
(ri —€)} < mf¥4 in line 10 ensure that the total amount of processing time scheduled in an

interval is not greater than the available processing capacity.

Next we prove two useful lemmas.

Lemma 1 At the beginning of each interval, r1 > 1o > ... > rp.

Proof: The invariant holds at time ¢ = 0 because initially r;, = pg, for 1 < k < n, and
p1 > P2 > ... > pp. Suppose that vy > 79 > ... > 1, holds at the beginning of some interval
I. We show that the invariant is also satisfied at the end of I. Let ri,...,r] denote the

remaining processing times at the end of I.

Suppose that while executing the while-loop in lines 6-8, the algorithm schedules § time units
of Ji,...,J;_1. The remaining processing time of each of these jobs decreases by § and thus
ri >...>r,_;. If i > n, we are done. Otherwise we have to consider two cases.

(a) S max{0,rg — (i — 8)} > me®s
If i > 1, then in the last iteration of the while-loop, the condition in line 6 was satisfied,
ie Y p_;_qmax{0,r;—(ri1—9)} < m$,d, which implies > 7_, max{0,ry—(r;_1—0)} <
mg¥é. In line 10, the algorithm chooses an € such that > p_, max{0,r; — (r; —€)} = mé.
Thus, if i > 1,7} ; =r;1 — & > r; —e =rj. For any ¢ > 1, the invariant now follows
because r; = ... = r}, where [is the largest job index such that r; — (r; —€) > 0, and
r, =ry for k> 1.

(b) Y, max{0,r; — (r; — 6)} < m@§ and r; < 6
In this case, the rest of J;, ..., J,, is scheduled in I, i.e. v, = ... = 7}, = 0 and the invariant
holds. O

Now consider any other algorithm A for scheduling Ji,...,J,. In particular, A may be an
optimal algorithm that knows the machine breakdowns in advance. At any time consider the
sorted sequence ¢; > q2 > ... > ¢ of remaining processing times maintained by A. That
is, g; is the i-th value in the sorted sequence, 1 < i < n. Note that g; is not necessarily the
remaining processing time of J;.

Lemma 2 At the beginning of each interval, r1 < q1 and Y ;7 < >.1_1 k-

Proof: We show inductively that at the beginning of each interval

J J
Zrkgz% for j=1,...,n. (1)
k=1 k=1

The lemma follows from the special case j = 1 and j = n. The above inequalities hold at time
t = 0. Suppose that they hold at the beginning of some interval I. We show that they are also
satisfied at the end of I, i.e. at the beginning of the interval following I. Let r{,...,r], and
qi,--.,q, be the remaining processing times at the end of I. Recall that r} is the remaining
processing time of Jg, 1 < k <n. By Lemma 1, { > ... >r/. We have ¢; > ... > ¢}, by the
definition of the g-values. Note that g, and g}, can be the processing times of different jobs.
However, q;, < ¢i for 1 <k < n.

Suppose that in lines 6-8, algorithm LA schedules ¢ time units of Ji,...,J;—1. Then r}, =
r, — 98, for k=1,...,i—1. We have ¢j, > ¢ — 9, for 1 < k < n, because the processing times
of jobs decrease by at most ¢ in I. Thus, inequality (1) holds for j = 1,...,i — 1. Again, for
1 < n, we consider two cases.

(a) Y p—;max{0,ry — (r; —d0)} < m%’§ and r; < 4
The algorithm LA schedules the rest of J;,...,J, in I so that r;, = ... = r, = 0.
Inequality (1) also holds for j =1i,...,n.

(b) Y h_;max{0,7; — (r; —)} > m%$§

LA computes an €, 0 < € < §, such that > 7, max{0,r; — (r; —€)} = m@§. It reduces

the remaining processing times of J;, ..., J; to r; — €, where [is the largest job index such

that r; — (r; —e) > 0.

Let m{" be the number of machines that were initially available in I. Since LA uses all

of the available processing capacity, Zi:l T, = Zi:l re —m§¥S for j = 1,...,n. Since
i:l q. > Zi:l qr — m$’S for j = I,...,n, inequality (1) holds for j = [,...,n. It

remains to show that the inequality is also satisfied for j =1¢,...,l — 1.

