
Delayed Information and Action in On-LineAlgorithms�Susanne Albersy Moses Charikarz Michael MitzenmacherxAbstractMost on-line analysis assumes that, at each time-step, all relevant in-formation up to that time step is available and a decision has an immediatee�ect. In many on-line problems, however, the time relevant informationis available and the time a decision has an e�ect may be decoupled. Forexample, when making an investment, one might not have completely up-to-date information on market prices. Similarly, a buy or sell order mightonly be executed some time later in the future.We introduce and explore natural delayed models for several well-known on-line problems. Our analyses demonstrate the importance ofconsidering timeliness in determining the competitive ratio of an on-linealgorithm. For many problems, we demonstrate that there exist algo-rithms with small competitive ratios even when large delays a�ect thetimeliness of information and the e�ect of decisions.1 IntroductionThe theory of on-line algorithms deals with situations where a decision or a seriesof decisions must be made with limited information, and speci�cally withoutknowledge of future events. Implicit in this approach is the idea that the timeinformation becomes available relative to the time decisions take e�ect can beof paramount importance in algorithm performance. In most on-line analyses,however, the setting chosen for study is the simple one: at each time-step,all relevant information up to that time-step is available, and a correspondingdecision is made.�A preliminary version of this paper was presented at the 39th Annual Symposium onFoundations of Computer Science (FOCS), 1998.yMax-Planck-Institut f�ur Informatik, Im Stadtwald, 66123 Saarbr�ucken, Germany. E-mail:albers@mpi-sb.mpg.de. Part of this work was done while visiting the Freie Universit�at Berlin.zComputer Science Department, Stanford University, CA 94305, USA. Supported by aStanford Graduate Fellowship, an ARO MURI Grant DAAH04-96-1-0007 and NSF AwardCCR-9357849, with matching funds from IBM, Schlumberger Foundation, Shell Foundation,and Xerox Corporation. E-mail: moses@cs.stanford.edu.xCompaq Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA.E-mail: michaelm@pa.dec.com. 1



In many on-line problems the time relevant information is available and thetime a decision has an e�ect are decoupled. This phenomenon arises, for in-stance, in investment problems where one has to decide whether or not andwhen to buy an expensive piece of equipment. An example of such investmentproblems is the standard on-line ski rental problem. In these investment prob-lems, once a decision is taken for buying equipment, it can take some time beforethe equipment is delivered to the user. For example, it can take a couple of daysor weeks to ship a particular model of skis, and even months to deliver and in-stall a new machine in a factory. In such cases, a decision to buy equipmenthas an e�ect only later in time and the action corresponding to the decision isdelayed.This can heavily in
uence the performance of an on-line strategy. An on-linealgorithm A is called c-competitive if, for all inputs, the cost incurred by A is atmost c times the cost incurred by an optimal o�-line algorithm that knows theentire input in advance. To illustrate the e�ect of delayed action, we considerthe ski rental problem. Skis cost r dollars to rent per weekend and b to buy for aseason. Suppose an avid skier skis every weekend there is good snow. Whetherit is best for her to rent or buy skis for the season depends on the number ofgood ski weekends. If the skier rents s times before buying, the competitiveratio c is sr+bminf(s+1)r;bg . When b=r is an integer, an optimal on-line algorithm isto rent skis s = (b=r)� 1 times, and then buy; this yields a competitive ratio of2� rb . If skis take d � 1 weeks to ship, the analysis is slightly more involved. Ifa skier decides to rent s times before buying, we must consider what happens inthe intervening d other weekends before the skis arrive. If i of the interveningweekends are snowy, then the worst-case ratio between the actual cost and theoptimal cost is now max1�i�d (s+ i)r + bminf(s+ i)r; bg :It is easily checked that this ratio is maximized at one of the extremes i = 1; d;using this, one can easily determine the value of s that minimizes the competitiveratio.In the above example, there is a delay between the time a decision is madeand when it has an e�ect. We refer to this as the delayed action model. Theparameter d is the maximum delay after which a decision takes e�ect. For thisproblem, d = 0 gives us the