An Experimental Study of New and Known Online Packet
Buffering Algorithms

Susanne Albefs Tobias Jacobs

Abstract

We present the first experimental study of online packe#hinf§ algorithms for network switches.
The design and analysis of such strategies has receivediecaisle research attention in the theory
community recently. We consider a basic scenario in whicueues of sizé3 have to be main-
tained so as to maximize the packet throughputGrkedy strategy, which always serves the most
populated queue, achieves a competitive ratio of only 2.r8fbee, various online algorithms with
improved competitive factors were developed in the lit@rat

In this paper we first develop a new online algorithm, cal&-OD, which is especially designed
to perform well under real-world conditions. We prove thatdompetitive ratio is equal to 2.

The major part of this paper is devoted to the experimentahsin which we have implemented
all the proposed algorithms, includitgSFOD, and tested them on packet traces from benchmark
libraries. We have evaluated the experimentally obsereedpetitivess, the running times, memory
requirements and actual packet throughput of the stratedibe tests were performed for varying
values ofm and B as well as varying switch speeds. The extensive experinteEm®nstrate that
despite a relatively high theoretical competitive ratieutistic and greedy-like strategies are the
methods of choice in a practical environment. In particu#®~OD has the best experimentally
observed competitiveness.

“Department of Computer Science, University of Freiburg,o@es Kohler Allee 79, 79110 Freiburg, Germany.
salbers@informatik.uni-freiburg.de Work supported by the Deutsche Forschungsgemeinschafieqgis AL
464/4-1 and 4-2.

TDepartment of Computer Science, University of Freiburg,o@es Kohler Allee 79, 79110 Freiburg, Germany.
jacobs@informatik.uni-freiburg.de

1 Introduction

Over the past five years the algorithms community has wigteBemendous research interest in packet
buffering algorithms, see e.g.[1, 2, 3,5, 6, 7, 8,9, 10, 2116, 19, 20, 21, 22, 23, 25] for a selection of
the work. Given a network router or switch that is equippethvpiacket buffers of limited capacity, the
general goal is to design strategies for serving these tsugteas to maximize the total packet throughput.
While packet buffering policies have been investigatechim applied computer science and, in partic-
ular, networking communities for many years, only semiregbgrs by Aiello et al. [2] and Kesselman
et al. [19] have initiated theoretical and algorithmic $&sd These studies aim at analyzing existing
algorithms and at designing new strategies with a provabbdgoerformance.

Obviously, packet buffering is an online problem in thatadpickets arrive over time and, at any
time, future packet arrivals are unknown. Results from @iregi theory cannot be applied directly as
network traffic exhibits so-calledelf-similar properties, cf. [14, 29]. Therefore, algorithmic research
resorts to competitive analysis [27], comparing an onlilgodhm A to an optimal offline algorithm
OPT that knows the entire packet arrival sequence in advaidgorithm A is called c-competitive
if, for all packet arrival sequences, the throughput aatteby A is at leastl /c times that of OPT. In
the above-mentioned algorithmic body of work, various gadbuffering problems were investigated.
The following natural questions arise: Do the competitimalgses give meaningful results? Are the
proposed new algorithms interesting from a practical pointiew? Does optimizing the worst-case
behaviour also improve the practical performance? SoHagd issues were not addressed.

In this paper we present the first experimental study of enpacket buffering algorithms. We
consider a scenario that is very basic and has been inviestiffae most among the proposed models,
see [3, 6,7, 19, 25]. Specifically, we are giverpacket buffers, each of which is associated with an input
port of a switch. Each buffer is organized as a queue and camtsineously store up tB8 data packets.
The capacityB is also referred to as ttsize of the buffer. Time is assumed to be discrete. Each time step
consists of two phases, namelypacket arrival phase and apacket transmission phase. At any time, in
the packet arrival phase, new packets may arrive at thersuffets; be the number of packets currently
stored in bufferi, and leta; be the number of newly arriving packets at that buffen; b, < B, then all
new packets can be accepted; otherwise b; — B packets must be dropped. Furthermore, at any time,
in the packet transmission phase, an algorithm can selechon-empty buffer and transfer the packet
at the head of that queue to the output port. We assume wihaigthe packet arrival phase precedes the
transmission phase. The goal is to maximize the throughguthe total number of transferred packets.

The scenario we study here arises, for instance, in inpetigd (IQ) switches which represent the
dominant switch architecture today. In an 1Q switch withnput andm output ports packets that arrive
at input: and have to be routed to outputire buffered in a virtual output queig;. In each time step,
for any outputj, one data packet from queu€s;, 1 < i < m, can be sent to that output. A small IQ
switch with three input and three output ports is depicteigure 1. In our problem formulation the
m buffers correspond to queué€y;, 1 < ¢ < m, for any fixed;. We emphasize that we consider all
packets to be equally important, i.e. all of them have theeseaue. Most current networks, in particular
IP networks, treat packets from different data streamslggueintermediate switches.

Known algorithms: The most simple and natural packet buffering algorithm e&G@hneedy policy:

At any time serve the queue currently storing the largest emof packets. Unfortunatelyreedy
has essentially the worst possible competitive ratio. #dsy to show [3, 7] that anyork conserving
algorithm, which at any time serves an arbitrary non-emiiyeb, is 2-competitive. ObviouslyGreedy
belongs to the class of work conserving strategies. It wasvshin [3] that the competitive ratio of
Greedy is not smaller thar2 — 1/B, no matter how ties are broken. Th@seedy has a competitiveness
of exactly 2, for arbitrary buffer sizes. The first deternsiig algorithm that achieved a competitive
ratio below 2 was devised in [3]. The propossami Greedy algorithm deviates from standafereedy
when the buffer occupancy is low and has a competitive pedioce ofl7/9 ~ 1.89. The deterministic

Input Ports Output Ports

Figure 1: An 1Q switch.

strategy with the smallest competitive ratio known is\tkierlevel algorithm [6] with a competitiveness
of £ (1 + %), where H,, is them-th Harmonic number. This ratio is optimal, for lard® as
no deterministic algorithm can have a competitive ratio lenghane/(e — 1) ~ 1.58, see [3]. As for
randomized strategies Random Schedule algorithm [7] achieves a competitive ratiogf(e—1) while a
Random Permutation algorithm is 1.5-competitive [25]. These performanceaztiold against oblivious
adversaries and are close to the best lower bound of 1.4g3ke€he five algorithms just mentioned
comprise all online strategies known in the literature for packet buffering problem. As for the offline
problem, a polynomial time algorithm computing optimaligans was given in [3].

