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Abstract

We present the first experimental study of online packet buffering algorithms for network switches.
The design and analysis of such strategies has received considerable research attention in the theory
community recently. We consider a basic scenario in whichm queues of sizeB have to be main-
tained so as to maximize the packet throughput. AGreedy strategy, which always serves the most
populated queue, achieves a competitive ratio of only 2. Therefore, various online algorithms with
improved competitive factors were developed in the literature.

In this paper we first develop a new online algorithm, calledHSFOD, which is especially designed
to perform well under real-world conditions. We prove that its competitive ratio is equal to 2.

The major part of this paper is devoted to the experimental study in which we have implemented
all the proposed algorithms, includingHSFOD, and tested them on packet traces from benchmark
libraries. We have evaluated the experimentally observed competitivess, the running times, memory
requirements and actual packet throughput of the strategies. The tests were performed for varying
values ofm andB as well as varying switch speeds. The extensive experimentsdemonstrate that
despite a relatively high theoretical competitive ratio, heuristic and greedy-like strategies are the
methods of choice in a practical environment. In particular, HSFOD has the best experimentally
observed competitiveness.

∗Department of Computer Science, University of Freiburg, Georges Köhler Allee 79, 79110 Freiburg, Germany.
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1 Introduction

Over the past five years the algorithms community has witnessed tremendous research interest in packet
buffering algorithms, see e.g. [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 16, 19, 20, 21, 22, 23, 25] for a selection of
the work. Given a network router or switch that is equipped with packet buffers of limited capacity, the
general goal is to design strategies for serving these buffers so as to maximize the total packet throughput.
While packet buffering policies have been investigated in the applied computer science and, in partic-
ular, networking communities for many years, only seminal papers by Aiello et al. [2] and Kesselman
et al. [19] have initiated theoretical and algorithmic studies. These studies aim at analyzing existing
algorithms and at designing new strategies with a provably good performance.

Obviously, packet buffering is an online problem in that data packets arrive over time and, at any
time, future packet arrivals are unknown. Results from queueing theory cannot be applied directly as
network traffic exhibits so-calledself-similar properties, cf. [14, 29]. Therefore, algorithmic research
resorts to competitive analysis [27], comparing an online algorithm A to an optimal offline algorithm
OPT that knows the entire packet arrival sequence in advance. Algorithm A is calledc-competitive
if, for all packet arrival sequences, the throughput achieved byA is at least1/c times that of OPT. In
the above-mentioned algorithmic body of work, various packet buffering problems were investigated.
The following natural questions arise: Do the competitive analyses give meaningful results? Are the
proposed new algorithms interesting from a practical pointof view? Does optimizing the worst-case
behaviour also improve the practical performance? So far, these issues were not addressed.

In this paper we present the first experimental study of online packet buffering algorithms. We
consider a scenario that is very basic and has been investigated the most among the proposed models,
see [3, 6, 7, 19, 25]. Specifically, we are givenm packet buffers, each of which is associated with an input
port of a switch. Each buffer is organized as a queue and can simultaneously store up toB data packets.
The capacityB is also referred to as thesize of the buffer. Time is assumed to be discrete. Each time step
consists of two phases, namely apacket arrival phase and apacket transmission phase. At any time, in
the packet arrival phase, new packets may arrive at the buffers. Letbi be the number of packets currently
stored in bufferi, and letai be the number of newly arriving packets at that buffer. Ifai+bi ≤ B, then all
new packets can be accepted; otherwiseai + bi −B packets must be dropped. Furthermore, at any time,
in the packet transmission phase, an algorithm can select one non-empty buffer and transfer the packet
at the head of that queue to the output port. We assume w.l.o.g. that the packet arrival phase precedes the
transmission phase. The goal is to maximize the throughput,i.e. the total number of transferred packets.

The scenario we study here arises, for instance, in input-queued (IQ) switches which represent the
dominant switch architecture today. In an IQ switch withm input andm output ports packets that arrive
at inputi and have to be routed to outputj are buffered in a virtual output queueQij. In each time step,
for any outputj, one data packet from queuesQij, 1 ≤ i ≤ m, can be sent to that output. A small IQ
switch with three input and three output ports is depicted inFigure 1. In our problem formulation the
m buffers correspond to queuesQij, 1 ≤ i ≤ m, for any fixedj. We emphasize that we consider all
packets to be equally important, i.e. all of them have the same value. Most current networks, in particular
IP networks, treat packets from different data streams equally in intermediate switches.