original problem without delay.Similarly, there are problems where it is natural to consider informationthat arrives only after some delay. In this scenario, at time step t we mighthave information about the �rst t � d � 1 time steps only, for some d � 0.This phenomenon arises, for instance, in on-line �nancial games where we haveto devise strategies for converting money from one currency to another or forselecting a portfolio in the stock market [15, 16, 18, 31]. Naturally, we mightnot have access to the very latest exchange rates or stock prices. We refer tothis as the delayed information model. Again, the case d = 0 corresponds tothe original problem without delay.Related timing problems occur when a group of people or agents take deci-2



sions. The group might come together only at particular time instances. Theactions are again delayed, in that they can only occur at speci�c points in time.For example, in the case of investing in manufacturing machinery, one may onlybe able to make budget decisions in concert with the rest of an organizationat speci�c budgeting periods. Another example is that of an investment club,where a group of people pool their money together and invest in the stock mar-ket. All investment decisions can be made only at club meetings which occurat regular intervals of time, e.g. once a month.We use the term delayed models to loosely describe models where there isthis type of discontinuity between the time information is available and the timedecisions take e�ect. Such models are naturally motivated by situations whereone has incomplete information about the past or a decision will have a delayede�ect on the state of the system. Interestingly, they also often have a naturalinterpretation in terms of a distributed agents acting with limited coordina-tion. In particular, such models correspond nicely to distributed systems whereinformation about the system is updated only after some delay or at speci�csynchronization points.Our Contribution: In this paper, we consider several standard on-lineproblems and examine their generalizations to delayed models. These gener-alizations are generally quite natural and lead to interesting insight into theoriginal problem. We note that in this initial exploration of delayed models,we have focused on cases where one can modify the original on-line analysis toanalyze the delayed version. We believe that the resulting relative simplicityof many of our results demonstrates the naturalness and utility of this model.We expect, however, that delayed models will prove more di�cult than theirstandard counterparts in many instances.We brie
y describe the remainder of the paper. In Section 2, we study thedelayed information model applied to the classical problem of on-line schedulingon parallel machines to minimize the makespan. Here a scheduling algorithmmust assign new jobs to processors based on stale load information. Traditionalalgorithms for on-line scheduling do badly in this scenario. We develop new al-gorithms for this model and prove almost matching lower bounds. In Section 3,we study the list update problem in the delayed action model and prove nearlytight upper and lower bounds for deterministic on-line algorithms. We alsoshow that a randomized on-line algorithm can only beat the deterministic lowerbound if it uses paid exchanges. In Section 4, we generalize an on-line stockmarket model introduced in [15] by studying natural delayed models. Finally,in Section 5, we apply the delayed action model to the general class of relaxedmetrical task systems [6, 9]. Relaxed task systems are an abstract model forproblems where one has to decide when it is appropriate to make expensivecon�guration changes. This class includes the ski rental problem, page migra-tion [13], �le replication [13], network leasing [6], and other problems (see [9]).We extend the results of [6, 9] to apply to relaxed task systems with delayedaction, e�ectively handling the delayed models of an entire general class of prob-3