Contributions of this paper: We first introduce a new online packet buffering algorithnilezh
HSFOD. It is based on the idea to estimate the packet arrival ratedoh port. In each time step the
algorithm transmits a packet from a non-empty queue thaprding to these arrival rates, encounters
packet loss earliest in the future assuming buffers wouldbeoserved anymore. This new strategy is
presented in Section 2. We prove that it achieves a cometditio of 2.

The major part of this paper is devoted to an extensive exqaarial study of the packet buffering
problem under consideration. The main purpose of our exnts is to determine the experimentally
observed competitiveness of all the proposed online algus and to establish a relative performance
ranking among the strategies. As the name suggests, theragpéally observed competitiveness is the
ratio of the throughput of an online algorithm to that of artim@l solution as it shows in experimental
tests. Additionally, we wish to evaluate the running timad amemory requirements of the algorithms
as some of the strategies are quite involved and need ayxil&a structures. Finally, we are interested
in the actual throughput in terms of the total number of sasfidly transmitted packets.

In order to get realistic and meaningful results, we havietethe algorithms on real-world traces. We
selected traces from the Internet Traffic Archive [18], whis a moderated trace repository sponsored
by ACM SIGCOMM. In our experiments we have studied varyingtpmmbersm as well as varying
buffers sizesB. Furthermore, we have investigated the influence of varyliegspeed of a switch, i.e.
the frequency with which it can forward packets. We have stéy this parameter relative to the given
data traces. For instance, a speed of value 1 indicateshihaverage packet arrival frequency is equal
to the frequency with which packets can be transmitted.

In Section 3 we present a concise description of the five pusly known online buffering algo-
rithms as well as the optimal offline strategy. For all thepmsed strategies, includingSFOD, we
describe how the given pseudo-code was indeed implementediscuss runtime issues as well as extra
space requirements of the strategies. We implemented thendzdel and the algorithms using the Java
programming language. The test environment is describ&kdation 4. A detailed presentation of the
results follows in Section 5. One of the most important filggdiis that the experimentally observed com-
petitiveness is much lower than the theoretical boundsic@lg, the online algorithms are at most 3%

worse than an optimal offline algorithm. In fa¢giSFOD shows the best performance, having a gap of
less and 0.1%. We remark here th8-OD was designed after we had implemented and evaluated the
previously known algorithms. Hence it can be viewed as altre$an algorithm engineering process.
Furthermore, the theoretical competitive ratios are ngerandication of how the algorithms perform

in practice. The randomized algorithms, despite their lbeotetical competitiveness, do not perform
better than the deterministic ones. From a practical pdintew Greedy, HS-OD and Semi Greedy are

the algorithms of choice. Section 6 summarizes the mairteestiour study.

2 The new algorithmHSFOD

The new strategy we introduce estimates future packetadurates by keeping track of past arrival
patterns. Based on these arrival rates, the algorithm rsitfie optimal offline algorithn&OD [3]
which at each point of time transmits a packet from a non-gmpeue that would overflow earliest in
the future if no queues were served.

Algorithm HSFOD: For each input port, the algorithm maintains a weighted mgaverage estimating
the packet arrival rate at that port. These estimates arate@dafter each packet arrival phase. For
i <i<m,letr;(t) be the rate at portat timet. Then

ri(t) = a-ri(t = 1) + (1 - a) - ai(t),

whereq;(t) is the number of packets that have just arrived at p@bda € (0, 1) is some fixed constant.
We setr;(0) = 0 initially. The overflow time for each pottis calculated a(t) = (B — b;(t))/ri(t),
whereb; (t) is the number of packets currently stored in buffeNote thatr;(¢) and¢?¥(¢) are allowed
to take fractional values. At any time the algorithm serveshuffer that has the smallest overflow time;
ties may be broken arbitrarily.

Theorem 1 The competitive ratio of HSFODis exactly equal to 2.

Proof. As HSFOD is work conserving, i.e. always transmits a packet wheretigeea non-empty buffer,

it has a competitive ratio of 2 (see [3]). The following pac&eival pattern shows the tightness of that
bound. The packets arrive in — 1 phases. In phase= 1,...,m — 1 there arriveB packets at port
i+ 1 and a huge amount of; > B packets at pori, such thatHSFOD transmits only packets from
the latter buffer in the nexB time units. It is easy to observe that suchArexists for anyd < o < 1.

No further packets arrive until bufferhas been completely emptied b\&-OD, which also marks the
end of phasé. The adversary algorithm ADV transmits only packets fronffdou; + 1, which is thus
empty by the end of the phase. After — 1 phasesHSFOD stores a total of exactlyy packets in its
buffers, while ADV storegm — 1) - B packets. So aftgim — 1) - B additional time steps without packet
arrival, HS-OD has transmitted a total numberof - B packets, while ADV has been able to transmit
(2m — 2) - B packets. The ratio converges to 2 for large O

HSFOD depends on a parameter where0 < « < 1, that weights past and current packet arrivals
and hence determines the length of Hi&-OD’s memory. For larger values f, the long-term packet
arrival rate has a higher weight than short-term changead®affering policies make the greatest dif-
ference when the speed of a switch takes values around 1es&ers5 that reports on the experimental
results. In this case the average data rate at any partris which means that a packet arrives only
about everymth time step. Since the short-term arrival rate fluctuatesenfiwom 0 to 1, from 1 to 0)
than the long-term rate, the short-term arrival rate dogspnavide a realistic estimate of the overflow
time. Thus, reasonable valuesofivill be close tol.

Figure 15 in the Appnedix shows the experimentally obsepadpetitiveness diSFOD for values
of a between 0.9 and 1. The plot shows the results for the dathaewill be the representative trace

3

throughout Section 5. We observe that all ratios are nearlyhg best results are achieved for values of
with 0.99 < « < 1. This interval is considered in more detail in Figure 16 ia tkppendix. Here values
of o with 0.995 < o < 0.997 lead to the lowest ratios. Hence we aelio 0.997 in our experiments.