Known algorithms: The most simple and natural packet buffering algorithm is the Greedy policy:
At any time serve the queue currently storing the largest number of packets. Unfortunately,Greedy
has essentially the worst possible competitive ratio. It iseasy to show [3, 7] that anywork conserving
algorithm, which at any time serves an arbitrary non-empty buffer, is 2-competitive. Obviously,Greedy
belongs to the class of work conserving strategies. It was shown in [3] that the competitive ratio of
Greedy is not smaller than2 − 1/B, no matter how ties are broken. ThusGreedy has a competitiveness
of exactly 2, for arbitrary buffer sizes. The first deterministic algorithm that achieved a competitive
ratio below 2 was devised in [3]. The proposedSemi Greedy algorithm deviates from standardGreedy
when the buffer occupancy is low and has a competitive performance of17/9 ≈ 1.89. The deterministic
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Figure 1: An IQ switch.

strategy with the smallest competitive ratio known is theWaterlevel algorithm [6] with a competitiveness
of e

e−1
(1 + ⌊Hm+1⌋

B
), whereHm is them-th Harmonic number. This ratio is optimal, for largeB, as

no deterministic algorithm can have a competitive ratio smaller thane/(e − 1) ≈ 1.58, see [3]. As for
randomized strategies, aRandom Schedule algorithm [7] achieves a competitive ratio ofe/(e−1) while a
Random Permutation algorithm is 1.5-competitive [25]. These performance ratios hold against oblivious
adversaries and are close to the best lower bound of 1.46, see[3]. The five algorithms just mentioned
comprise all online strategies known in the literature for our packet buffering problem. As for the offline
problem, a polynomial time algorithm computing optimal solutions was given in [3].

Contributions of this paper: We first introduce a new online packet buffering algorithm called
HSFOD. It is based on the idea to estimate the packet arrival rate for each port. In each time step the
algorithm transmits a packet from a non-empty queue that, according to these arrival rates, encounters
packet loss earliest in the future assuming buffers would not be served anymore. This new strategy is
presented in Section 2. We prove that it achieves a competitive ratio of 2.

The major part of this paper is devoted to an extensive experimental study of the packet buffering
problem under consideration. The main purpose of our experiments is to determine the experimentally
observed competitiveness of all the proposed online algorithms and to establish a relative performance
ranking among the strategies. As the name suggests, the experimentally observed competitiveness is the
ratio of the throughput of an online algorithm to that of an optimal solution as it shows in experimental
tests. Additionally, we wish to evaluate the running times and memory requirements of the algorithms
as some of the strategies are quite involved and need auxiliary data structures. Finally, we are interested
in the actual throughput in terms of the total number of successfully transmitted packets.

In order to get realistic and meaningful results, we have tested the algorithms on real-world traces. We
selected traces from the Internet Traffic Archive [18], which is a moderated trace repository sponsored
by ACM SIGCOMM. In our experiments we have studied varying port numbersm as well as varying
buffers sizesB. Furthermore, we have investigated the influence of varyingthe speed of a switch, i.e.
the frequency with which it can forward packets. We have adjusted this parameter relative to the given
data traces. For instance, a speed of value 1 indicates that theaverage packet arrival frequency is equal
to the frequency with which packets can be transmitted.

In Section 3 we present a concise description of the five previously known online buffering algo-
rithms as well as the optimal offline strategy. For all the proposed strategies, includingHSFOD, we
describe how the given pseudo-code was indeed implemented and discuss runtime issues as well as extra
space requirements of the strategies. We implemented the data model and the algorithms using the Java
programming language. The test environment is described inSection 4. A detailed presentation of the
results follows in Section 5. One of the most important findings is that the experimentally observed com-
petitiveness is much lower than the theoretical bounds. Typically, the online algorithms are at most 3%
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worse than an optimal offline algorithm. In fact,HSFOD shows the best performance, having a gap of
less and 0.1%. We remark here thatHSFOD was designed after we had implemented and evaluated the
previously known algorithms. Hence it can be viewed as a result of an algorithm engineering process.
Furthermore, the theoretical competitive ratios are no proper indication of how the algorithms perform
in practice. The randomized algorithms, despite their low theoretical competitiveness, do not perform
better than the deterministic ones. From a practical point of view Greedy, HSFOD andSemi Greedy are
the algorithms of choice. Section 6 summarizes the main results of our study.

2 The new algorithmHSFOD

The new strategy we introduce estimates future packet arrival rates by keeping track of past arrival
patterns. Based on these arrival rates, the algorithm mimics the optimal offline algorithmSFOD [3]
which at each point of time transmits a packet from a non-empty queue that would overflow earliest in
the future if no queues were served.

Algorithm HSFOD: For each input port, the algorithm maintains a weighted moving average estimating
the packet arrival rate at that port. These estimates are updated after each packet arrival phase. For
i ≤ i ≤ m, let ri(t) be the rate at porti at timet. Then

ri(t) = α · ri(t − 1) + (1 − α) · ai(t),

whereai(t) is the number of packets that have just arrived at porti, andα ∈ (0, 1) is some fixed constant.
We setri(0) = 0 initially. The overflow time for each porti is calculated astovi (t) = (B − bi(t))/ri(t),
wherebi(t) is the number of packets currently stored in bufferi. Note thatri(t) andtovi (t) are allowed
to take fractional values. At any time the algorithm serves the buffer that has the smallest overflow time;
ties may be broken arbitrarily.

Theorem 1 The competitive ratio of HSFODis exactly equal to 2.