Let Ry = 2;11 i, Ry = Y4 _;rt and similarly Q; = 22;11 ¢y Q2 = Yk_;q,.. We have

already shown (i) Ry < Q1 and (ii) Ry + Ry < @1 + Q2. Suppose that Q; = Ry + =

for some # > 0. Then (i) implies @2 + > Ry. Consider the [— i+ 1 values ¢j,...,q;.

Since ¢ > ... > gqj, the sum of the first x values, for any 1 < p <1 —i+1, is at least

pQ2/(l — i+ 1). Thus, for any j with i < j <1,

Q2
l—i+1

Q2

J
g > Qu+(j—i+1)
k=1

. Q2+ . Ry
> — 1 - 1
> Ri+(J Z+)l—i+1 > R+ (J Z+)l—z’+1
J
~ Y
k=1
The last equation follows because r; —e =r; =r{, ; =...=r=Ry/(I —i+1). O

Theorem 2 For any problem instance, CLA = COFT,

Proof: Given a set of jobs Ji,...,Jp, let I = [t,#') be the last interval in which LA has
scheduled jobs, ie., t < CEA < ¢. Consider the makespan CYET produced by an optimal

max max
offline algorithm. We distinguish two cases.

(1) In the online schedule, the interval from ¢ to CL4 contains no idle machines

Thus, in the online schedule all machines finish at the same time. Lemma 2 implies that
at the beginning of I, the total remaining processing time > j_; r of LA is not greater
than the total remaining processing time >.7_; g of OPT. Thus, COET > CcL4

max max*
(2) In the online schedule, the interval from ¢ to CL4 contains idle machines
Since LA schedules job portions using McNaughton’s algorithm, there must exist a job

that spans the entire interval from t to Ck4 . Thus, at the beginning of I the largest

max*
LA
Cmax

cessing time ¢; of OPT is not smaller. Thus OPT cannot finish earlier than LA. O

remaining processing time r; equals —t. By Lemma 2, the largest remaining pro-

4 Nearly optimal schedules

In this section we study the problem that an online algorithm has no information about the
future machine availabilities. It does not know the next point in time when the set of available
machines changes. We present an algorithm that always produces a makespan of qug(T + €,
for any € > 0. It is assumed that at any time at least one machine is available since otherwise,

by Theorem 1, no bounded performance guarantee can be achieved.

We number the jobs to be scheduled such that p; > ps > ... > p,. Given a fixed ¢ >
0, our online algorithm, called ON(e), computes § = €/n?. Starting at time t = 0, the
algorithm always schedules jobs within the time interval [t,¢ + §). Let m® be the number
of machines available at time ¢. The algorithm determines the m® jobs with the largest
remaining processing times (ties are broken arbitrarily) and schedules them on the available
machines. If a machine breaks down or becomes available at some time t + §', ' < §, then
the algorithm preempts the jobs currently being processed and computes a new schedule for
the next ¢ time units from ¢ + ¢’ to t + &' + §. Otherwise, if the set of available machines
remains the same throughout [¢,t+§), the algorithm computes a new partial schedule at time
t + 4. Let a be the number of time instances where the set of available machines changes.
The total number of intervals scheduled by the algorithm is at least a. A formal description

Algorithm Online(e) (ON(e))

1.t:=0; 6 = ¢/n?

2.7 :=p;, for 1 <i < n;

3. while there exist jobs with positive remaining processing time do

av

m® := number of machines available at time ¢;

av

n? := number of jobs with positive remaining processing time;

S := set of the min{m? n®} jobs with the largest remaining processing time;

if machines break down or become available at some time t + ¢’, 6’ < § then
) Set r; := max{0,r; —§'} for i € S; t :=t + §';

10. else
11. Set r; := max{0,r; — 6} fori € S; t :=t + J;

5
6
7. Process the jobs J;, ¢ € S, on the available machines;
8
9

Figure 5: The online algorithm ON{(e)

of the algorithm is given in Figure 5. At any time r; denotes the remaining processing time
of J;, 1 <i<n.

