
Scheduling with Unexpected Machine BreakdownsSusanne Albers� G�unter SchmidtyAbstractWe investigate an online version of a basic scheduling problem where a set of jobs hasto be scheduled on a number of identical machines so as to minimize the makespan. Thejob processing times are known in advance and preemption of jobs is allowed. Machinesare non-continuously available, i.e., they can break down and recover at arbitrary timeinstances not known in advance. New machines may be added as well. Thus machineavailabilities change online.We �rst show that no online algorithm can construct optimal schedules. We alsoshow that no online algorithm can achieve a bounded competitive ratio if there may betime intervals where no machine is available. Then we present an online algorithm thatconstructs schedules with an optimal makespan of COPTmax if a lookahead of one is given,i.e., the algorithm always knows the next point in time when the set of available machineschanges. Finally we give an online algorithm without lookahead that constructs scheduleswith a nearly optimal makespan of COPTmax + �, for any � > 0, if at any time at least onemachine is available. Our results demonstrate that not knowing machine availabilities inadvance is of little harm.1 IntroductionIn scheduling theory the basic model assumes that a �xed set of machines is continuouslyavailable for processing throughout the planning horizon. This assumption might be justi�edin some cases but it does not apply if certain maintenance requirements, breakdowns or otherconstraints that cause the machines not to be available for processing have to be considered.Machine availability constraints appear very often. Clearly, machines may be faulty andbreak down. Moreover, availability constraints arise on the operational level of productionscheduling. Here some jobs are �xed in terms of starting and �nishing times and resourceassignment. When new jobs become available for processing, there are already jobs assignedto time intervals and corresponding machines while the new ones have to be processed usingthe remaining free processing intervals. A similar problem occurs in operating systems forsingle- and multi-processors when subprograms with higher priority have to be scheduledbefore subprograms with lower priority.�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. E-mail:albers@mpi-sb.mpg.de. Part of this work was done while visiting the Freie Universit�at Berlin.yInformation and Technology Management, University of Saarland, 66041 Saarbr�ucken, Germany. Email:gs@itm.uni-sb.de. Part of this work was done while visiting the ICSI Berkeley. This research was partiallysupported by INTAS (Project INTAS-96-0812). 1



Thus, limited machine availability is common in practice. Knowledge about machine avail-abilities might be complete or incomplete. In an online setting machine availabilities are notknown in advance. Machine breakdowns are a typical example of events that arise online.Sometimes a scheduler has partial knowledge of the availabilities, i.e, he has some lookahead .He might know of the next time interval where a machine requires maintenance or he mightknow when a broken machine will be available again. In an o�ine setting all machine avail-abilities are known prior to schedule generation.In this paper we study a very basic scheduling problem with respect to limited machineavailability: A set of jobs has to be scheduled on a set of identical machines so as to minimizethe makespan. More speci�cally, let J = fJiji = 1; : : : ; ng be a set of independent jobs to bescheduled. Job Ji has a processing time of pi time units known in advance, 1 � i � n. Thejobs have to be scheduled on a set of machines that operate with the same speed. At any timepreemption of jobs is allowed at no penalty. Also, the minimum time slice for preemptionmay be arbitrarily small. The current state of a preempted job is saved for the machinesystem. If a job is preempted, then it may be resumed later on a any machine. Each machinemay work only on one job at a time, and each job may be processed by only one machineat a time. We wish to minimize the makespan, i.e., the completion time of the last job that�nishes. Machines may have di�erent time intervals of availability. We emphasize here thatwe are interested in the online version of the problem where the machine availabilities arenot known in advance. We also call an interval where a machine is not available a machinebreak down. Machines may break down or recover at arbitrary time instances. New machinesmay be added as well. If a machine breaks down, then the job currently being processed issimply preempted. We also consider the online problem with lookahead one, i.e., a scheduleralways knows the next point in time where the set of available machines changes. However,he does not have to know which machines break down or become available. In the previousliterature [4, 6], this setting is also referred to as nearly online.Given a scheduling algorithm A and a problem instance, let CAmax denote the makespan ofthe schedule produced by A. In particular, COPTmax denotes the makespan of an optimal o�inealgorithm that knows the machine availabilities in advance. Following [9] we call an onlinescheduling algorithm A c-competitive if, for all problem instances, CAmax � c � COPTmax .Related work: Schmidt [7] was the �rst who studied scheduling problems with limited ma-chine availability. He concentrated on the o�ine version of the above problem when all themachine breakdown times are known in advance. Note that if the down times are identicalfor all the machines, then an optimal schedule can be constructed using McNaughton's al-gorithm [3]. The algorithm runs in O(n) time and uses no more than S � 1 preemptions,where S is the total number of intervals where machines are available. Schmidt [7] studied theproblem with arbitrary machine availabilities and gave an algorithm that always constructsan optimal schedule. His algorithm has a running time of O(n +m logm) and uses at mostS�1 preemptions if the intervals of availability are rearranged such that they form a staircasepattern. Again, S is the total number of intervals where machines are available. In [8] theproblem is generalized taking into account di�erent job release times or deadlines.2