3 The implemented algorithms

In this section we present the packet buffering algorithneshave evaluated experimentally, i.e. all the
previously known algorithms in addition t4S-OD. We describe some implementation issues, optimiz-
ing running time and memory requirements of the strategi%fs. note that our experiments of course
represent an algorithmic simulation rather than a switaid\lvare realization of the buffering strategies.
As we consider a scenario where all packets have the same, valless otherwise stated, the algo-
rithms apply a greedy admission policy: At any tithand for any of then buffers, whenever new data
packets arrive, an algorithm accepts as many packets aiblgossbject to the constraint that a buffer
can only store up t@3 packets simultaneously. Thus the algorithms we preseetdy specify which
buffer to serve in each time step. We will use the tebuffer andgueue interchangeably and usgto
refer to thei-th buffer/queue. Let thibad of a queue be the number of packets currently stored in it.

3.1 Deterministic online algorithms

We first state thé&reedy andSemi Greedy policies.

Algorithm Greedy: In each time step serve the queue currently having the mawitoad; ties may be
broken arbitrarily.

In our implementation ofGreedy, we break ties by choosing the buffer with the smallest index
Furthermore, using a standard heap data structure, wentatethe most populated queues in worst
case time)(logm).

Algorithm Semi Greedy: In each time step execute the first of the following threesukeat applies to
the current buffer configuration. (1) If there is a queue éxffy more than B/2| packets, serve the
gueue currently having the maximum load. (2) If there is auguhe hitherto maximum load of which
is less thanB, then among these queues serve the one currently havingakienomm load. (3) Serve the
gueue currently having the maximum load. In each of the thubss, ties are broken by choosing the
gueue with the smallest index. Furthermore, whenever aliga become empty, the hitherto maximum
load is reset to O for all queues.

In our implementation we use two priority queues based omdstal heaps. The first one stores the
load of all the queues. The second one stores the load of tumsees whose hitherto maximum load is
less thanB. With the help of these auxiliary data structures, we caerd@ne inO(log m) worst case
time which queue to serve.

We next give a condensed presentation of\t¥aterlevel strategy. In the original paper [6] the de-
scription was more generalaterlevel is quite involved and consists of a cascade of four algosthm
that simulate each other. At the bottom level there is aifsaat Waterlevel algorithm, denoted biFWL,
that allows us to process fractional amounts of packe¥lL is based on the fact that a packet switch-
ing schedule can be viewed as a matching that maps any tipe &ig¢he packep transmitted during
that step. For any packet arrival sequenaceonsider the following bipartite grapi, = (U, V, E) in
which vertex setd/ and V' represent time steps and packets, respectively. iff the last point in time
at which packets arrive i, then packets may be transmitted up to tifhe- m B. Thus, for any time
t,1 <t < T+ mB, setU contains a vertex;. For any packep that ever arrives})’ contains a vertex
vp. Let P} be the set of the lasB packets that arrive at queyg until (and including) timet and let
P, = U™, P}. The set of edges is defined Bs= {(ut,v,) | p € P;}.

In a standard matching, each edge is either part of the nmgtcinot, i.e. for any edgey;, v,) € E
we can define a variable! that takes the value 1 if the edge is part of the matching anthérwise.
In a fractional matching we relax this constraint and allefve [0,1]. Intuitively, 2 is the extent to
which packetp is transmitted during time. Of course, at any timg a total extent of at most 1 can be

transmitted, i.€3° ¢ p, 2 <1, and over all time steps any packetan be transmitted at most once, i.e.

Py < 1.

The graphGG, evolves over time. Atany timg 1 < ¢ < T + mB, a new nodey, is added td/ and
new packet nodes, depending on the packet arrivals, maydedadl’. A switching algorithm has to
construct an online matching, mapping time steps (fraatlghto data packets that have arrived to far.
The idea of theNaterlevel algorithm is to serve the available data packets as evergpssible. For any
time¢ and any packet, lets! = 3", _, 7 be the extent to which has been served to far. The fractional
Waterlevel algorithmFWL works as follows.

Algorithm FWL: At any timet, for any packep € P, match an extent of} = max{h — s¥,0}, where
h is the maximum number such thg},c p, 2 < 1.

The goal of the following steps is to discretig®VL. This is done by admitting only full, integral
packets to the buffers and by transmitting only full, inedgpackets. In order to guarantee the same
throughput a$-WL one employs slightly larger buffers.

Algorithm FWL: Work with queues of sizé& + 1 and run a simulation dfFWL on queues of siz8. At
any timet, in the packet arrival phase, accept as many packets adlgsabject to the constraint that
only complete packets may be accepted. In the transmisbiasep at any time transmit a total amount
of X} from queuey;, whereX} is the total amount transferred IBY\WL from queuey;. If 31", X} < 1,
then transmit an amount af— "7, X7 from arbitrary non-empty queues as long as there are such.

While the last algorithm discretized the arrival step, te&trone discretizes the transmission step.

Algorithm D(FWL’): Work with queues of sizé + 1 + | H,,|. Run a simulation oFWL" with queues

of size B + 1. At any timet and for any queue;, let S; be the total number of packets transmitted from
queueg; by D(FWL') before time ¢ and letS; be the total amount of packets from quepyeransmitted
by FWL’ up to (and including) time. Transmit a packet from the queue for which the residualiserv
extentS] — S; is largest.

In a last step we take care of the large buffer sizes.

Algorithm Waterlevel: Work with queues of sizé€3. Run a simulation oD(FWL"). In each time step,
accept a packet iD(FWL') accepts it and the corresponding queue is not full. Tranpakets as
D(FWL") if the corresponding queue is not empty.

Obviously,Waterlevd is expensive with respect to both running time and space.rgtdight it may
seem that each of the simulated algorithRWL, FWL' andD(FWL') needs an extra space ®{mB).
However, this does not hold true. For each simulated algorit suffices to just keep track of the current
load in each queue.