Proof. As HSFOD is work conserving, i.e. always transmits a packet when there is a non-empty buffer,
it has a competitive ratio of 2 (see [3]). The following packet arrival pattern shows the tightness of that
bound. The packets arrive inm − 1 phases. In phasei = 1, . . . ,m − 1 there arriveB packets at port
i + 1 and a huge amount ofAi ≫ B packets at porti, such thatHSFOD transmits only packets from
the latter buffer in the nextB time units. It is easy to observe that such anAi exists for any0 < α < 1.
No further packets arrive until bufferi has been completely emptied byHSFOD, which also marks the
end of phasei. The adversary algorithm ADV transmits only packets from buffer i + 1, which is thus
empty by the end of the phase. Afterm − 1 phases,HSFOD stores a total of exactlyB packets in its
buffers, while ADV stores(m−1) ·B packets. So after(m−1) ·B additional time steps without packet
arrival, HSFOD has transmitted a total number ofm · B packets, while ADV has been able to transmit
(2m − 2) · B packets. The ratio converges to 2 for largem. 2

HSFOD depends on a parameterα, where0 < α < 1, that weights past and current packet arrivals
and hence determines the length of theHSFOD’s memory. For larger values ofα, the long-term packet
arrival rate has a higher weight than short-term changes. Good buffering policies make the greatest dif-
ference when the speed of a switch takes values around 1, see Section 5 that reports on the experimental
results. In this case the average data rate at any port is1/m, which means that a packet arrives only
about everymth time step. Since the short-term arrival rate fluctuates more (from 0 to 1, from 1 to 0)
than the long-term rate, the short-term arrival rate does not provide a realistic estimate of the overflow
time. Thus, reasonable values ofα will be close to1.

Figure 15 in the Appnedix shows the experimentally observedcompetitiveness ofHSFOD for values
of α between 0.9 and 1. The plot shows the results for the data set that will be the representative trace
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throughout Section 5. We observe that all ratios are nearly 1. The best results are achieved for values ofα
with 0.99 ≤ α ≤ 1. This interval is considered in more detail in Figure 16 in the Appendix. Here values
of α with 0.995 ≤ α ≤ 0.997 lead to the lowest ratios. Hence we setα to 0.997 in our experiments.

3 The implemented algorithms

In this section we present the packet buffering algorithms we have evaluated experimentally, i.e. all the
previously known algorithms in addition toHSFOD. We describe some implementation issues, optimiz-
ing running time and memory requirements of the strategies.We note that our experiments of course
represent an algorithmic simulation rather than a switch hardware realization of the buffering strategies.

As we consider a scenario where all packets have the same value, unless otherwise stated, the algo-
rithms apply a greedy admission policy: At any timet and for any of them buffers, whenever new data
packets arrive, an algorithm accepts as many packets as possible subject to the constraint that a buffer
can only store up toB packets simultaneously. Thus the algorithms we present here only specify which
buffer to serve in each time step. We will use the termsbuffer andqueue interchangeably and useqi to
refer to thei-th buffer/queue. Let theload of a queue be the number of packets currently stored in it.

3.1 Deterministic online algorithms

We first state theGreedy andSemi Greedy policies.

Algorithm Greedy: In each time step serve the queue currently having the maximum load; ties may be
broken arbitrarily.

In our implementation ofGreedy, we break ties by choosing the buffer with the smallest index.
Furthermore, using a standard heap data structure, we determine the most populated queues in worst
case timeO(log m).

Algorithm Semi Greedy: In each time step execute the first of the following three rules that applies to
the current buffer configuration. (1) If there is a queue buffering more than⌊B/2⌋ packets, serve the
queue currently having the maximum load. (2) If there is a queue the hitherto maximum load of which
is less thanB, then among these queues serve the one currently having the maximum load. (3) Serve the
queue currently having the maximum load. In each of the threerules, ties are broken by choosing the
queue with the smallest index. Furthermore, whenever all queues become empty, the hitherto maximum
load is reset to 0 for all queues.

In our implementation we use two priority queues based on standard heaps. The first one stores the
load of all the queues. The second one stores the load of thosequeues whose hitherto maximum load is
less thanB. With the help of these auxiliary data structures, we can determine inO(log m) worst case
time which queue to serve.

We next give a condensed presentation of theWaterlevel strategy. In the original paper [6] the de-
scription was more general.Waterlevel is quite involved and consists of a cascade of four algorithms
that simulate each other. At the bottom level there is a fractional Waterlevel algorithm, denoted byFWL,
that allows us to process fractional amounts of packets.FWL is based on the fact that a packet switch-
ing schedule can be viewed as a matching that maps any time step t to the packetp transmitted during
that step. For any packet arrival sequenceσ, consider the following bipartite graphGσ = (U, V,E) in
which vertex setsU andV represent time steps and packets, respectively. IfT is the last point in time
at which packets arrive inσ, then packets may be transmitted up to timeT + mB. Thus, for any time
t, 1 ≤ t ≤ T + mB, setU contains a vertexut. For any packetp that ever arrives,V contains a vertex
vp. Let P i

t be the set of the lastB packets that arrive at queueqi until (and including) timet and let
Pt = ∪m

i=1P
i
t . The set of edges is defined asE = {(ut, vp) | p ∈ Pt}.
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In a standard matching, each edge is either part of the matching or not, i.e. for any edge(ut, vp) ∈ E
we can define a variablexp

t that takes the value 1 if the edge is part of the matching and 0 otherwise.
In a fractional matching we relax this constraint and allowxp

t ∈ [0, 1]. Intuitively, xp
t is the extent to

which packetp is transmitted during timet. Of course, at any timet, a total extent of at most 1 can be
transmitted, i.e.