There are results for nearly online problems, i.e., the next point in time when a machine breaksdown or recovers is known. In [4], Sanlaville presents an algorithm for the problem variantthat jobs have release and due dates and the goal is to minimize maximum lateness. At anypoint in time, the algorithm also has to know the next release date. The algorithm constructsoptimal schedules for zigzag machine availability patterns (only m or m � 1 machines areavailable at any point in time) but not for arbitrary patterns. The running time of thealgorithm is O(n2pmax + T up), where pmax is the longest processing time of the jobs and T upis the total time needed to update the set of available machines. Sanlaville [4] also reportsthat his algorithm constructs optimal schedules for arbitrary availability patterns if there areno release dates and the objective to minimize the makespan. However, neither the papernor a private communication [5] contains any additional information regarding the optimalityproof.As for the online setting, scheduling with unexpected machine breakdowns was studied byKalyanasundaram and Pruhs [1, 2]. In [1] online algorithms with optimal competitive ratiosare given for various numbers of faulty machines. The authors assume that if a machinebreaks down, the job currently being processed has to be restarted later from the beginning.Also two speci�c types of breakdowns are considered. In a permanent breakdown a machinedoes not recover again; in a transient breakdown the machine is available again right after thebreakdown. This is di�erent from the problem setting we consider. In [2] Kalyanasundaramexamine to which extent redundancy can help in online scheduling with faulty machines.Our contribution: In this paper we study the scheduling problem de�ned above. As men-tioned before we are mainly interested in the online version of the problem. In Section 2 weprove that no online algorithm can construct optimal schedules if machines can break downand recover at arbitrary time instances. We also show that no online algorithm can achievea bounded competitive ratio if there may be time intervals where no machine is available. InSection 3 we present an online algorithm that constructs schedules with an optimal makespanof COPTmax if a lookahead of one is given, i.e., the algorithm always knows the next point intime when the set of available machines changes. However, the algorithm does not need toknow which machines break down or become available. Our algorithm has a running time ofO(an + T up), where a is the number of time instances where the set of available machineschanges and T up is again the time to update the set of available machines. Note that ouralgorithm has a better running time than Sanlaville's if a < npmax, which will be true inpractical applications. If a � npmax, then the set of available machines changes after eachtime unit. Finally, in Section 4 we give an online algorithm without lookahead that constructsschedules with a nearly optimal makespan of COPTmax + �, for any � > 0, if at any time at leastone machine is available. This implies that not knowing machine availabilities does not reallyhurt the performance of an algorithm.
3



2 The performance of online algorithmsFirst note that if at any time at most one machine is available, an optimal online scheduleis trivial to construct. In the following we concentrate on problems with an arbitrary set ofmachines.Theorem 1 No online algorithm can, in general, construct optimal schedules. If there maybe time intervals where no machines are available, then no online algorithm can achieve abounded competitive ratio.Proof: Let A be any online algorithm. Initially, at time t = 0 only one of m machines isavailable. We consider n jobs J1; : : : ; Jn, each of which has a processing time of 1 time unit.We asume n = m. At time t = 0, algorithm A starts processing one job Ji0 . Let t0 be the�rst time instance such that A �rst preempts Ji0 or A �nishes processing Ji0 . At that timet0 all machines become available. A's makespan is at least t0 + 1 because none of the jobs Ji,i 6= i0, has been processed so far. An optimal algorithm will divide the interval from 0 to t0evenly among the n jobs so that its makespan is COPTmax = t0+1� (t0=n). This proves the �rstpart of the theorem. For the proof of the second part we modify the problem instance so thatno machine is available during the interval (COPTmax ; c �COPTmax ], for any c > 1. The algorithm Acannot �nish before c � COPTmax because it has jobs left at time COPTmax . 23 Optimal schedulesIn this section we give an algorithm that constructs optimal schedules with a makespan ofCOPTmax . The algorithm is online with a lookahead of one, i.e., the algorithm always knows thenext point in time when the set of available machines changes. The algorithm does not needto know, however, which machines break down or become available.Let J1; : : : ; Jn be the given jobs and let pi, 1 � i � n, denote the processing time of Ji. Weassume that pi is known in advance. Without loss of generality jobs are numbered such thatp1 � p2 � : : : � pn. At any time during the scheduling process, ri denotes the remainingprocessing time of Ji, 1 � i � n. We will show later that the algorithm always maintains theinvariant r1 � r2 � : : : � rn.Starting at time t = 0, the algorithm repeatedly schedules time intervals I = [t; t0) in whichthe set of available machines remains the same. The availability changed at t and will nextchange at time t0. In each interval, the algorithm schedules as much load as possible whileminimizing the length of the largest remaining processing time.More speci�cally, suppose that the algorithm has already scheduled the interval [0; t) andthat the set of available machines changes at t. At time t, using lookahead information, thealgorithm determines the next point in time t0 > t at which the machine availability changes.Let � = t0 � t and mav be the number of available machines in I = [t; t0). Intuitively, thealgorithm now tries to determine the largest possible �, r1 � � > 0, such that, for all jobs Jk,4