In the scheduling process, the algorithm repeatedly has to find jobs with the largest remaining
processing time. If we keep a priority queue of the remaining processing times, each such
job can be found in O(logn) time. Let m{¥, 1 < i < a, be the number of machines that
are available right after the i-th change; m{" is the number of machines that are available
initially. Let P = Y ', p;. Note that the total number of job portions scheduled by the
algorithm is no more than P/d + Y7o m$¥. This is because at the end of a scheduled job
portion, § time units have been processed or the set of available machines changes. Thus the
total running time of the algorithm is O((Pn?/e + 2%, m%)logn + T¥P), where T"P is the
time needed to update the set of available machines. As in the analysis of the algorithm LA

we can show that T%P = O(B log m%..), where B is the total number of machine breakdowns

and mgl,, = maxg<i<om;’. Jobs are only preempted at the end of an interval of length

§ = €/n? or when the set of available machines changes. Thus the number of preemptions is
no more than Pn?/e + 3% (md?.

For the analysis of the algorithm we partition the time into intervals such that at the beginning
of an interval the online algorithm computed a new partial schedule, i.e., it executed lines 4-7.
Note that intervals have a length of at most § and that within each interval the set of available
machines remains the same.

The algorithm ON(e) does not maintain the property that the remaining processing times
r1,72,. ..,y necessarily form a non-increasing sequence (cf. Lemma 1). However, the next
lemma shows that if a job J; has a larger remaining processing time than a job J; and i < j,
then the difference is bounded by 6.

Lemma 3 At the beginning of each interval, for any two jobs J; and J; withi < j, r; > r;—0.
Proof: The lemma holds at the beginning of the first interval because, initially, r1 > ... > ry,.

10

Suppose that the lemma holds at the beginning of an interval I = [t,t + '), for some §' < 4.
We show that the lemma is also satisfied at the end of I. Let d; and §; be the number of time
units for which J; and J; are processed in I. We have 0 < §;,d; < ¢'.

If §; > &;, then there is nothing to show. We study the case d; < §;. Let r and 7, k € {i,j},
denote the remaining processing times at the beginning and at the end of I. If §; = 0, i.e.
only J; is processed in I, then r; > r; and thus i =r; —6; > ri—d >r; —§ = r;- —¢. Finally,
the case 0 < d; < d; can only occur if the processing of J; finishes during I, i.e., r;- = 0. The
lemma holds because r; > 0. O

In the following analysis, we have to bound the remaining processing times maintained by
ON(e) in terms of the remaining processing times maintained by an optimal offline algorithm.
In the previous section, when analyzing the algorithm LA, we could show that the prefix sum
Ei:l ri, are bounded by the prefix sum Ei:l g, for j =1,...,n, see (1). Unfortunately, this
relation does not hold in the algorithm ON(e). Problems arise if in some interval there exist
jobs J; and J; with ¢ < j such that J; is not scheduled but J; is scheduled in the interval.

For this reason we maintain a sequence of job sets Si,..., S, for some 1 <[< n, which is a
partition of the job sequence Jy,..., J,. Intuitively, a set Si, 1 < k <, consists of jobs that
have “nearly the same” remaining processing time. This will be made precise in Lemma 5. If
there are jobs J; and J; with ¢ < j such that J; is not scheduled but J; is scheduled in some
interval, then we merge the sets containing J;, ..., Jj. This way we will be able to bound the
prefix sums defined by the set Si,....S;, see Lemma 4 below.

Formally, the sets are maintained as follows. Initially, at time 0, S; contains J;, 1 < i < n.
At the end of each interval I, the sets are updated as follows.

Let ¢ be the smallest job index such that J; was not processed in I and let j be
the largest job index such that J; was processed in I. Suppose that J; € S, and
Jj € Sk;. If ki < kj, then replace Sk, Sk;+1,...,Sk,; by the union of these sets.
Renumber the new sequence of sets so that the k-th set in the sequence has index
k.

Figure 6 shows an example of the update algorithm for sets. Suppose that in some interval
three machines available and jobs Ji, J3 and Jy are scheduled for § time units (the shaded
job portions). Job J3 is the first job not scheduled and Js5 is the last job scheduled in that
interval. Thus sets S; and Ss are merged.

Note that, as mentioned above, at any time the sequence of sets forms a partitioning of the
jobs Ji,...,J,. The update rule ensures that every set contains a sequence of consecutive
jobs with respect to the job numbering. In the following, let n; denote the number of jobs in
Sk, and let N, =nq + ...+ ng.