lems.Related Work: In subsequent sections, we will mention related work rel-evant to the speci�c problems we consider. Here, we o�er a brief overview ofgenerally relevant related work.The importance of when information becomes available has been noted pre-viously, especially in the signi�cant body of work on algorithms with lookahead,e.g. [12, 20, 22, 25]. In the case of on-line decision models, however, the pos-sibility of not having up-to-date information is not generally addressed. Forload balancing problems, the question has been considered for statistical mod-els [27, 28, 34]; other queueing based models have also been considered [4, 5, 26].And recently, [7] considers an on-line load balancing setting where tasks gathersome information about system behavior before making a choice of processor.There is also a large body of work on algorithms with distributed agents, whomust coordinate their e�orts in the face of some cost for communication, e.g. [3,8, 11]. These models, however, model communication as an instantaneous event,and hence the communication cost does not directly incorporate a notion of timeand delay. Another line of research has addressed distributed decision makingwhen the communication among agents is limited, for example by only allowinglocal communication. Implicitly this allows distant agents to communicate onlyafter a number of communication rounds. The problems investigated includescheduling, load balancing, routing and general optimization [10, 17, 23, 29, 30].2 SchedulingWe consider a classical problem in on-line scheduling. A sequence of jobsJ1; J2; : : : must be scheduled on m identical parallel machines. Whenever ajob arrives, the job must be scheduled immediately on one of the machines,without knowledge of any future jobs. Preemption of jobs is not allowed. Thegoal is to minimize the makespan, i.e., the completion time of the last job that�nishes.The problem was �rst investigated by Graham [19]. He developed the well-known List algorithm that always schedules a job on the least loaded machine.Graham's List algorithm is (2 � 1m )-competitive. More recently, on-line algo-rithms that obtain competitive ratios bounded away from 2 have been devised.The currently best known competitive ratio for this problem is 1:923 obtainedby Albers [1].In a setting with delayed information, we do not have the current loads onthe processors available to us. When we are presented with the ith job Ji, wehave the loads on the machines from up to di + 1 requests ago. That is, weknow the load after the job Ji�di�1 was placed. (When di = 0 always, we havethe original problem.) We must decide where to place job Ji based on this oldinformation. We examine the setting where we have a bound on how old theinformation is at each stage, i.e. di � d, for some d. We will refer to the last dijobs whose contribution to the loads is not known as unknown jobs and otherjobs as known jobs. 4



In this situation, the strategy of placing each job on the processor with theleast known load does very badly. In fact the competitive ratio of that strategycan be as bad as d + 2 � d+1m (for d � m � 1). The problem is that thisstrategy does not take into account the potential e�ect of unknown jobs. Wewill devise new algorithms with better competitive ratios for scheduling withdelayed information.We study two variants of the basic scheduling problem. In our �rst model,we assume that in addition to the loads of the machines from di + 1 requestsago, we also know where the last di unknown jobs were placed. This scenariodescribes, e.g., a centralized scheduling algorithm where the size of every newjob is not known to the scheduler immediately on arrival, but is revealed atmost d requests later.It is simpler to work with a less stringent, but for our purposes equivalent,scenario where we have available a complete history of the process up to di +1requests ago. In this model, by using speci�c kinds of deterministic algorithmsthat do not use the length of the current job in a new scheduling step, we can�gure out where the unknown jobs were scheduled as follows. Suppose we usea deterministic algorithm that bases its decision on the schedule from d + 1requests ago, i.e. if di < d pretend that the state seen by the algorithm is theschedule exactly d + 1 requests ago. Because we have complete informationabout the job history, we can also �gure out the complete schedule from d+ 2requests ago, d + 3 requests ago and so on. Hence we can deduce the stateseen by the algorithm while scheduling each of the previous d jobs, and therebydetermine where each of the last d unknown jobs were scheduled.For this model, we consider an algorithm we call Delayed List scheduling, asit generalizes Graham's List algorithm. Let wi be the known load on machine i.