1 � k � n, the remaining processing time in excess to r1 � � can be scheduled in I. Thus,at the end of I, all jobs would have a remaining processing time of at most r1 � �. Figure 1shows an example. Pictorially, the algorithm determines a vertical line such that the totalshaded processing time to the right of this line is equal to total processing capacity availablein I. Note that the total processing time in excess to r1 � � isnXk=1maxf0; rk � (r1 � �)gand that the total processing capacity available in I is mav�. Thus the algorithm computesan � such that Pnk=1maxf0; rk � (r1 � �)g = mav�.r1r2r3
rn

�

Figure 1: The choice of �However, the algorithm has to satisfy the constraint that at most � time units of each jobcan be scheduled in I. Thus, if Pnk=1maxf0; rk � (r1 � �)g = mav� for some � > �, then thealgorithm cannot schedule � time units of J1 in I. Only � time units are permissible.For this reason, the algorithm �rst determines a set of jobs that are scheduled for � timeunits in I, see lines 6{8 of the code in Figure 4. Suppose that the algorithm has alreadyscheduled � time units of J1; : : : ; Ji�1 in the interval I. Let mavi be the current number ofavailable machines after these �rst i � 1 jobs J1; : : : ; Ji�1 have been scheduled. Note thatmavi = mav � (i � 1). The total remaining processing capacity in I is equal to mavi �. Thealgorithm also schedules � time units of Ji in I if the total remaining processing time in excessto ri � � is not su�cient to �ll the processing capacity still available and ri � �. (Formally,if Pnk=imaxf0; rk � (ri � �)g < mavi � and ri � �.)Suppose that the while-loop in lines 6{8 terminates and i > n. Then, the algorithm canschedule no more jobs in I. If i � n, then there are two cases to consider.(a) Pnk=imaxf0; rk � (ri � �)g � mavi �In this case, the algorithm determines the �, 0 < � � �, such that for all jobs Jk,5



r1
rn

ri�1ri
�

Figure 2: An example of case a)

�r1ri�1rirnFigure 3: An example of case b)i � k � n, the total remaining processing time in excess to ri�� is exactly equal tomavi �,see Figure 2. Each of these jobs is scheduled in I to an extent of maxf0; rk � (ri � �)g.(b) Pnk=imaxf0; rk � (ri � �)g < mavi � and ri < �In this case, the algorithm can schedule the rest of Ji; : : : ; Jn, if it exists, in I, seeFigure 3.In each case, the scheduling of the jobs is done using McNaughton's algorithm.Algorithm Lookahead (LA)1. t := 0;2. ri := pi, for 1 � i � n;3. while there exist jobs with positive remaining processing time do4. t0 := next point in time when set of available machines changes;5. � := t0 � t; i := 1; mav1 := number of machines available in [t; t+ �);6. while i � n and Pnk=imaxf0; rk � (ri � �)g < mavi � and ri � � do7. Schedule � time units of Ji in [t; t+ �);8. ri := ri � �; mavi+1 := mavi � 1; i := i+ 1;9. if i � n then10. Compute the maximum �, � � minf�; rig, such thatPnk=imaxf0; rk � (ri � �)g � mavi �;11. For k = i; : : : ; n, schedule maxf0; rk � (ri � �)g time units of Jk in[t; t+ �) using McNaughton's algorithm and set rk = minfrk; ri � �g;12. t := t0; Figure 4: The online algorithm with a lookahead of oneWe analyze the running time of the algorithm and �rst argue that within an iteration ofthe outer while-loop, all executions of lines 6{8 take O(n) time. The critical part are thecomputations of the sums Si = Pnk=imaxf0; rk � (ri � �)g. Set S0 = 0. We show that Si+16