At any time let /ax denote the maximum index such that Si,...,S; . contain only jobs
with positive remaining processing times. If there is no such set, then let Iy, = 0. Let A
be any other scheduling algorithm. In particular, A may be an optimal offline algorithm.
At any time consider the sequence of remaining processing times maintained by A, sorted in
non-increasing order. Let g; be the i-th value in this sorted sequence.

11

g []

St
1 T2
" []
i 0 R

Ts

Ts

S3

r7

Figure 6: An example of the update rule for sets
Lemma 4 At the beginning of each interval, for k=1,...,lnax, Zf\g"l ri < Zf\g"l q;-

Proof: The lemma holds initially because at time t = 0, r; = ¢; = p; for 1 < ¢ < n. Suppose
that the lemma holds at the beginning of an interval I = [t,t 4 §), for some §' < §. Let
S1,...,S;and S7,...,S) be the sequences of job sets at the beginning and at the end of I.
Furthermore, let j be the largest index such that all jobs in S7,..., S;- were scheduled in [
and still have a positive remaining processing time. These sets were not involved in a merge
operation at the end of I and, hence, each S}, contains the same jobs as Sj, 1 < k < j. Since
the jobs of these sets have a positive remaining processing time, all of them were scheduled
for exactly ¢’ time units in I. Let 7, 7. and g¢;, ¢, denote the remaining processing times at
the beginning and at the end of I. Since ¢} > ¢; — ¢', for 1 <7 < n, we obtain

Ny, Ny, Ni, N,
YNori=>(ri=8) <> (6 —8) <D d,
=1 =1 i=1 i=1

fork=1,...,5. If j =1' .., then we are done.

max?
Suppose that j < lj,,. By the definition of I;,,,, the set S}, does not contain jobs with
zero remaining processing time. Also, by the definition of 7, S;- 41 contains jobs not scheduled
in I. The update rule for job sets ensures that S;‘-H contains all jobs J;, i > Nj, that were
scheduled in I. Let N be the number of jobs in S;- 41 scheduled in I. All of these jobs were
scheduled for ¢’ time units because they all have positive remaining processing time. The
total number of available machines in I is N;j + N since, otherwise, the algorithm ON(e)
would have scheduled more jobs of S;- 41 in I. Thus any other algorithm cannot process more

than (NV; + N)é time units in I. We conclude

Sort=3"ri—(N;+N)§ <Y q— (N; + N)§' <> d,
=1 =1 i=1 =1

12

fork=j+1,...,0ll .. O

While [, > 0, the above lemma ensures that an optimal offline algorithm has a total non-
zero remaining processing time. When [, = 0, we have to be able to bound the total
remaining processing time of ON(e). For this purpose we analyze the difference in remaining

times that can occur in a job set Sp.

Lemma 5 At the beginning of each interval, for every set Sy, 1 <k <1, and jobs J;, J; € Sk,
|r; —rj| < (n—1)0d.

The bound given in the above lemma is an overestimate, which is sufficient for the rest of the
analysis. However, there exist problem instances such that |r; — ;| > (n/2)d.

Proof: We prove inductively that at the beginning of each interval, for every set S and jobs
J;, Jj € Sk,
i —rj| < (ng —1)d. (2)

This holds initially because at time ¢ = 0, every set contains exactly one job. Consider an
interval I = [t,t + d'), for some ¢’ < §, and suppose (2) holds at the beginning of I.

We first show that (2) is maintained while jobs are processed in I and before the update rule
for the sets is applied. Given a set Si, let J;, J; € Si be any two jobs with i < j. Let 74,7}
and rj, r;- be the remaining processing times at the beginning and at the end of I. If r} < r;-,
then by Lemma 3, |r; — ri| =r; —r; < 0.

If r} > r;-, we have to consider several cases. If none of the two jobs was processed in I or
if both jobs were processed for §' time units, then there is nothing to show. Otherwise, let
0; and §; be the number of time units for which J; and J; are processed in I. If only J; is
processed in I, then r; > r; and thus [r — ri[= r; —r; = r; — (rj —d;) < d; < J. The
case that both J; and J; are scheduled in I, but J; is processed for a longer period, cannot
occur. This would imply that the processing of J; is complete, i.e. r; = 0, which contradicts
ri > r;-. Finally suppose that J; is processed as least as long as J; in I, i.e. 0 < §; < 6;. Then
[ri =75l = ri—0;i — (rj —d;) = ri —rj +8; —6; < ri —r; < (ng —1)d. Inequality (2) is satisfied.