∑
p∈Pt

xp
t ≤ 1, and over all time steps any packetp can be transmitted at most once, i.e.

∑T+mB
t=1 xp

t ≤ 1.
The graphGσ evolves over time. At any timet, 1 ≤ t ≤ T + mB, a new nodeut is added toU and

new packet nodes, depending on the packet arrivals, may be added toV . A switching algorithm has to
construct an online matching, mapping time steps (fractionally) to data packets that have arrived to far.
The idea of theWaterlevel algorithm is to serve the available data packets as evenly aspossible. For any
time t and any packetp, let sp

t =
∑

t′<t xp
t be the extent to whichp has been served to far. The fractional

Waterlevel algorithmFWL works as follows.

Algorithm FWL: At any timet, for any packetp ∈ Pt match an extent ofxp
t = max{h− sp

t , 0}, where
h is the maximum number such that

∑
p∈Pt

xp
t ≤ 1.

The goal of the following steps is to discretizeFWL. This is done by admitting only full, integral
packets to the buffers and by transmitting only full, integral packets. In order to guarantee the same
throughput asFWL one employs slightly larger buffers.

Algorithm FWL’: Work with queues of sizeB +1 and run a simulation ofFWL on queues of sizeB. At
any timet, in the packet arrival phase, accept as many packets as possible subject to the constraint that
only complete packets may be accepted. In the transmission phase, at any timet, transmit a total amount
of Xi

t from queueqi, whereXi
t is the total amount transferred byFWL from queueqi. If

∑m
i=1 Xi

t < 1,
then transmit an amount of1 −

∑m
i=1 Xi

t from arbitrary non-empty queues as long as there are such.

While the last algorithm discretized the arrival step, the next one discretizes the transmission step.

Algorithm D(FWL’): Work with queues of sizeB + 1 + ⌊Hm⌋. Run a simulation ofFWL’ with queues
of sizeB + 1. At any timet and for any queueqi, let Si be the total number of packets transmitted from
queueqi by D(FWL’) before time t and letS′

i be the total amount of packets from queueqi transmitted
by FWL’ up to (and including) timet. Transmit a packet from the queue for which the residual service
extentS′

i − Si is largest.

In a last step we take care of the large buffer sizes.

Algorithm Waterlevel: Work with queues of sizeB. Run a simulation ofD(FWL’). In each time step,
accept a packet ifD(FWL’) accepts it and the corresponding queue is not full. Transmitpackets as
D(FWL’) if the corresponding queue is not empty.

Obviously,Waterlevel is expensive with respect to both running time and space. At first sight it may
seem that each of the simulated algorithmsFWL, FWL’ andD(FWL’) needs an extra space ofΘ(mB).
However, this does not hold true. For each simulated algorithm it suffices to just keep track of the current
load in each queue.

We next describe an efficient implementation ofFWL. At any timet and for any packetp ∈ Pt, the
algorithm has to determine the extent to whichp is served. To this end, the service extentssp

t are crucial.
Note thatPt contains at mostmB packets, namely the lastB packets that have arrived at each of them
queues. In our implementation we maintain a doubly-linked list L of all thesp

t values,p ∈ Pt, sorted in
increasing order. For each entry in the list we store a vectorof lengthm indicating how many packets in
qi, 1 ≤ i ≤ m, currently take that value. The values inL together with the total number of packets taking
a certain value give rise to a waterlevel profile depicted in Figure 2. Each level of the profile represents
a value inL. The width of a level corresponds to the total number of packets p ∈ Pt having a service
extentsp

t equal to that level. In each time step at which new data packets arrive, we have to updateL.
This is done by first adding a waterlevel of heights = 0 at the head ofL, storing for each queueqi the
numberni of newly arrived packets. If, for queueqi, the previous loadli plus ni exceedsB, then we
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have to discard the oldestn′
i = li + ni − B packets fromqi. This corresponds to a proper update ofPt.

Algorithm FWL ensures that packets residing longer inqi have larger service extents. Thus, starting at
the tail ofL, we discard for anyqi the oldestn′

i packets. This is done by simply decreasing the number
of packets fromqi that contribute to a waterlevel until a total number ofn′

i has been discarded.

1.0

0

Figure 2: The waterlevel profile

The computation of thexp
t values amounts to filling water of volume 1 into the waterlevel profile.

More specifically, we repeatedly have to find out which adjacent waterlevels to merge. Each merge
operation can be performed inO(m) time. Simultaneously, while raising waterlevels, we keep track of
the extentsXi

t to which packets fromqi are being served.