can be easily derived from Si. When computing Si we determine the largest job index li suchthat rli�(ri��) � 0. We will show below that r1 � r2 � : : : � rn, see Lemma 1. Given li, wecan easily �nd li+1 by going through the jobs starting with Jli+1 and �nd the largest index li+1such that rli+1�(ri+1��) � 0. Then Si+1 = Si��+(li�i)(ri�ri+1)+Pli+1k=li+1(rk�(ri+1��)).Thus all sums can be computed in O(n) time. Similarly, in line 10, we can compute the desired� in O(n) time. Hence, the scheduling process in each interval I = [t; t0) can be done in O(n)time. Thus the total running time of our algorithm is O(an+T up), where a is the number oftimes instances where the set of available machines changes and T up is the time to update theset of available machines. If we represent the set of active machines as a balanced tree, theneach machine availability change can be implemented in O(logmavmax) time, where mavmax isthe maximum number of machines ever available. Let B denote the total number of machinebreakdowns. Then T up = O(B logmavmax).In the analysis of the algorithm we consider the sequence of intervals in which LA sched-ules jobs. Within each interval, the set of available machines remains the same. Machineavailability only changes at the beginning of an interval.We �rst show that the algorithm works correctly. When the algorithm terminates, all jobshave a remaining processing time of zero, i.e. the scheduling process is complete. The conditionin line 6 of the algorithm ensures that at most � = t0 � t time units of each job are scheduledin an interval. The assignment mavi+1 := mavi �1 in line 8 and the constraintPnk=imaxf0; rk�(ri � �)g � mavi � in line 10 ensure that the total amount of processing time scheduled in aninterval is not greater than the available processing capacity.Next we prove two useful lemmas.Lemma 1 At the beginning of each interval, r1 � r2 � : : : � rn.Proof: The invariant holds at time t = 0 because initially rk = pk, for 1 � k � n, andp1 � p2 � : : : � pn. Suppose that r1 � r2 � : : : � rn holds at the beginning of some intervalI. We show that the invariant is also satis�ed at the end of I. Let r01; : : : ; r0n denote theremaining processing times at the end of I.Suppose that while executing the while-loop in lines 6{8, the algorithm schedules � time unitsof J1; : : : ; Ji�1. The remaining processing time of each of these jobs decreases by � and thusr01 � : : : � r0i�1. If i > n, we are done. Otherwise we have to consider two cases.(a) Pnk=imaxf0; rk � (ri � �)g � mavi �If i > 1, then in the last iteration of the while-loop, the condition in line 6 was satis�ed,i.e.Pnk=i�1maxf0; rk�(ri�1��)g < mavi�1�; which impliesPnk=imaxf0; rk�(ri�1��)g <mavi �: In line 10, the algorithm chooses an � such that Pnk=imaxf0; rk� (ri� �)g = mavi �.Thus, if i > 1, r0i�1 = ri�1 � � > ri � � = r0i. For any i � 1, the invariant now followsbecause r0i = : : : = r0l, where l is the largest job index such that rl � (ri � �) � 0, andr0k = rk for k > l.(b) Pnk=imaxf0; rk � (ri � �)g < mavi � and ri < �In this case, the rest of Ji; : : : ; Jn is scheduled in I, i.e. r0i = : : : = r0n = 0 and the invariantholds. 2 7