We next describe an efficient implementationFafL. At any timet and for any packep € P, the
algorithm has to determine the extent to whicis served. To this end, the service extesftare crucial.
Note thatP; contains at most» B packets, namely the lagt packets that have arrived at each of the
queues. In our implementation we maintain a doubly-linkstlll of all the s} values,p € P, sorted in
increasing order. For each entry in the list we store a vesftt@ngthm indicating how many packets in
¢:» 1 < i < m, currently take that value. The valuesliirtogether with the total number of packets taking
a certain value give rise to a waterlevel profile depictedigufe 2. Each level of the profile represents
a value inL. The width of a level corresponds to the total number of ptsckes P, having a service
extents? equal to that level. In each time step at which new data packeive, we have to update.
This is done by first adding a waterlevel of height= 0 at the head of, storing for each queug the
numbern; of newly arrived packets. If, for queug, the previous load; plusn; exceedsB, then we

have to discard the oldesf = I; + n; — B packets fromy;. This corresponds to a proper updaterpf
Algorithm FWL ensures that packets residing longegjrhave larger service extents. Thus, starting at
the tail of L, we discard for anyj; the oldest:; packets. This is done by simply decreasing the number
of packets fromy; that contribute to a waterlevel until a total numbemgthas been discarded.

o0

Figure 2: The waterlevel profile

The computation of the? values amounts to filling water of volume 1 into the waterlguefile.
More specifically, we repeatedly have to find out which adjacgaterlevels to merge. Each merge
operation can be performed M(m) time. Simultaneously, while raising waterlevels, we kemegh of
the extentsX; to which packets frong; are being served.

Algorithm HSFOD: The algorithm was described in Section 2.

After each packet arrival phase, for each port, the arrigéd thas to be updated and the expected
overflow time has to be computed. Unlike in the implementabbthe greedy-like strategies, a use of
priority queues is not sensible here.

3.2 Randomized algorithms

We first present the algorithRandom Schedule. In addition to them packet queues the algorithm
maintainsm auxiliary queues, each of siZe, which are initially empty. Over time the auxiliary queues
will contain real numbers from the range, 1), which serve as priorities. These priorities may be labeled
as either marked or unmarked. In the following, ..., ¢,, will refer to the original packet queues and
Q1,...,Q, tothe auxiliary queues.

Algorithm Random Schedule: At any time execute the following two steps.

1. Inthe packet arrival phase, for any new packet admittedfieeuey;, choose a real number uniformly
at random from(0, 1) and append it t@);. If Q; was full prior to this operation, then first delete the
element at the head ¢J;. The newly inserted number is labeled unmarked.

2. In the transmission phase, check if e, ..., Q,, store unmarked numbers. If so, &t be the
queue storing the largest unmarked number; ties may be batstrarily. Change the label of that
number to marked and transmit a data packet from queu®therwise, if there are no unmarked
numbers, transmit a packet from an arbitrary non-empty gueu

We remark thaRandom Schedule uses a considerable amount®{mB) extra space to store the
auxiliary queues), ..., Q,,. Additionally, in our implementation we maintain a prigriqueue based
on standard heaps that stores the unmarked numbers@iom . , Q,,. Whenever a new data packet is
admitted to a packet buffef;, we have to insert a number into the priority queue. This afjen may
be preceded by delete operation if a number first has to be removed from the hea@,ofExecuting
a deletemax operation, we can determine which of the packet buffers teeseAll the operations may
take up toO(log(mB)) time. We remark that numbers deleted from the heads ofithe.., @,
may be unmarked. Therefore, we explicitly have to main@in...,Q,, and it is not sufficient to
just store the priority queue of unmarked numbers. In ourerpents we have also tested a priority

gqueue implementation based on Fibonacci heaps. In thisthaseinning time ofRandom Schedule
decreases hy about 20% but the memory requirements incbyaadactor of 10 due to the complex
pointer structure of Fibonacci heaps. As we will see in ®&ch, even with standard heapandom
Schedule has extremely high extra memory requirements, and we therefid not use Fibonacci heaps
in our tests.

The second randomized switching algorithm known is caRaddom Permutation. The basic ap-
proach of the algorithm is to reduce the packet switchingolgmm with m buffers of sizeB to one
with mB buffers of size 1. To this end, a packet buffgrof size B is associated with a sé&p); =
{¢0,...,q,B-1} of B buffers of size 1. A packet arrival sequeneefor the problem with sizeB
buffers is transformed into a sequentdor unit-size buffers by applying a Round Robin policy. More
specifically, thej-th packet ever arriving af; is mapped tay; ; moq B in Q;. Random Permutation at any
time runs a simulation of the following algorith@mRP for m’ = m B buffers of sizel.

Algorithm SIimRP(m’): The algorithm is specified forn’ buffers for size 1. Initially, choose a permuta-
tion 7 uniformly at random from the permutations ¢n, ..., m’}. In each step transmit the packet from
the non-empty queue whose index occurs first.in

The algorithm for buffers of arbitrary size then works addals.

Algorithm Random Permutation: Given a packet arrival sequengehat arrives online, run a simula-
tion of SMRP(mB) on&. At any time, if SmRP(m B) serves a buffer frond);, transmit a packet from
q;- If the buffers ofSmRP(m B) are all empty, transmit a packet from an arbitrary non-entptgue if
there is one.

Obviously, the algorithm needs a large amoun®dfn B) extra space to ruBmRP(mB). Using a
priority queue that stores non-empty buffers of capacitywd can determine i) (log(mB)) time which
queue to serve.

3.3 An optimal offline algorithm

In order to compare the performance of the online algorithonthat of an optimal solution, we imple-
mented the algorithng~OD [3], which was proven to be an optimal offline strategy. &0D is just
used for comparison, we only state the algorithm withoutwubsing details of the implementation.

Algorithm SFOD: At any time serve the non-empty buffer that encounters gdokss earliest in the
future assuming buffers would not be served anymore; tigslmadoroken arbitrarily. If there is no such
buffer, serve an arbitrary non-empty queue.

4 The test environment

We have tested the online packet buffering algorithms ohwead traces from the Internet Traffic
Archive [18], a moderated trace repository maintained byWASIGCOMM. We have performed exten-
sive tests with seven traces whose characteristics are avizad in Table 1. A first set of four traces
monitors wide-area traffic between Digital Equipment Cogpion (DEC) and the rest of the world. A
second set of three traces monitors wide-area traffic betwezLawrence Berkeley Laboratory (LBL)
and the rest of the world. Only the TCP traffic was considef@dspite being a number of years old,
these traces still represent standard benchmarks wheringagkperimental tests and are recommended
for such studies, see e.g. the text book by KrishnamurthyRexford [24] or [28]. The traces were
gathered in over a time horizon of one to two hours and cooéikt3 to 3.8 million data packets each. In
the various traces the information relevant to us is, for éata packet, the arrival time and the sending
host address. For the sake of anonymity, the latter addressee renumbered in the original traces.