(This is the load without the unknown jobs.) Let S denote the total known loadon all the machines, i.e. S =Pmi=1 wi. Let ui be the number of unknown jobs onmachine i. De�ne the pseudo-load on machine i to be ui +(m� ui� 1)wiS . Thealgorithm schedules the new job on the machine which has the lowest pseudo-load. (When d = 0, the algorithm is exactly the same as List.)Lemma 1 When the Delayed List algorithm places the current job on machinei, the load on machine i is at most 1 + ui + (m � ui � 1)wiS times the optimalload.Proof: Let x be the processing time for the ith job. Consider what happensif the algorithm tries to place the current job on machine i. Without loss ofgenerality, suppose all the unknown jobs on machine i have the same processingtime, say y. Then `i = wi + ui � y + x will be the new load on machine i.The sum of the processing times of all the jobs in the sequence is at leastS + ui � y + x. Thus OPT � S+ui�y+xm . Also, OPT � x and OPT � y. Hence`iOPT � min�wi + uiy + xx ; wi + uiy + xy ; wi + uiy + x(S + uiy + x)=m� :We obtain the required bound on `iOPT by maximizing the above functionover all possible values of y and x. Let us maximize over y �rst. We wish to5



computemaxy min�wi + uiy + xx ; wi + uiy + xy ; wi + uiy + x(S + uiy + x)=m� :Let f1(x; y) = wi + ui � y + xx ;f2(x; y) = wi + ui � y + xy ;f3(x; y) = wi + ui � y + x(S + ui � y + x)=m :Note that each of the three functions are monotone in y. We want to �nd themaximum of the lower envelope (i.e. minimum) of these three monotone curves.This must occur either at an end-point of the interval y = 0 or y = 1 or ata point where two of the three functions are equal. Further, a point wheretwo functions are equal is a potential maximum only if the value of the thirdfunction is greater than the two that are equal.In fact, our analysis will show that the maximum is achieved when all threefunctions are equal.1. Let us �rst consider the maximum value of the function for end-points of theinterval. For y = 1, the value of the function is 1. For y = 0, the valueof the function is min(wi+xx ; wi+x(S+x)=m). This is maximized when x = S+xm .Hence the maximum value is 1 + (m� 1)wiS .We now consider the three possible points where two of the functions areequal.2. Suppose f1(x; y) = f2(x; y) � f3(x; y). This implies that x = y � S+ui�y+xm .Hence f1(x; y) = f2(x; y) = ui + 1 + wix . Our bound is maximized for thesmallest possible value of x. But we also have x � Sm�ui�1 . Hence, themaximum value is ui + 1 + (m� ui � 1)wiS .3. Suppose f1(x; y) = f3(x; y) � f2(x; y). This implies that x = S+ui�y+xm � y.Hence f1(x; y) = f3(x; y) = m � S�wix . Our bound is maximized for thelargest possible value of x. But we also have x � Sm�ui�1 . Hence, themaximum value is ui + 1 + (m� ui � 1)wiS .4. Suppose f2(x; y) = f3(x; y) � f1(x; y). This implies that y = S+ui�y+xm � x.Algebraic manipulation yields f2(x; y) = f3(x; y) = ui+(m�ui)wi+xS+x , whichis increasing in x since wi � S. Our bound is maximized for the largestpossible value of x. But we also have x � Sm�ui�1 . Hence, the maximumvalue is ui + 1 + (m� ui � 1)wiS .In all cases `iOPT � 1 + ui + (m� ui � 1)wiS .We use the result of Lemma 1 to bound the competitive ratio of the algo-rithm. 6



Theorem 2 The Delayed List algorithm is (2 + d�1m )-competitive.Proof: The algorithm schedules the current job on the machine i which has thelowest value of ci = 1 + ui + (m� ui � 1)wiS � `iOPT . Now,mXi=1 ci � mXi=1 h1 + ui + (m� 1)wiS i = m+ d+m� 1because Pmi=1 wi = S. Hence there must be some ci with value at most2m+d�1m = 2 + d�1m . Thus, the competitive ratio of the algorithm is at most2 + d�1m .Theorem 2 shows that by spreading out the unknown jobs appropriately,we can achieve a competitive ratio that grows at a \rate" of d=m. In fact,the analysis in the proof of Lemma 1 shows that given S; x; ui; and wi, onecan compute precisely the worst case competitive ratio if the algorithm placesthe current job on machine i. This is a function of S; x; ui; and wi, and anexact expression can be obtained. A more intelligent algorithm would computethis function for each machine and place the current job on that machine thatminimizes this function. Indeed, this improves the competitive ratio slightly,although it seems di�cult to develop a general bound with a better form thanTheorem 2. (As an exercise, the interested reader may wish to show that ford = 1 this more intelligent algorithm is at worst (2 � 1m2�m+1 )-competitive.)Moreover, the result of Theorem 2 is nearly tight, as the following lower boundshows.Theorem 3 There exist sequences where the competitive ratio of any determin-istic algorithm for the delayed scheduling problem is 2+ d�2m+1 when this numberis an integer less than or equal to m.Proof: Let A be a deterministic algorithm for the delayed scheduling problemwith maximum delay d. For the lower bound, assume that when A receivesjob Ji, it knows the entire schedule after job Ji�d�1 was placed. Suppose d =(r � 2)m + r for an integer r. We will construct a request sequence consistingof (r � 1)m+ 1 jobs such that the