Now consider any other algorithm A for scheduling J1; : : : ; Jn. In particular, A may be anoptimal algorithm that knows the machine breakdowns in advance. At any time consider thesorted sequence q1 � q2 � : : : � qn of remaining processing times maintained by A. Thatis, qi is the i-th value in the sorted sequence, 1 � i � n. Note that qi is not necessarily theremaining processing time of Ji.Lemma 2 At the beginning of each interval, r1 � q1 and Pnk=1 rk �Pnk=1 qk.Proof: We show inductively that at the beginning of each intervaljXk=1 rk � jXk=1 qk for j = 1; : : : ; n: (1)The lemma follows from the special case j = 1 and j = n. The above inequalities hold at timet = 0. Suppose that they hold at the beginning of some interval I. We show that they are alsosatis�ed at the end of I, i.e. at the beginning of the interval following I. Let r01; : : : ; r0n andq01; : : : ; q0n be the remaining processing times at the end of I. Recall that r0k is the remainingprocessing time of Jk, 1 � k � n. By Lemma 1, r01 � : : : � r0n. We have q01 � : : : � q0n by thede�nition of the q-values. Note that qk and q0k can be the processing times of di�erent jobs.However, q0k � qk for 1 � k � n.Suppose that in lines 6{8, algorithm LA schedules � time units of J1; : : : ; Ji�1. Then r0k =rk � �, for k = 1; : : : ; i� 1. We have q0k � qk � �, for 1 � k � n, because the processing timesof jobs decrease by at most � in I. Thus, inequality (1) holds for j = 1; : : : ; i� 1. Again, fori � n, we consider two cases.(a) Pnk=imaxf0; rk � (ri � �)g < mavi � and ri < �The algorithm LA schedules the rest of Ji; : : : ; Jn in I so that r0i = : : : = r0n = 0.Inequality (1) also holds for j = i; : : : ; n.(b) Pnk=imaxf0; rk � (ri � �)g � mavi �LA computes an �, 0 < � � �, such that Pnk=imaxf0; rk � (ri � �)g = mavi �. It reducesthe remaining processing times of Ji; : : : ; Jl to ri� �, where l is the largest job index suchthat rl � (ri � �) � 0.Let mav1 be the number of machines that were initially available in I. Since LA uses allof the available processing capacity, Pjk=1 r0k = Pjk=1 rk �mav1 � for j = l; : : : ; n. SincePjk=1 q0k � Pjk=1 qk � mav1 � for j = l; : : : ; n, inequality (1) holds for j = l; : : : ; n. Itremains to show that the inequality is also satis�ed for j = i; : : : ; l � 1.Let R1 = Pi�1k=1 r0k, R2 = Plk=i r0k and similarly Q1 = Pi�1k=1 q0k, Q2 = Plk=i q0k. We havealready shown (i) R1 � Q1 and (ii) R1 + R2 � Q1 + Q2. Suppose that Q1 = R1 + xfor some x � 0. Then (ii) implies Q2 + x � R2. Consider the l � i + 1 values q0i; : : : ; q0l.Since q0i � : : : � q0l, the sum of the �rst � values, for any 1 � � � l � i + 1, is at least�Q2=(l � i+ 1). Thus, for any j with i � j � l,jXk=1 q0k � Q1 + (j � i+ 1) Q2l � i+ 1 = R1 + x+ (j � i+ 1) Q2l � i+ 18



� R1 + (j � i+ 1) Q2 + xl � i+ 1 � R1 + (j � i+ 1) R2l � i+ 1= jXk=1 r0k:The last equation follows because ri � � = r0i = r0i+1 = : : : = r0l = R2=(l � i+ 1). 2Theorem 2 For any problem instance, CLAmax = COPTmax .Proof: Given a set of jobs J1; : : : ; Jn, let I = [t; t0) be the last interval in which LA hasscheduled jobs, i.e., t � CLAmax � t0. Consider the makespan COPTmax produced by an optimalo�ine algorithm. We distinguish two cases.(1) In the online schedule, the interval from t to CLAmax contains no idle machinesThus, in the online schedule all machines �nish at the same time. Lemma 2 implies thatat the beginning of I, the total remaining processing time Pnk=1 rk of LA is not greaterthan the total remaining processing time Pnk=1 qk of OPT. Thus, COPTmax � CLAmax.(2) In the online schedule, the interval from t to CLAmax contains idle machinesSince LA schedules job portions using McNaughton's algorithm, there must exist a jobthat spans the entire interval from t to CLAmax. Thus, at the beginning of I the largestremaining processing time r1 equals CLAmax � t. By Lemma 2, the largest remaining pro-cessing time q1 of OPT is not smaller. Thus OPT cannot �nish earlier than LA. 24 Nearly optimal schedulesIn this section we study the problem that an online algorithm has no information about thefuture machine availabilities. It does not know the next point in time when the set of availablemachines changes. We present an algorithm that always produces a makespan of COPTmax + �,for any � > 0. It is assumed that at any time at least one machine is available since otherwise,by Theorem 1, no bounded performance guarantee can be achieved.We number the jobs to be scheduled such that p1 � p2 � : : : � pn. Given a �xed � >0, our online algorithm, called ON(�), computes � = �=n2. Starting at time t = 0, thealgorithm always schedules jobs within the time interval [t; t + �). Let mav be the numberof machines available at time t. The algorithm determines the mav jobs with the largestremaining processing times (ties are broken arbitrarily) and schedules them on the availablemachines. If a machine breaks down or becomes available at some time t + �0, �0 < �, thenthe algorithm preempts the jobs currently being processed and computes a new schedule forthe next � time units from t + �0 to t + �0 + �. Otherwise, if the set of available machinesremains the same throughout [t; t+�), the algorithm computes a new partial schedule at timet + �. Let a be the number of time instances where the set of available machines changes.The total number of intervals scheduled by the algorithm is at least a. A formal description9