As indicated in the introduction the main goal of our expemts is to determine the experimen-
tally observed competitiveness of the online switchingetgms and to establish a relative performance

Name Date | # Packets| Place
DEC-PKT-1| 08.03.1995 22.00-23.00 2.1 mio | DEC
DEC-PKT-2| 09.03.1995 02.00-03.00 2.6 mio | DEC
DEC-PKT-3| 09.03.1995 10.00-11.00 2.8 mio | DEC
DEC-PKT-4| 08.03.1995 14.00-15.00 3.8 mio | DEC
LBL-PKT-4 | 21.01.1994 14.00-15.00 1.3 mio | LBL
LBL-PKT-5 | 28.01.1994 14.00-15.0p 1.3 mio LBL
LBL-TCP-3 | 20.01.1994 14.10-16.10 1.8 mio | LBL

Table 1: Packet traces

ranking among the strategies. Furthermore, we are inmtéstthe algorithms’ running times and mem-
ory requirements. As for the running time of a strategy, waleated theaverage time it takes the
algorithm to determine which queue to serve (total runningetsummed over all time stegstime
steps). This time is easy to determine using timers provigedhe Java library. As for extra space
requirements, we have evaluated, for any of the algoritlihesmaximum amount of memory needed by
auxiliary data structures employed by that algorithms.sTdnalysis was performed using the Java class
ObjectOutputStream . Finally in our tests, we have evaluated the actual throughpterms of the
number of data packets transferred.

In our experiments we have studied varying port numberas well as varying buffers sizds. In
order to be able to investigate varying valueshgfwe have to map sending host addresses (e.g. about
3000 in DEC-PKT-1) to port number numbers in the ragge...,m — 1}. We chose a mapping that
maps each sending host address to a port number chosemulgiftdrrandom from{0, ..., m — 1}. We
would like to point out that such a mapping does not lead tarimadd traffic at the ports as some hosts
generate a large number of packets. In our traces, undeatitom mapping, we observe highly non-
uniform packet arrival patterns where 10 to 15% of the pagt®ive ten times as many packets as each
of the other ports. This is consistent with the fact that welffic with respect to packets’ source (and
destination) addresses is distributed non-uniformlyjleihg essentially a power-law structure [13, 28].
Typically, 10% of the hosts account for 90% of the traffic. Hwer, this fact does not allow a direct
conclusion on the distribution of sending hosts among tlpaitiports of a switch. This distribution
strongly depends on the network topology. So, alternativeepower-law governed assignment of hosts
to ports is not more reasonable than our uniform distributio

Another important parameter in the experimental testsassipeed of the switch, i.e. how fast the
switch can transfer packets. Here we consider speed vatlas/e to the data volume of a given trace.
For a trace data sd?, let fp = (#packets inD)/(length of time horizon ofD) be the average packet
arrival rate inD. Speeds indicates that the switch forwards data packets with fraque fp. Thus,
intuitively, a speed 1 switch can forward the data exactlfaasas it arrives on the average. If the speed
is low, inevitably, buffers tend to be highly populated.Hétspeed is high, buffers are only lightly loaded.
In summary, each of our experiments is specified by the fatigyparameters: (a) switching algorithm
A; (b) trace data seb; (c) numbermn of buffers; (d) buffer size3; (e) speed.

5 Experimental results

We have done extensive tests with all the network tracesiorat in Section 4. A first, very positive
finding is that the results are consistent for all the trac&be phenomena reported in this section,
unless otherwise stated, have occurred for all the data Beis to space limitations, in this paper we
only present the plots for trace DEC-PKT-1. A zip-file contag the plots for all the traces can be
downloaded ahttp://www.informatik.uni-freiburg.de/"jacobs/ . In the following

dec-pkt-1.tcp dec-pkt-1.tcp
T T T 4.5e-05 T

1.035

Greedy
Semi Greedy - - -
Waterlevel
Random Schedule ------
Random Permutation — - —
HSFOD - - -- 1

Greedy
e \ Semi Greedy - - -

1.03 / Y Waterlevel
/ Random Schedule ------

4e-05 |
B . Random Permutation — - —
1.025 | . . HSFOD - - —- 4 3.5e-05

102 b 3e-05 Foso

competitive ratio
runtime

1.015 | L~ E 2.5e-05 |
e v
1.01 J) ‘\ E 2e-05
S \,
1.005 + / * 1.5e-05 |
/ Tl
1 — e ——— L le-05 L L L L L L L
0.4 0.6 0.8 1 12 1.4 1.6 18 2 0.6 0.8 1 1.2 1.4 1.6 18
speed speed
Figure 3: Competitive ratian = 30 andB = 100 Figure 4: Running timey = 30 andB = 100

subsections we report on the competitiveness, runningdimiememory requirements of the algorithms
as parameters:, B ands vary. It turned out that a variation of the speedives the most interesting
results and we therefore start with a description of thigass

5.1 Varying the speeds

Figure 3 depicts the experimentally observed competiggsrior varyings. We consider in this presen-
tation a basic setting witlm = 30 and B = 100. These parameters are chosen relative to the size of
DEC-PKT-1, which consists of 2.1 million packets. More sety, we wish to simulate the algorithms
for sufficiently largem and time steps with considerable packet traffic. Furtheemewitch simulations

in the literature usually also work withh = 8 to m = 32 ports, see e.g. [26, 30]. Our basic setting
of m and B is not critical. As we will see, the observed phenomena otmuother parameter settings
(smaller/largern and smaller/largeB) as well.

An important result of our study is that the experimentalhserved competitiveness of all the al-
gorithms ranges between 1.0 and 1.035 and hence is cordiddéoaver than the theoretical bounds.
This is not surprising because competitive analysis is @gtworst-case performance measure. It is
astonishing, though, that the gap is so high. Remark&igedy, Semi Greedy andWaterlevel have an
experimental competitiveness that is always below 1.0@2,they are never 0.2% worse than an op-
timal solution. HS-OD exhibits an even better competitiveness of less than 1.60alff values ofs.
Furthermore, interestingly, the curves fBreedy, Semi Greedy andWaterlevel are almost identical and
indistinguishable in the plot. The three algorithms haveeasally the same performance: For instance,
the difference in the number of transferred packets is leas 1000 when the total throughput of each
of the three strategies is about 2 million packets. All trgoathms have the highest ratios for values of
s around 1. On other traces, the peak sometimes occursal.l. Thus, the worst case occurs when
the average packet arrival rate is equal to the rate with kvtiie switch can forward packets and packet
scheduling decisions matter. For small and large values tfie experimental competitiveness tends
to 1. This is due to the fact that buffers tend to be either iepopulated (smalk) or lightly populated
(large s) and all the algorithms transfer essentially an optimum benof packets. Another important
result is that the theoretical and experimentally obseo@upetitive ratios are unrelated. In particular,
in the experiments the randomized strategies, which havéHeoretical competitive ratios, do perform
considerably worse than the deterministic algorithms.