optimal load is 1, but some machine in A'sschedule has load r.The �rst m� r requests are jobs of size 1. The next (r � 2)m + r + 1 jobshave size either 0 or 1. An adversary selects at most r of these to have size 1as follows. Let f(i) be the machine number on which A places job Ji if Ji hassize 1. Then, f(i) is a function of a pre�x of the entire job sequence, wherethe pre�x has length at most m � r. Thus f(i) is a deterministic function,not dependent on the adversary's choices. Consider the sequence of numbersf(1); : : : ; f((r � 1)m+ 1). Now, there must be some machine x that occurs atleast r times in this sequence. The adversary chooses r jobs Ji1 ; : : : Jir to be ofsize 1 such that f(ij) = x for 1 � j � r. It follows that these r jobs end up onmachine x in A's schedule. On the other hand, the optimal makespan for thissequence is 1. Thus, the competitive ratio is at least r = 2 + d�2m+1 .7



We now consider a second variant of the problem and a corresponding al-gorithm. In this scenario, when we are presented with a job Ji, we know theloads on the machines from di +1 requests ago, but we do not know the actualschedule or job sizes corresponding to these loads. We assume, however, thateach job knows its sequence number i and the number of jobs already sched-uled, or i � di � 1. (Implicitly, the number of scheduled jobs is increasing, soi � di � 1 � k � dk � 1 when i < k.) Our algorithm will make use of thisinformation in its scheduling decision. This model corresponds to a distributedsystem where tasks may place themselves on an appropriate server before othertasks reveal their processing times, but through simple shared counters limitedinformation such as the values of i and i� di � 1 is maintained.We provide an algorithm for this scenario called the Delayed Avoid Heavyalgorithm. We describe what happens when the ith job Ji arrives. We say themachine with the kth smallest load from known jobs at this time has rank k.The algorithm uses a constant c as a parameter; this will be speci�ed later. Wenever schedule a job on the heaviest m=c machines. (For convenience, we willassume that m=c is integral throughout.) Let b = m(1�1=c), i.e. the number ofmachines excluding the heaviest m=c. Let f(Ji) = (2i�di). The Delayed AvoidHeavy algorithm schedules job Ji on the machine with rank b� (f(Ji) mod b).For the purpose of analysis, we will divide the jobs into groups. Job Jiis placed in group number bf(Ji)=bc. The proofs of the next two lemmas areomitted.Lemma 4 Two jobs Ji and Jk in the same group are assigned to di�erentmachines.Proof: Without loss of generality, assume i < k. When scheduling Ji, thealgorithm sees the schedule Si that results after i� di jobs have been assignedto machines and when scheduling Jk, the algorithm sees the schedule Sk thatresults after k � dk jobs have been assigned. As the earlier job Ji cannot see amore recent schedule than the later be the case that i� di � k � dk.Since Ji and Jk are in the same group (say g), g = bf(Ji)=bc = bf(Jk)=bc.Then Ji is assigned to the machine Mi of rank b� (f(Ji) mod b) = b� (f(Ji)�g � b) = (g + 1)b � (2i � di) (in schedule Si). Similarly, Jk is assigned to themachine Mk of rank (g + 1)b� (2k � dk) in schedule Sk.Now, schedule Sk results from schedule Si by the scheduling of an additional(k � dk) � (i � di) jobs. Observe that a machine that has rank r in a certainschedule S has rank at least r�i in the schedule obtained by placing i additionaljobs in S. Thus, in schedule Sk, the machine Mi must have rank at least(g + 1)b� (2i� di)� ((k � dk)� (i� di))� (g + 1)b� (k + i� dk) > (g + 1)b� (2k � dk):This implies that the machines Mi and Mk are distinct.Lemma 5 The competitive ratio of the Delayed Avoid Heavy algorithm is atmost 2 + 2db + c. 8



Proof: When job Ji arrives, we know the loads on all machines except for thecontributions to the loads by the last di jobs. Let S be the set of the last dijobs together with job Ji. Observe that the f values of any two jobs in S candi�er by at most d+ di � 2d. Thus the number of distinct groups that the jobsin S belong to is at most 2 + b 2db c � 2 + 2db . Since no two jobs in the samegroup get placed on the same machine, the maximum number of jobs in S thatget placed on the same machine is at most 2+ 2db , and in particular there are atmost 1 + 2db unknown jobs on the processor that gets Ji. Let wi be the knownload on the machine on which job Ji is placed. Let S be the total known loadon all the machines. Then wi=S � c=m. If not, then the loads on the heaviestm=c machines must each be greater than Sc=m, implying that the total loadis greated than S. This is