Algorithm HSFOD: The algorithm was described in Section 2.
After each packet arrival phase, for each port, the arrival rate has to be updated and the expected

overflow time has to be computed. Unlike in the implementation of the greedy-like strategies, a use of
priority queues is not sensible here.

3.2 Randomized algorithms

We first present the algorithmRandom Schedule. In addition to them packet queues the algorithm
maintainsm auxiliary queues, each of sizeB, which are initially empty. Over time the auxiliary queues
will contain real numbers from the range(0, 1), which serve as priorities. These priorities may be labeled
as either marked or unmarked. In the following,q1, . . . , qm will refer to the original packet queues and
Q1, . . . , Qm to the auxiliary queues.

Algorithm Random Schedule:At any time execute the following two steps.

1. In the packet arrival phase, for any new packet admitted toa queueqi, choose a real number uniformly
at random from(0, 1) and append it toQi. If Qi was full prior to this operation, then first delete the
element at the head ofQi. The newly inserted number is labeled unmarked.

2. In the transmission phase, check if theQ1, . . . , Qm store unmarked numbers. If so, letQi be the
queue storing the largest unmarked number; ties may be broken arbitrarily. Change the label of that
number to marked and transmit a data packet from queueqi. Otherwise, if there are no unmarked
numbers, transmit a packet from an arbitrary non-empty queue.

We remark thatRandom Schedule uses a considerable amount ofΘ(mB) extra space to store the
auxiliary queuesQ1, . . . , Qm. Additionally, in our implementation we maintain a priority queue based
on standard heaps that stores the unmarked numbers fromQ1, . . . , Qm. Whenever a new data packet is
admitted to a packet bufferqi, we have to insert a number into the priority queue. This operation may
be preceded by adelete operation if a number first has to be removed from the head ofQi. Executing
a deletemax operation, we can determine which of the packet buffers to serve. All the operations may
take up toO(log(mB)) time. We remark that numbers deleted from the heads of theQ1, . . . , Qm

may be unmarked. Therefore, we explicitly have to maintainQ1, . . . , Qm and it is not sufficient to
just store the priority queue of unmarked numbers. In our experiments we have also tested a priority
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queue implementation based on Fibonacci heaps. In this casethe running time ofRandom Schedule
decreases by about 20% but the memory requirements increaseby a factor of 10 due to the complex
pointer structure of Fibonacci heaps. As we will see in Section 5, even with standard heapsRandom
Schedule has extremely high extra memory requirements, and we therefore did not use Fibonacci heaps
in our tests.

The second randomized switching algorithm known is calledRandom Permutation. The basic ap-
proach of the algorithm is to reduce the packet switching problem with m buffers of sizeB to one
with mB buffers of size 1. To this end, a packet bufferqi of size B is associated with a setQi =
{qi,0, . . . , qi,B−1} of B buffers of size 1. A packet arrival sequenceσ for the problem with sizeB
buffers is transformed into a sequenceσ̃ for unit-size buffers by applying a Round Robin policy. More
specifically, thej-th packet ever arriving atqi is mapped toqi,j mod B in Qi. Random Permutation at any
time runs a simulation of the following algorithmSimRP for m′ = mB buffers of size1.

Algorithm SimRP(m′): The algorithm is specified form′ buffers for size 1. Initially, choose a permuta-
tion π uniformly at random from the permutations on{1, . . . ,m′}. In each step transmit the packet from
the non-empty queue whose index occurs first inπ.

The algorithm for buffers of arbitrary size then works as follows.

Algorithm Random Permutation: Given a packet arrival sequenceσ that arrives online, run a simula-
tion of SimRP(mB) on σ̃. At any time, ifSimRP(mB) serves a buffer fromQi, transmit a packet from
qi. If the buffers ofSimRP(mB) are all empty, transmit a packet from an arbitrary non-emptyqueue if
there is one.

Obviously, the algorithm needs a large amount ofΘ(mB) extra space to runSimRP(mB). Using a
priority queue that stores non-empty buffers of capacity 1,we can determine inO(log(mB)) time which
queue to serve.

3.3 An optimal offline algorithm

In order to compare the performance of the online algorithmsto that of an optimal solution, we imple-
mented the algorithmSFOD [3], which was proven to be an optimal offline strategy. AsSFOD is just
used for comparison, we only state the algorithm without discussing details of the implementation.

Algorithm SFOD: At any time serve the non-empty buffer that encounters packet loss earliest in the
future assuming buffers would not be served anymore; ties may be broken arbitrarily. If there is no such
buffer, serve an arbitrary non-empty queue.

4 The test environment

We have tested the online packet buffering algorithms on real-world traces from the Internet Traffic
Archive [18], a moderated trace repository maintained by ACM SIGCOMM. We have performed exten-
sive tests with seven traces whose characteristics are summarized in Table 1. A first set of four traces
monitors wide-area traffic between Digital Equipment Corporation (DEC) and the rest of the world. A
second set of three traces monitors wide-area traffic between the Lawrence Berkeley Laboratory (LBL)
and the rest of the world. Only the TCP traffic was considered.Despite being a number of years old,
these traces still represent standard benchmarks when marking experimental tests and are recommended
for such studies, see e.g. the text book by Krishnamurthy andRexford [24] or [28]. The traces were
gathered in over a time horizon of one to two hours and consistof 1.3 to 3.8 million data packets each. In
the various traces the information relevant to us is, for anydata packet, the arrival time and the sending
host address. For the sake of anonymity, the latter addresses were renumbered in the original traces.