Algorithm Online(�) (ON(�))1. t := 0; � = �=n2;2. ri := pi, for 1 � i � n;3.while there exist jobs with positive remaining processing time do4. mav := number of machines available at time t;5. nav := number of jobs with positive remaining processing time;6. S := set of the minfmav ; navg jobs with the largest remaining processing time;7. Process the jobs Ji, i 2 S, on the available machines;8. if machines break down or become available at some time t+ �0, �0 < � then9. Set ri := maxf0; ri � �0g for i 2 S; t := t+ �0;10. else11. Set ri := maxf0; ri � �g for i 2 S; t := t+ �;Figure 5: The online algorithm ON(�)of the algorithm is given in Figure 5. At any time ri denotes the remaining processing timeof Ji, 1 � i � n.In the scheduling process, the algorithm repeatedly has to �nd jobs with the largest remainingprocessing time. If we keep a priority queue of the remaining processing times, each suchjob can be found in O(log n) time. Let mavi , 1 � i � a, be the number of machines thatare available right after the i-th change; mav0 is the number of machines that are availableinitially. Let P = Pni=1 pi. Note that the total number of job portions scheduled by thealgorithm is no more than P=� +Pai=0mavi . This is because at the end of a scheduled jobportion, � time units have been processed or the set of available machines changes. Thus thetotal running time of the algorithm is O((Pn2=�+Pai=0mavi ) log n+ T up), where T up is thetime needed to update the set of available machines. As in the analysis of the algorithm LAwe can show that T up = O(B logmavmax), where B is the total number of machine breakdownsand mavmax = max0�i�amavi . Jobs are only preempted at the end of an interval of length� = �=n2 or when the set of available machines changes. Thus the number of preemptions isno more than Pn2=�+Pai=0mavi .For the analysis of the algorithm we partition the time into intervals such that at the beginningof an interval the online algorithm computed a new partial schedule, i.e., it executed lines 4{7.Note that intervals have a length of at most � and that within each interval the set of availablemachines remains the same.The algorithm ON(�) does not maintain the property that the remaining processing timesr1; r2; : : : ; rn necessarily form a non-increasing sequence (cf. Lemma 1). However, the nextlemma shows that if a job Jj has a larger remaining processing time than a job Ji and i < j,then the di�erence is bounded by �.Lemma 3 At the beginning of each interval, for any two jobs Ji and Jj with i < j, ri � rj��.Proof: The lemma holds at the beginning of the �rst interval because, initially, r1 � : : : � rn.10



Suppose that the lemma holds at the beginning of an interval I = [t; t+ �0), for some �0 � �.We show that the lemma is also satis�ed at the end of I. Let �i and �j be the number of timeunits for which Ji and Jj are processed in I. We have 0 � �i; �j � �0.If �j � �i, then there is nothing to show. We study the case �j < �i. Let rk and r0k, k 2 fi; jg,denote the remaining processing times at the beginning and at the end of I. If �j = 0, i.e.only Ji is processed in I, then ri � rj and thus r0i = ri� �i � ri� � � rj � � = r0j � �. Finally,the case 0 < �j < �i can only occur if the processing of Jj �nishes during I, i.e., r0j = 0. Thelemma holds because r0i � 0. 2In the following analysis, we have to bound the remaining processing times maintained byON(�) in terms of the remaining processing times maintained by an optimal o�ine algorithm.In the previous section, when analyzing the algorithm LA, we could show that the pre�x sumPjk=1 rk are bounded by the pre�x sumPjk=1 qk, for j = 1; : : : ; n, see (1). Unfortunately, thisrelation does not hold in the algorithm ON(�). Problems arise if in some interval there existjobs Ji and Jj with i < j such that Ji is not scheduled but Jj is scheduled in the interval.For this reason we maintain a sequence of job sets S1; : : : ; Sl, for some 1 � l � n, which is apartition of the job sequence J1; : : : ; Jn. Intuitively, a set Sk, 1 � k � l, consists of jobs thathave \nearly the same" remaining processing time. This will be made precise in Lemma 5. Ifthere are jobs Ji and Jj with i < j such that Ji is not scheduled but Jj is scheduled in someinterval, then we merge the sets containing Ji; : : : ; Jj . This way we will be able to bound thepre�x sums de�ned by the set S1; : : : Sl, see Lemma 4 below.Formally, the sets are maintained as follows. Initially, at time 0, Si contains Ji, 1 � i � n.At the end of each interval I, the sets are updated as follows.Let i be the smallest job index such that Ji was not processed in I and let j bethe largest job index such that Jj was processed in I. Suppose that Ji 2 Ski andJj 2 Skj . If ki < kj , then replace Ski ; Ski+1; : : : ; Skj by the union of these sets.Renumber the new sequence of sets so that the k-th set in the sequence has indexk.Figure 6 shows an example of the update algorithm for sets. Suppose that in some intervalthree machines available and jobs J1, J3 and J4 are scheduled for � time units (the shadedjob portions). Job J2 is the �rst job not scheduled and J5 is the last job scheduled in thatinterval. Thus sets S1 and S2 are merged.Note that, as mentioned above, at any time the sequence of sets forms a partitioning of thejobs J1; : : : ; Jn. The update rule ensures that every set contains a sequence of consecutivejobs with respect to the job numbering. In the following, let nk denote the number of jobs inSk, and let Nk = n1 + : : :+ nk.At any time let lmax denote the maximum index such that S1; : : : ; Slmax contain only jobswith positive remaining processing times. If there is no such set, then let lmax = 0. Let Abe any other scheduling algorithm. In particular, A may be an optimal o�ine algorithm.At any time consider the sequence of remaining processing times maintained by A, sorted innon-increasing order. Let qi be the i-th value in this sorted sequence.11