clearly not possible. Now, Lemma 1 implies that,after Ji is placed on Mi, the total load on Mi is at most 2 + 2d=b+ c times theoptimal load. Hence the competitive ratio is at most 2 + 2db + c.Substituting b = m(1 � 1=c) and optimizing for c, we get that, for c =1 + p2d=m, the competitive ratio of the Delayed Heavy Load algorithm isbounded by 2 + 2d=m + 2p2d=m. It is possible to get slightly better boundsby being a bit more careful in Lemma 5. However, the expressions that resultare far from elegant and the improvements are very minor, so we choose to omitthem. The main point is that in this more limited model, by again spreadingout the unknown jobs appropriately, we can achieve a competitive ratio thatgrows at a \rate" of about 2d=m.3 List UpdateThe list update problem is a fundamental problem in the theory of on-linealgorithms. It consists of maintaining an unsorted list so as to minimize thetotal cost of accesses on a sequence of requests. Formally, we are given n itemsthat are stored in an unsorted linear linked list. A list update algorithm receivesa sequence of requests , where each request speci�es one item in the list. To servea request the algorithm must access the requested item, i.e., it starts at the frontof the list and proceeds linearly through the items until the desired item is found.Serving an access to the item at position i in the list incurs a cost of i.In the standard problem, the list may be updated at any time. More speci�-cally, after each request the accessed item may be moved at no extra cost to anyposition closer to the front of the list. These exchanges are called free exchanges .At any time, two adjacent items in the list may be exchanged with cost 1; theseexchanges are called paid exchanges . The goal is to serve a sequence of requestsso that the total cost is as small as possible.In the problem with delayed action, we assume that an on-line algorithmmay update the list only at the end of a round , where every round consists of1 + d consecutive requests in the request sequence. Items requested during theround may be moved closer to the front of the list using free exchanges beforethe next round. Items not requested in the round can be moved only using paidexchanges. Note that when d = 0, we have the original standard problem.9



To motivate the delayed model, consider the case where the linked list datastructure is a shared object among a number of agents. In this case agentsmay read the list simultaneously without any problems; however, while thedata structure is being updated, it may be necessary for consistency to lock thestructure. In this case infrequent updates may provide better overall perfor-mance. We may think of the update operations as being batched, in which casethe update actions are delayed.In the following we �rst concentrate on deterministic on-line algorithms.When analyzing on-line algorithms, we consider two types of adversaries thatgenerate a request sequence and serve the generated sequence o�-line.� The standard adversary may update the list after each request.� The limited adversary can update the list only at the end of each round.We call a deterministic list update algorithm A c-competitive against any stan-dard (limited) adversary ADV if, for all list lengths n and for every requestsequence generated by ADV , the cost incurred by A is not greater than c timesthe cost paid by ADV .For the standard list update problem, Sleator and Tarjan [33] showed thatthe well-known on-line algorithm Move-To-Front (MTF) is 2-competitive. Thisalgorithm moves an item to the front of the list each time it is accessed. Thisis the best competitive ratio any deterministic on-line algorithm can obtain inthe standard model [24].We now study the problem with delayed action.Theorem 6 Let A be a deterministic on-line algorithm for the list update prob-lem with delayed action. If A is c-competitive, then c � 1+d. This lower boundholds for both types of adversaries.Proof: In each round the adversary issues 1 + d requests to the item that isstored at the last position in A's list. Thus, in each round A incurs a cost of(1 + d)n.At the end of each round, the adversary moves the item requested in thenext round to the front of the list using paid exchanges. Thus, its cost in eachround is at most n+ d. The ratio of the cost incurred by A to the cost incurredby the adversary is (1 + d)nn+ d = 1 + d1 + d=nand, for large values of n, this expression can be arbitrarily close to 1 + d.Next we give an adaptation of MTF to the model of delayed action.Algorithm MTF(d): At the end of each round, the algorithm moves therequested items to the front of the list. At the head of the list, for any twoitems i and j requested in the round, i precedes j if and only if the last requestto i is more recent than the last request to j.The Algorithm MTF(d) can also be thought of as the algorithm that batchesall Move-To-Front operations until an update is allowed.10