As indicated in the introduction the main goal of our experiments is to determine the experimen-
tally observed competitiveness of the online switching algorithms and to establish a relative performance
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Name Date # Packets Place
DEC-PKT-1 08.03.1995 22.00–23.00 2.1 mio DEC
DEC-PKT-2 09.03.1995 02.00–03.00 2.6 mio DEC
DEC-PKT-3 09.03.1995 10.00–11.00 2.8 mio DEC
DEC-PKT-4 08.03.1995 14.00–15.00 3.8 mio DEC
LBL-PKT-4 21.01.1994 14.00–15.00 1.3 mio LBL
LBL-PKT-5 28.01.1994 14.00–15.00 1.3 mio LBL
LBL-TCP-3 20.01.1994 14.10–16.10 1.8 mio LBL

Table 1: Packet traces

ranking among the strategies. Furthermore, we are interested in the algorithms’ running times and mem-
ory requirements. As for the running time of a strategy, we evaluated theaverage time it takes the
algorithm to determine which queue to serve (total running time summed over all time steps/#time
steps). This time is easy to determine using timers providedby the Java library. As for extra space
requirements, we have evaluated, for any of the algorithms,the maximum amount of memory needed by
auxiliary data structures employed by that algorithms. This analysis was performed using the Java class
ObjectOutputStream . Finally in our tests, we have evaluated the actual throughput in terms of the
number of data packets transferred.

In our experiments we have studied varying port numbersm as well as varying buffers sizesB. In
order to be able to investigate varying values ofm, we have to map sending host addresses (e.g. about
3000 in DEC-PKT-1) to port number numbers in the range{0, . . . ,m − 1}. We chose a mapping that
maps each sending host address to a port number chosen uniformly at random from{0, . . . ,m− 1}. We
would like to point out that such a mapping does not lead to balanced traffic at the ports as some hosts
generate a large number of packets. In our traces, under the random mapping, we observe highly non-
uniform packet arrival patterns where 10 to 15% of the ports receive ten times as many packets as each
of the other ports. This is consistent with the fact that web traffic with respect to packets’ source (and
destination) addresses is distributed non-uniformly, exhibiting essentially a power-law structure [13, 28].
Typically, 10% of the hosts account for 90% of the traffic. However, this fact does not allow a direct
conclusion on the distribution of sending hosts among the input ports of a switch. This distribution
strongly depends on the network topology. So, alternatively, a power-law governed assignment of hosts
to ports is not more reasonable than our uniform distribution.

Another important parameter in the experimental tests is the speed of the switch, i.e. how fast the
switch can transfer packets. Here we consider speed values relative to the data volume of a given trace.
For a trace data setD, let fD = (#packets inD)/(length of time horizon ofD) be the average packet
arrival rate inD. Speeds indicates that the switch forwards data packets with frequency sfD. Thus,
intuitively, a speed 1 switch can forward the data exactly asfast as it arrives on the average. If the speed
is low, inevitably, buffers tend to be highly populated. If the speed is high, buffers are only lightly loaded.
In summary, each of our experiments is specified by the following parameters: (a) switching algorithm
A; (b) trace data setD; (c) numberm of buffers; (d) buffer sizeB; (e) speeds.

5 Experimental results

We have done extensive tests with all the network traces mentioned in Section 4. A first, very positive
finding is that the results are consistent for all the traces.The phenomena reported in this section,
unless otherwise stated, have occurred for all the data sets. Due to space limitations, in this paper we
only present the plots for trace DEC-PKT-1. A zip-file containing the plots for all the traces can be
downloaded athttp://www.informatik.uni-freiburg.de/˜jacobs/ . In the following
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Figure 3: Competitive ratio,m = 30 andB = 100
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Figure 4: Running time,m = 30 andB = 100

subsections we report on the competitiveness, running timeand memory requirements of the algorithms
as parametersm, B ands vary. It turned out that a variation of the speeds gives the most interesting
results and we therefore start with a description of this issue.

5.1 Varying the speeds

Figure 3 depicts the experimentally observed competitiveness for varyings. We consider in this presen-
tation a basic setting withm = 30 andB = 100. These parameters are chosen relative to the size of
DEC-PKT-1, which consists of 2.1 million packets. More precisely, we wish to simulate the algorithms
for sufficiently largem and time steps with considerable packet traffic. Furthermore, switch simulations
in the literature usually also work withm = 8 to m = 32 ports, see e.g. [26, 30]. Our basic setting
of m andB is not critical. As we will see, the observed phenomena occurfor other parameter settings
(smaller/largerm and smaller/largerB) as well.