r1r2r3r4r5r6r7

S1
S2
S3

j
�i

Figure 6: An example of the update rule for setsLemma 4 At the beginning of each interval, for k = 1; : : : ; lmax, PNki=1 ri �PNki=1 qi.Proof: The lemma holds initially because at time t = 0, ri = qi = pi for 1 � i � n. Supposethat the lemma holds at the beginning of an interval I = [t; t + �0), for some �0 � �. LetS1; : : : ; Sl and S01; : : : ; S0l0 be the sequences of job sets at the beginning and at the end of I.Furthermore, let j be the largest index such that all jobs in S01; : : : ; S0j were scheduled in Iand still have a positive remaining processing time. These sets were not involved in a mergeoperation at the end of I and, hence, each S0k contains the same jobs as Sk, 1 � k � j. Sincethe jobs of these sets have a positive remaining processing time, all of them were scheduledfor exactly �0 time units in I. Let ri; r0i and qi; q0i denote the remaining processing times atthe beginning and at the end of I. Since q0i � qi � �0, for 1 � i � n, we obtainNkXi=1 r0i = NkXi=1(ri � �0) � NkXi=1(qi � �0) � NkXi=1 q0i;for k = 1; : : : ; j. If j = l0max, then we are done.Suppose that j < l0max. By the de�nition of l0max, the set S0j+1 does not contain jobs withzero remaining processing time. Also, by the de�nition of j, S0j+1 contains jobs not scheduledin I. The update rule for job sets ensures that S0j+1 contains all jobs Ji, i > Nj , that werescheduled in I. Let N be the number of jobs in S0j+1 scheduled in I. All of these jobs werescheduled for �0 time units because they all have positive remaining processing time. Thetotal number of available machines in I is Nj + N since, otherwise, the algorithm ON(�)would have scheduled more jobs of S0j+1 in I. Thus any other algorithm cannot process morethan (Nj +N)� time units in I. We concludeNkXi=1 r0i = NkXi=1 ri � (Nj +N)�0 � NkXi=1 qi � (Nj +N)�0 � NkXi=1 q0i;12