Figure 4 shows the running times of the algorithms, i.e. trerage time in seconds it takes an al-
gorithm to perform 1 time step (update auxiliary data stiees$ to account for incoming packets and
determine the queue to be served). We evaluate the runmies fior varyings because the buffer occu-

dec-pkt-1.tcp dec-pkt-1.tcp

le+07 T 1.05 T T
Greedy Greedy
Semi Greedy - - - Semi Greedy - - -
Waterlevel Waterlevel
1le+06 | Random Schedule ------ g 1.04 } Random Schedule ------
Random Permutation — - — Random Permutation — - — .
HSFOD - - -- HSFOD - - -- .. .------)
100000 F " T T T T T T T T S 103 f---7C
2 b] o
o >
5 =
£ g
10000 £ 1.02
] o .
1000 p—m—m—m—/ /0 1.01
100 L L L L L L L P e e e e ———
0.6 0.8 1 1.2 14 1.6 1.8 50 100 150 200 250 300 350 400 450 500
speed buffer size
Figure 5: Memorym = 30 andB = 100 Figure 6: Competitive ratiop = 30 ands = 1.0

pancy depends oxnand the latter occupancy can affect the running time. Unifprover all algorithms
we observe decreasing running times for increasing valties ®he reason is that, for large buffers
tend to be empty and the algorithms need less time to handléroe step Greedy andSemi Greedy are
the fastest algorithm&emi-Greedy being only slightly slower thasreedy. HS-OD, Random Schedul e,
Random Permutation andWaterlevel have considerably higher running timeaéterlevel is the slowest
strategy with running times that are more than twice as higtiat ofGreedy. A shown in Figure 4, the
algorithms need 20 to 40 milliseconds to perform one timp.stéese times would be lower in a switch
hardware implementation; our runtime tests just repreaamparative study of the algorithms.

Figure 5 reports on the memory requirements of the algosthmeasured in bytes. Recall that we
monitored the maximum total memory required used by auyiliata structures. The memory require-
ments are stable for varying Nevertheless we depict them in a plot to allow better comsmar with
the results of the following sections where memory requeets vary asB andm vary. We emphasize
here that our plots for the memory requirements are drawmgualogarithmic scale as the amount of
extra memory needed differs vastly among the strategieto As expected;iiSFOD, Greedy and Semi
Greedy have small requirement$&lSFOD uses no more than 500 bytes, whieeedy and Semi Greedy,
using priority queues, allocate 1000 to 1300 byté&terlevel has space requirements that are twice as
high. Huge amounts of extra space (80.000 to 100.000 bytesieguired byRandom Schedule and
Random Permutation. Recall that these algorithms need space for auxiliary gsi@ndm B unit-size
buffers.

5.2 Varying the buffer size

In a next set of experiments we study the effect of varyinghiléer size B. We investigate this effect
for the critical speed = 1.0 where the observed competitive ratios are highest. Figuskovs that
the buffer size has essentially no effect on the competiéigs; only the randomized strategies show a
slight fluctuation. This supports our statement that ouiahsettingm = 30 and B = 100 plays no
particular role. AgainHSFOD outperforms all the other algorithms and the performanc&rekdy,
Semi Greedy andWaterlevel is almost identical. In Figure 7 we observe that the runnimgs, too, are
stable. The only exception Bandom Schedule. The maintenance of its auxiliary queues takes more
time asB increases. As for the required space (cf. Figure 8), as was xpected, the deterministic
strategies have fixed demands as the size of the auxiliagystiatctures depends only @m. Random
Schedule and Random Permutation experience a linear increase as the auxiliary data strestdepend
onmB. The increase is about 20 bytes per additional buffer ceicaR that Figure 8 is drawn on a
logarithmic scale.

10

dec-pkt-1.tcp dec-pkt-1.tcp
T T T T le+07

Gre'edy j Gree'dy
4.5e-05 - Semi Greedy - - - Semi Greedy - - -
Waterlevel Waterlevel
Random Schedule ------ 1e+06 F Random Schedule ------ 4
4e-05 Random Permutation — - — 4 Random Permutation — - — I
HSFOD - - -- HSFOD - - - - —-—""" T
° 3.5e-05 | 4 > 100000 | . / ST
£ S
5 2
[
2 [s LT s — £
3e-05 — 1 10000 |
25e05 .- b __________
1000
2e-05 - o —
L L L L L L L L 100 L L L L L L L L
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
buffer size buffer size
Figure 7: Running timey: = 30 ands = 1.0 Figure 8: Memorym = 30 ands = 1.0
dec-pkt-1.tcp dec-pkt-1.tcp
1.06 T T 5.5e-05 T T T
Greedy Greedy
Semi Greedy - - - Semi Greedy - - -
105 | Waterlevel 1 5e-05 Waterlevel 7
’ Random Schedule ------ JUPEARN Random Schedule ---- - - -
Random Permutation — - — el 45e-05 F Random Permutation — - — e
HSFOD - - -- HSFOD - - -- -
o 1.04FfF 1
.g 4e-05
@ [}
2 103} £ aseosf
g - =]
£ . T
15 . - 3e-05
© 102 L—— . 1
- -
o 2.5e-05 |
o1 .7
2e-05
1 —_— - - 1= -, Ty - - 1.56-05 N N N N N N N N
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
number of ports number of ports

Figure 9: Competitive ration B = 3000 ands = 1.0 Figure 10: Running timenB = 3000 ands = 1.0

5.3 Varying the number of ports

Next we analyze the effect of varying the numberof ports, focusing again on the most critical speed
s = 1.0. We consider a fixed product of B, which is equal ton B = 3000 for our initial parameters.
The reason is the following: Varying: while fixing B would investigate the effect to giving a switch
more total buffer space, an issue that was already studiSédtion 5.2.