An important result of our study is that the experimentally observed competitiveness of all the al-
gorithms ranges between 1.0 and 1.035 and hence is considerably lower than the theoretical bounds.
This is not surprising because competitive analysis is a strong worst-case performance measure. It is
astonishing, though, that the gap is so high. Remarkably,Greedy, Semi Greedy andWaterlevel have an
experimental competitiveness that is always below 1.002, i.e. they are never 0.2% worse than an op-
timal solution. HSFOD exhibits an even better competitiveness of less than 1.001 for all values ofs.
Furthermore, interestingly, the curves forGreedy, Semi Greedy andWaterlevel are almost identical and
indistinguishable in the plot. The three algorithms have essentially the same performance: For instance,
the difference in the number of transferred packets is less than 1000 when the total throughput of each
of the three strategies is about 2 million packets. All the algorithms have the highest ratios for values of
s around 1. On other traces, the peak sometimes occurs ats ≈ 1.1. Thus, the worst case occurs when
the average packet arrival rate is equal to the rate with which the switch can forward packets and packet
scheduling decisions matter. For small and large values ofs, the experimental competitiveness tends
to 1. This is due to the fact that buffers tend to be either heavily populated (smalls) or lightly populated
(larges) and all the algorithms transfer essentially an optimum number of packets. Another important
result is that the theoretical and experimentally observedcompetitive ratios are unrelated. In particular,
in the experiments the randomized strategies, which have low theoretical competitive ratios, do perform
considerably worse than the deterministic algorithms.

Figure 4 shows the running times of the algorithms, i.e. the average time in seconds it takes an al-
gorithm to perform 1 time step (update auxiliary data structures to account for incoming packets and
determine the queue to be served). We evaluate the running times for varyings because the buffer occu-
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Figure 5: Memory,m = 30 andB = 100
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Figure 6: Competitive ratio,m = 30 ands = 1.0

pancy depends ons and the latter occupancy can affect the running time. Uniformly over all algorithms
we observe decreasing running times for increasing values of s. The reason is that, for larges, buffers
tend to be empty and the algorithms need less time to handle one time step.Greedy andSemi Greedy are
the fastest algorithms,Semi-Greedy being only slightly slower thanGreedy. HSFOD, Random Schedule,
Random Permutation andWaterlevel have considerably higher running times.Waterlevel is the slowest
strategy with running times that are more than twice as high as that ofGreedy. A shown in Figure 4, the
algorithms need 20 to 40 milliseconds to perform one time step. These times would be lower in a switch
hardware implementation; our runtime tests just representa comparative study of the algorithms.

Figure 5 reports on the memory requirements of the algorithms, measured in bytes. Recall that we
monitored the maximum total memory required used by auxiliary data structures. The memory require-
ments are stable for varyings. Nevertheless we depict them in a plot to allow better comparision with
the results of the following sections where memory requirements vary asB andm vary. We emphasize
here that our plots for the memory requirements are drawn using alogarithmic scale as the amount of
extra memory needed differs vastly among the strategies. Asto be expected,HSFOD, Greedy andSemi
Greedy have small requirements.HSFOD uses no more than 500 bytes, whileGreedy andSemi Greedy,
using priority queues, allocate 1000 to 1300 bytes.Waterlevel has space requirements that are twice as
high. Huge amounts of extra space (80.000 to 100.000 bytes) are required byRandom Schedule and
Random Permutation. Recall that these algorithms need space for auxiliary queues andmB unit-size
buffers.

5.2 Varying the buffer size

In a next set of experiments we study the effect of varying thebuffer sizeB. We investigate this effect
for the critical speeds = 1.0 where the observed competitive ratios are highest. Figure 6shows that
the buffer size has essentially no effect on the competitiveness; only the randomized strategies show a
slight fluctuation. This supports our statement that our initial settingm = 30 andB = 100 plays no
particular role. Again,HSFOD outperforms all the other algorithms and the performance ofGreedy,
Semi Greedy andWaterlevel is almost identical. In Figure 7 we observe that the running times, too, are
stable. The only exception isRandom Schedule. The maintenance of its auxiliary queues takes more
time asB increases. As for the required space (cf. Figure 8), as was tobe expected, the deterministic
strategies have fixed demands as the size of the auxiliary data structures depends only onm. Random
Schedule andRandom Permutation experience a linear increase as the auxiliary data structures depend
on mB. The increase is about 20 bytes per additional buffer cell. Recall that Figure 8 is drawn on a
logarithmic scale.

10



 2e-05

 2.5e-05

 3e-05

 3.5e-05

 4e-05

 4.5e-05

 50  100  150  200  250  300  350  400  450  500

ru
nt

im
e

buffer size

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

Figure 7: Running time,m = 30 ands = 1.0
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Figure 8: Memory,m = 30 ands = 1.0
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Figure 9: Competitive ratio,mB = 3000 ands = 1.0
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Figure 10: Running time,mB = 3000 ands = 1.0

5.3 Varying the number of ports

Next we analyze the effect of varying the numberm of ports, focusing again on the most critical speed
s = 1.0. We consider a fixed product ofmB, which is equal tomB = 3000 for our initial parameters.
The reason is the following: Varyingm while fixing B would investigate the effect to giving a switch
more total buffer space, an issue that was already studied inSection 5.2.