We now study the effect when the set update rule is applied at the end of I. Suppose that

a sequence of sets Sg,,..., Sk, is merged. Let J; € Si, be a job not scheduled in I and let
J; € Si, be the job with the largest index scheduled in I. Let Jyax be the job in Sy, ..., Sk,
with the largest remaining processing time at time t+4’ and let Jyn be the job in Sk, ..., Sk,
with the smallest remaining processing time. We will show |r] ... — 7hin| < (ng, + ng, — 1)4.

This completes the proof because the newly merged set contains Z’,Z"’:kl ng > ng, + ng, jobs.
We have

!

|Pmax

- r;'nin| = r;nax - r;nin = (r;'nax - T;) + (7‘: - T;) + (7‘; - r;nin)'

If Jmax € Sk, then vl . — 7 < (ng, —1)8. If Jmax ¢ Sk,, then v, — ri < ¢ by Lemma 3

max max

because Jmax has a higher index than J;. In any case r) ., —r; < (ng, — 1)d. Similarly, if

Jmin € Sk,, then r;- =7l < (ngy, —1)8. If Jmin € Sk,, then r} —rl ., <8 by Lemma 3. In any

case r;- — Thin < (ng, —1)d. Since J; was not scheduled in I but J; was scheduled, r; > r;.

13

Job J; was scheduled for at most J time units, which implies r} = r; < r; < r;- + 6 and hence

r; —r; < 0. In summary we obtain

!

| rmax

— Thinl = (Phax = 78) + (i = 75) + (1) — Tain)

< (ng, —1)0+ 6+ (ng, —1)6

= (nkl + ng, — 1)5 O
Theorem 3 For any fixred ¢ > 0 and any problem instance, C’gg((e) < Cg;f + €.
Proof: Let I = [t,t + §'), §' < J, be the last interval such that [, > 0 at the beginning
of I. Consider the total remaining processing time of the jobs in Si,...,S;, ., at time ¢t. By
Lemma 4, the value of ON(e) is not larger than the value of an optimal offline algorithm.
Thus COET > t. We analyse ON(e)’s makespan. At time t+ 4, S; contains a job J; with zero
remaining processing time. By Lemma, 5, all jobs belonging to the first set have a remaining
processing time of at most (n —1)d. All jobs not belonging to the first set have a higher index
than J; and, by Lemma 3, they have a remaining processing time of at most 6. Thus at time
t + &', we are left with at most n — 1 jobs having a remaining processing time of at most
(n—1)4, i.e., the total remaining processing time of ON(e) is at most (n —1)26. Since at any
time at least one machine is available ng((e) <t+84+(n—1)2%6 < COPT 4 n25 < COPT 1 ¢ O

max max

Acknowledgment

We thank Oliver Braun for many interesting discussions. Moreover, we thank two anonymous
referees for their helpful comments improving the presentation of the paper.

References

[1] B. Kalyanasundaram and K.P. Pruhs. Fault-tolerant scheduling. In Proceedings of the
26th Annual ACM Symposium on the Theory of Computing, pages 115-124, 1994.

[2] B. Kalyanasundaram and K.P. Pruhs. Fault-tolerant real-time scheduling. In Proc. 5th
Annual European Symposium on Algorithms (ESA), Springer Lecture Notes in Computer
Science, 1997.

[3] R. McNaughton. Scheduling with deadlines and loss functions. Management Science,
6:1-12, 1959.

[4] E. Sanlaville. Nearly on line scheduling of preemptive independent tasks. Discrete Applied
Mathematics, 57:229-241, 1995.

[5] E. Sanlaville. Private communication, 1998.

[6] E. Sanlaville and G. Schmidt. Machine scheduling with availablity constraints. Acta In-
formatica, 35:795-811, 1998.

[7] G. Schmidt. Scheduling on semi-identical processors. Z. Oper. Res., 28:153-162, 1984.

14

[8] G. Schmidt. Scheduling independent tasks with deadlines on semi-identical processors.
J. Oper. Res. Soc., 39:271-277, 1988.

9] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28:202-208, 1985.

15