Interestingly, the algorithms perform well in our new scéma All deterministic algorithms show
a very slight increase in experimental competitiveness,Fgure 9. The increase is more pronounced
in the case oRandom Schedule and Random Permutation. The general increase in competitiveness is
due to the fact that for a larger number of ports, online atgors have a higher chance of serving the
“wrong” port. Figure 10 reveals a weaknessHFOD; its running time increases linearly with. The
same holds foWaterlevel, although the gradient is smaller here. For all the othextatjies the running
times are stable. As for the memory requirements (see Filjl)ras was to be expected, the deterministic
algorithms have slightly increasing demands (about 4 hytesadditional port). The demands are fixed
for Random Schedule andWaterlevel as the sizes of the auxiliary data structures are lineat i

5.4 The absolute throughput

Finally, we analyze the actual throughput of the algorithimes the total number of successfully trans-
ferred data packets. Our analyses also include the optifflaieoalgorithm SFOD. Recall that the

11

dec-pkt-1.tcp dec-pkt-1.tcp

le+07 T T 2.2e+06
Greedy
Semi Greedy - - -
Waterlevel 2.1e+06 |
1e+06 F Random Schedule ------ 4
Random Permutation — - — 2e+06 [
HSFOD - - - -
100000 — — " —"— " —-—-—-—-—-—-—-—-—- E = 1.9e+06 -
= 2
o <
£ S 1.8e+06 |
o <]
£ £
10000 | T 1.7e+06
Greedy
o Semi Greedy - - -
1.6e+06 [/- Waterlevel 1
1000 £ A Random Schedule ------
1.50+06 F Random Permutation — - — |
HSFOD - - --
SFOD +
100 L L L L L L L L 1.4e+06 L L L L L L
10 20 30 40 50 60 70 80 90 100 0.7 0.8 0.9 1 11 1.2 13 1.4
number of ports speed
Figure 11: Memorym B = 3000 ands = 1.0 Figure 12: Throughpuip = 30 andB = 100

DEC-PKT-1 trace consists of 2.1 million data packets, wlitidn represents the maximum throughput
possible. Figure 12 depicts the throughputsasries. We observe an almost linear increase as
creases, leading to the maximum possible throughput=at1.2. At our critical speets = 1 we vary
again B andm, cf. Figures 13 and 14. AS® increases, the throughput improves. Interestingly, the
gradient is almost the same for all the algorithms. Increashe numbern of ports while fixing the
total amount of memory available in the swit@®;0D, HS-OD, Greedy, Semi Greedy and Water|evel
experience almost no performance loss. On the other HRamdlom Permutation and Random Schedule
experience a loss in throughput. The gradient is almostaheedor the latter two algorithms.

dec-pkt-1.tcp dec-pkt-1.tcp
2.08e+06 T T T T T T T T T G T " T
L reedy
2.06e+06 Semi Greedy - - -
2.06e+06 Waterlevel
2.04e+06 [Random Schedule ----- -]
2.04e+06 } Random Permutation — - —
2.02e+06 | HSFOD - - -- {
2.02e+06 SFop -
o '+ o T -
5 € 5 2e+06 | e T N
3 et / S 1.98e+06 |
£ 1 £ - .
L9806 £ Greedy 196e+06 | T~
. Semi Greedy - — - T
1.96e+06 p~ Waterlevel 1 1.94e+06 -
P Random Schedule ------ Ee—
1.94e+06 F .-~ Random Permutation — - — | L el
e HSFOD - - - 1.92e+06
SFOD +
1.92e+06 L L L L L L L 1.9e+06 L L L s ' L N N
50 100 150 200 250 300 350 400 450 500 10 20 30 40 50 60 70 80 90 100
buffer size number of ports
Figure 13: Throughpuip = 30 ands = 1.0 Figure 14: ThroughpuipB = 3.000 ands = 1.0

6 Summary and conclusions

We summarize the most important findings of our experimesttady.

e Greedy: Excellent experimental competitiveness (below 1.002 liesit); nearly optimal for small
and larges as well as for largds. Very low, stable running time. Very low memory requirenmgent

e HS-OD: The best experimental competitiveness, closing more thifrohthe gap betweereedy
and the optimal offline algorithm. The running time is howehigh for large values ofn. Very low
memory requirements.

e Semi Greedy: Excellent experimental competitiveness equal to th&rekdy. Low running time that
is slightly higher than that o&reedy, but the difference is marginal. Very low memory requirensen

12

that are a bit larger than that Gireedy.

e Waterlevel: Excellent experimental competitiveness equal to thadreedy andSemi Greedy. How-
ever, the running time is typically more than twice as hidiie gap is increasing for large. Memory
requirements, too, are more than twice as high.

e Random Schedule: Worst experimental competitiveness among all the algmsth Running time is
significantly higher than that dbreedy andSemi Greedy. Memory requirements are huge compared
to that of the deterministic algorithms.

e Random Permutation: High experimental competitiveness. High running time andehmemory
requirements.

We conclude that, from a practical point of vielWS-OD is the algorithm of choice for switches
with a small number of ports. For larges, Greedy is the best algorithm if computation time is limited.
The employment of another algorithm is only advisable if astoase performance must gearanteed.

In this case we recommend to apf@smi Greedy as it achieves the same experimental performance as
Greedy and its running time is only marginally higher.

Our tests also show that the experimentally observed cativpetatios of the packet buffering al-
gorithms are considerably smaller than the theoreticahdeu Most of the strategies perform within
3% of an optimal offline solution. The same phenomenon alsorsdouother online problems such as
paging or scheduling [4, 17, 15, 31]. In our opinion, this gamo weakness of competitive analysis
as competitive analysis is a strong worst-case performandesequences causing the worst-case ratio
usually do not occur in practice. A second general findingwftests is that the relative performance
of the algorithms is unrelated with respect to the theoaétamd experimentally observed competitive
ratios, i.e. algorithms with a small theoretical compeditiess do not perform better in practice. This is
somewhat disappointing. Apparently, the randomizedegias are tailored to specific worst-case input
sequences but do not respond well to typical inputs.

References

[1] G. Aggarwal, R. Motwani, D. Shah and An Zhu. Switch scHeduvia randomized edge coloring
Proc. 4th Annual |EEE Symp. on Foundations of Computer Science, 502-511, 2003.

[2] W. Aiello, Y. Mansour, S. Rajagopolan and A. Rosén. Cetitjve queue policies for differentiated
servicesProc. INFOCOM, 431-440, 2000.