for k = j + 1; : : : ; l0max. 2While lmax > 0, the above lemma ensures that an optimal o�ine algorithm has a total non-zero remaining processing time. When lmax = 0, we have to be able to bound the totalremaining processing time of ON(�). For this purpose we analyze the di�erence in remainingtimes that can occur in a job set Sk.Lemma 5 At the beginning of each interval, for every set Sk, 1 � k � l, and jobs Ji; Jj 2 Sk,jri � rjj � (n� 1)�.The bound given in the above lemma is an overestimate, which is su�cient for the rest of theanalysis. However, there exist problem instances such that jri � rjj � (n=2)�.Proof: We prove inductively that at the beginning of each interval, for every set Sk and jobsJi; Jj 2 Sk, jri � rj j � (nk � 1)�: (2)This holds initially because at time t = 0, every set contains exactly one job. Consider aninterval I = [t; t+ �0), for some �0 � �, and suppose (2) holds at the beginning of I.We �rst show that (2) is maintained while jobs are processed in I and before the update rulefor the sets is applied. Given a set Sk, let Ji; Jj 2 Sk be any two jobs with i < j. Let ri; r0iand rj; r0j be the remaining processing times at the beginning and at the end of I. If r0i � r0j ,then by Lemma 3, jr0i � r0j j = r0j � r0i � �.If r0i > r0j , we have to consider several cases. If none of the two jobs was processed in I orif both jobs were processed for �0 time units, then there is nothing to show. Otherwise, let�i and �j be the number of time units for which Ji and Jj are processed in I. If only Jj isprocessed in I, then rj � ri and thus jr0i � r0j j = r0i � r0j = ri � (rj � �j) � �j � �. Thecase that both Ji and Jj are scheduled in I, but Jj is processed for a longer period, cannotoccur. This would imply that the processing of Ji is complete, i.e. r0i = 0, which contradictsr0i > r0j . Finally suppose that Ji is processed as least as long as Jj in I, i.e. 0 � �j � �i. Thenjr0i� r0jj = ri� �i� (rj� �j) = ri� rj+ �j� �i � ri� rj � (nk�1)�. Inequality (2) is satis�ed.We now study the e�ect when the set update rule is applied at the end of I. Suppose thata sequence of sets Sk1 ; : : : ; Sk2 is merged. Let Ji 2 Sk1 be a job not scheduled in I and letJj 2 Sk2 be the job with the largest index scheduled in I. Let Jmax be the job in Sk1 ; : : : ; Sk2with the largest remaining processing time at time t+�0 and let Jmin be the job in Sk1 ; : : : ; Sk2with the smallest remaining processing time. We will show jr0max � r0minj � (nk1 + nk2 � 1)�.This completes the proof because the newly merged set contains Pk2k=k1 nk � nk1 + nk2 jobs.We have jr0max � r0minj = r0max � r0min = (r0max � r0i) + (r0i � r0j) + (r0j � r0min):If Jmax 2 Sk1 , then r0max � r0i � (nk1 � 1)�. If Jmax =2 Sk1 , then r0max � r0i � � by Lemma 3because Jmax has a higher index than Ji. In any case r0max � r0i � (nk1 � 1)�. Similarly, ifJmin 2 Sk2 , then r0j� r0min � (nk2�1)�. If Jmin =2 Sk2 , then r0j� r0min � � by Lemma 3. In anycase r0j � r0min � (nk2 � 1)�. Since Ji was not scheduled in I but Jj was scheduled, rj � ri.13



Job Jj was scheduled for at most � time units, which implies r0i = ri � rj � r0j + � and hencer0i � r0j � �. In summary we obtainjr0max � r0minj = (r0max � r0i) + (r0i � r0j) + (r0j � r0min)� (nk1 � 1)� + � + (nk2 � 1)�= (nk1 + nk2 � 1)�: 2Theorem 3 For any �xed � > 0 and any problem instance, CON(�)max � COPTmax + �.Proof: Let I = [t; t + �0), �0 � �, be the last interval such that lmax > 0 at the beginningof I. Consider the total remaining processing time of the jobs in S1; : : : ; Slmax at time t. ByLemma 4, the value of ON(�) is not larger than the value of an optimal o�ine algorithm.Thus COPTmax � t. We analyse ON(�)'s makespan. At time t+�0, S1 contains a job Ji with zeroremaining processing time. By Lemma 5, all jobs belonging to the �rst set have a remainingprocessing time of at most (n�1)�. All jobs not belonging to the �rst set have a higher indexthan Ji and, by Lemma 3, they have a remaining processing time of at most �. Thus at timet + �0, we are left with at most n � 1 jobs having a remaining processing time of at most(n� 1)�, i.e., the total remaining processing time of ON(�) is at most (n� 1)2�. Since at anytime at least one machine is available CON(�)max � t+�0+(n�1)2� � COPTmax +n2� � COPTmax +�: 2AcknowledgmentWe thank Oliver Braun for many interesting discussions. Moreover, we thank two anonymousreferees for their helpful comments improving the presentation of the paper.References[1] B. Kalyanasundaram and K.P. Pruhs. Fault-tolerant scheduling. In Proceedings of the26th Annual ACM Symposium on the Theory of Computing, pages 115{124, 1994.[2] B. Kalyanasundaram and K.P. Pruhs. Fault-tolerant real-time scheduling. In Proc. 5thAnnual European Symposium on Algorithms (ESA), Springer Lecture Notes in ComputerScience, 1997.[3] R. McNaughton. Scheduling with deadlines and loss functions. Management Science,6:1-12, 1959.[4] E. Sanlaville. Nearly on line scheduling of preemptive independent tasks. Discrete AppliedMathematics, 57:229{241, 1995.[5] E. Sanlaville. Private communication, 1998.[6] E. Sanlaville and G. Schmidt. Machine scheduling with availablity constraints. Acta In-formatica, 35:795{811, 1998.[7] G. Schmidt. Scheduling on semi-identical processors. Z. Oper. Res., 28:153{162, 1984.14



[8] G. Schmidt. Scheduling independent tasks with deadlines on semi-identical processors.J. Oper. Res. Soc., 39:271{277, 1988.[9] D.D. Sleator and R.E. Tarjan. Amortized e�ciency of list update and paging rules.Communications of the ACM, 28:202{208, 1985.

15