Interestingly, the algorithms perform well in our new scenario. All deterministic algorithms show
a very slight increase in experimental competitiveness, see Figure 9. The increase is more pronounced
in the case ofRandom Schedule andRandom Permutation. The general increase in competitiveness is
due to the fact that for a larger number of ports, online algorithms have a higher chance of serving the
“wrong” port. Figure 10 reveals a weakness ofHSFOD; its running time increases linearly withm. The
same holds forWaterlevel, although the gradient is smaller here. For all the other strategies the running
times are stable. As for the memory requirements (see Figure11) as was to be expected, the deterministic
algorithms have slightly increasing demands (about 4 bytesper additional port). The demands are fixed
for Random Schedule andWaterlevel as the sizes of the auxiliary data structures are linear inmB.

5.4 The absolute throughput

Finally, we analyze the actual throughput of the algorithms, i.e. the total number of successfully trans-
ferred data packets. Our analyses also include the optimal offline algorithm SFOD. Recall that the
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Figure 11: Memory,mB = 3000 ands = 1.0
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Figure 12: Throughput,m = 30 andB = 100

DEC-PKT-1 trace consists of 2.1 million data packets, whichthen represents the maximum throughput
possible. Figure 12 depicts the throughput ass varies. We observe an almost linear increase ass in-
creases, leading to the maximum possible throughput ats = 1.2. At our critical speeds = 1 we vary
againB and m, cf. Figures 13 and 14. AsB increases, the throughput improves. Interestingly, the
gradient is almost the same for all the algorithms. Increasing the numberm of ports while fixing the
total amount of memory available in the switch,SFOD, HSFOD, Greedy, Semi Greedy andWaterlevel
experience almost no performance loss. On the other hand,Random Permutation andRandom Schedule
experience a loss in throughput. The gradient is almost the same for the latter two algorithms.
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Figure 13: Throughput,m = 30 ands = 1.0

 1.9e+06

 1.92e+06

 1.94e+06

 1.96e+06

 1.98e+06

 2e+06

 2.02e+06

 2.04e+06

 2.06e+06

 10  20  30  40  50  60  70  80  90  100

th
ro

ug
hp

ut

number of ports

dec-pkt-1.tcp

Greedy
Semi Greedy

Waterlevel
Random Schedule

Random Permutation
HSFOD

SFOD

Figure 14: Throughput,mB = 3.000 ands = 1.0

6 Summary and conclusions

We summarize the most important findings of our experimentalstudy.
• Greedy: Excellent experimental competitiveness (below 1.002 in all test); nearly optimal for small

and larges as well as for largeB. Very low, stable running time. Very low memory requirements.
• HSFOD: The best experimental competitiveness, closing more than half of the gap betweenGreedy

and the optimal offline algorithm. The running time is however high for large values ofm. Very low
memory requirements.

• Semi Greedy: Excellent experimental competitiveness equal to that ofGreedy. Low running time that
is slightly higher than that ofGreedy, but the difference is marginal. Very low memory requirements
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that are a bit larger than that ofGreedy.

• Waterlevel: Excellent experimental competitiveness equal to that ofGreedy andSemi Greedy. How-
ever, the running time is typically more than twice as high; the gap is increasing for largem. Memory
requirements, too, are more than twice as high.

• Random Schedule: Worst experimental competitiveness among all the algorithms. Running time is
significantly higher than that ofGreedy andSemi Greedy. Memory requirements are huge compared
to that of the deterministic algorithms.

• Random Permutation: High experimental competitiveness. High running time and huge memory
requirements.

We conclude that, from a practical point of view,HSFOD is the algorithm of choice for switches
with a small number of ports. For largerm, Greedy is the best algorithm if computation time is limited.
The employment of another algorithm is only advisable if a worst case performance must beguaranteed.
In this case we recommend to applySemi Greedy as it achieves the same experimental performance as
Greedy and its running time is only marginally higher.

Our tests also show that the experimentally observed competitive ratios of the packet buffering al-
gorithms are considerably smaller than the theoretical bounds. Most of the strategies perform within
3% of an optimal offline solution. The same phenomenon also occurs in other online problems such as
paging or scheduling [4, 17, 15, 31]. In our opinion, this gapis no weakness of competitive analysis
as competitive analysis is a strong worst-case performanceand sequences causing the worst-case ratio
usually do not occur in practice. A second general finding of our tests is that the relative performance
of the algorithms is unrelated with respect to the theoretical and experimentally observed competitive
ratios, i.e. algorithms with a small theoretical competitiveness do not perform better in practice. This is
somewhat disappointing. Apparently, the randomized strategies are tailored to specific worst-case input
sequences but do not respond well to typical inputs.
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Appendix

The experimentally observed competitiveness ofHSFOD for varyingα. The results are shown for trace
DEC-PKT-1
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Figure 15: Competitive ratio,s = 1, m = 30, B = 100
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Figure 16: Competitive ratio,s = 1, m = 30, B = 100
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