[3] S. Albers and M. Schmidt. On the performance of greedgutigms in packet buffering?roc. 36th
ACM Symp. on Theory of Computing, 35—-44, 2004.

[4] S. Albers, B. Schroder. An experimental study of snlgaheduling algorithmsACM Journal of
Experimental Algorithms, 7(3), 2002.

[5] N. Andelman, Y. Mansour and A. Zhu. Competitive queugidjcies in QoS switchefroc. 14th
ACM-SAM Symp. on Discrete Algorithms, 761-770, 2003.

[6] Y. Azar and A. Litichevskey: Maximizing throughput in riiiqueue switchesProc. 12th Annual
European Symp. on Algorithms (ESA), Springer LNCS 3221, 53-64, 2004.

[7] Y. Azar and Y. Richter. Management of multi-queue swéshn QoS networksProc. 35th ACM
Symp. on Theory of Computing, 82—89, 2003.

[8] Y. Azar and Y. Richter. An improved algorithm for CIOQ sefes.Proc. 12th Annual European
Symp. on Algorithms (ESA), Springer LNCS 3221, 65-76, 2004.

[9] A. Aziz, A. Prakash and V. Ramachandran. A new optimalesither for switch-memory-switch
routers.Proc. 15th ACM Symp. on Parallelism in Algorithms and Architectures, 343—-352, 2003.

[10] N. Bansal, L. Fleischer, T. Kimbrel, M. Mahdian, B. Sebér and M. Sviridenko. Further im-

provements in competitive guarantees for QoS bufferirgc. 31st International Colloguium on
Automata, Languages and Programming (ICALP), Springer LNCS 3142, 196-207, 2004.

13

[11] A. Bar-Noy, A. Freund, S. Landa and J. Naor. Competitiveline switching policiesProc. 13th
ACM-SAM Symp. on Discrete Algorithms, 525-534, 2002.

[12] M. Chrobak, W. Jawor, J. Sgall and T. Tichy. Improvedinalalgorithms for buffer management
in QoS SwitchesProc. 12th Annual European Symp. on Algorithms (ESA), Springer LNCS 3221,
204-215, 2004.

[13] I. Elhanany, D. Chiou, V. Tabatabaee, R. Noro and A. Bepanj. The network processing forum
switch fabric benchmark specifications: An overvi¢ieEE Network, 5-9, 2005.

[14] P. Embrechts and M. Maejim&¢lfsimilar Processes. Princeton University Press, 2002.

[15] R.L. Graham. Bounds for certain multi-processing aaties. Bell System Technical Journal,
45:1563-1581, 1966.

[16] E.L. Hahne, A. Kesselman and Y. Mansour. CompetitivBdoumanagement for shared-memory
switchesProc. 13th ACM Symp. on Parallel Algorithms and Architectures, 53—-58, 2001.

[17] A. Borodin, S. Irani, P. Raghavan and B. Schieber. Cditipe paging with locality of reference.
Journal of Computer and System Sciences, 50:244—-258, 1995.

[18] The Internet traffic archivéttp://ita.ee.lbl.gov

[19] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt- Shamw%hleber and M. Sviridenko. Buffer over-
flow management in QoS switchelroc. 31st ACM Symp. on Theory of Computing, 520-529,
2001.

[20] A. Kesselman and Y. Mansour. Loss-bounded analysidiftarentiated servicedroc. 12th ACM-
SAM Symp. on Discrete Algorithms, 591-600, 2001.

[21] A. Kesselman, Y. Mansour and R. van Stee. Improved cdithgeguarantees for QoS buffering.
Algorithmica, 43(1-2):63-80, 2005.

[22] A. Kesselman and A. Rosén. Scheduling policies for Ql6witches.Proc. 15th Annual ACM
Symp. on Parallelismin Algorithms and Architectures, 353—-361, 2003.

[23] H. Koga. Balanced scheduling towards loss-free pagketueing and delay fairnesBroc. 12th
Annual International Symp. on Algorithms and Computation, Springer LNCS Vol. 2223, 61-73,
2001.

[24] B. Krishnamurthy and J. Rexfordleb Protocols and Practice. Addison-Wesley, 2001.

[25] M. Schmidt. Packet buffering: Randomization beat®duatnistic algorithmsProc. 22nd Annual
Symp. on Theoretical Aspects of Computer Science (STACS), Springer LNCS 3404, 293—-304, 2005.

[26] S. Sukhtankar, D. Hecht and W. Rosen. A novel switchiggcture for high-performance comput-
ing and signal processing networl&oc. 3rd |EEE International Symposium on Network Comput-
ing and Applications, 215—-222, 2004.

[27] D.D. Sleator and R.E. Tarjan. Amortized efficiency @it lupdate and paging ruleSomm. of the
ACM, 28:202-208, 1985.

[28] C. Williamson. Internet traffic measurementSEE Internet Computing, 5:70—-74, 2001.

[29] W. Willinger, M.S. Tagqu and A. Erramilli. A bibiograptal guide to self-similar traffic and per-
formance modeling for modern high-speed networks. In FeyKS. Zachary and I. Ziedins (eds.),
Sochastic Networks Theory and Applications, Oxford Science Press, 339—-366, 1996.

[30] M. Yang and S.Q. Zheng. An efficient scheduling algaritfor CIOQ switches with space-division
multiplexing expansionProc. 22nd Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (IEEE INFOCOM), 2003.

[31] N.E. Young: The k-server dual and loose competitivenies paging.Algorithmica, 11:525-541,
1994.

14

Appendix

The experimentally observed competitivenes$i8FOD for varying «.. The results are shown for trace

DEC-PKT-1

1.0012

dec-pkt-1.tcp

1.0011

1.001

1.0009

1.0008 [

competitive ratio

1.0006

1.0005

1.0004

1.0007 77 -~

" HSFOD - - --

R\

alpha

09 091 092 093 094 095 096 097 098 099

1

Figure 15: Competitive ratios = 1, m = 30, B = 100

15

1.0005

dec-pkt-1.tcp

1.00049
1.00048 |
1.00047
1.00046 f ~
1.00045 |

1.00044

competitive ratio

1.00043 |
1.00042

1.00041 |

HSFOD - - - -

1.0004
0.9

Figure 16:

9 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999

alpha

Competitive ratios = 1, m = 30, B = 100