Theorem 7 The algorithm MTF(d) is (2 + d)-competitive. This upper boundholds for both types of adversaries.Note that for d = 0 we obtain the upper bound of 2 achieved by the MTFalgorithm in the standard list update problem.Proof: We prove the theorem for the standard adversary. For the analysis ofMTF(d) we consider a slightly di�erent model for updating the list. In thismodi�ed model, an on-line algorithm may move an item accessed in a roundonly on the last request to the item in that round. Let MTF'(d) be the algorithmthat moves an item to the front of the list whenever it is requested for the lasttime in a round. Given any request sequence �, at the end of each round thelists maintained by MTF'(d) and MTF(d) are the same. Thus, in each roundthe cost incurred by MTF(d) is not higher than the cost incurred by MTF'(d).We show that the cost incurred by MTF'(d) is at most 2 + d times the costincurred by the adversary, for any �.We assume that MTF'(d) and the adversary start with the same list. Givenan arbitrary request sequence � = �(1); �(2); : : : ; �(m), let t denote the pointin time after the t-th request �(t) is served. We de�ne a potential function �.For any time t and any item x in the list, let r(t; x) be the next round in therequest sequence in which x is requested. If x is still requested in the currentround, then r(t; x) is equal to the current round. Let n(t; x) be the number ofremaining requests to x in r(t; x). We have n(t; x) � 1 + d. In inversion is anordered pair (y; x) of items such that x occurs before y in the adversary's listand after y in the list maintained by MTF'(d). At any time the potential �is the number of inversions (y; x), where each inversion is multiplied by n(t; x),which can be seen as the weight of inversion (y; x).Consider any request �(t) and let x be the item requested. Let CMTF (t)and CADV (t) be the actual costs paid by MTF'(d) and the adversary during theservice of �(t). Clearly, CMTF (t) � CADV (t)+ inv(t� 1; x), where inv(t� 1; x)is the number of inversions (y; x) immediately before the request. We showthat during the service of �(t) the potential decreases by inv(t � 1; x) dueto inversions removed or due to inversions whose weights change. If x is notrequested for the last time in the round, then the number of remaining requeststo x in the round decreases by 1, i.e., n(t � 1; x) � n(t; x) = 1 and the weightof each inversion (y; x) decreases by 1. If x is requested for the last time inthe round, n(t; x) can increase, i.e., n(t; x) � n(t � 1; x). However, x is movedto the front of the list, which implies that all inversion (y; x) are removed andn(t; x) does not contribute to the potential. In any case, the potential decreasesby inv(t � 1; x) during the service of �(t). If x is moved to the front of thelist, then at most CADV (t) new inversions (x; z) can be created, each of whichincreases the potential by n(t; z) � 1+d. Since n(t�1; y) = n(t; y) for all y 6= x,we conclude that at any time t,CMTF (t) + �� � CADV (t) + (1 + d) � CADV (t)� (2 + d)CADV (t):11



Finally we have to consider a paid exchange made by the adversary. Eachpaid exchange can create an inversion, which increase the potential by at most1 + d, but the adversary has to pay a cost of 1. So again CMTF (t) + �� �(1 + d)CADV (t):Summing over all the steps of � and noting � � 0 yields CMTF (�) � (2 +d)CADV (�).It is straightforward to modify the above proof to show the following:Corollary 8 If each item is requested at most k times in a round, then MTF(d)is (1 + k)-competitive.This corollary shows that if one is attempting to choose a value of d tobalance reading and writing costs, a key parameter to consider is how often itemscan be requested repeatedly. Next we consider randomized on-line algorithmsand give two lower bounds. None of the randomized on-line algorithms that havebeen presented so far for the standard list update problem uses paid exchange,see e.g. [2, 32]. We show that such algorithms cannot be better than (1 + d)-competitive in the setting with delayed action.Theorem 9 Let A be a randomized on-line algorithm for the list update problemwith delayed action and suppose that A does not use paid exchanges. If A isc-competitive against any oblivious adversary, then c � 1+ d. This lower boundholds for both types of adversaries.Proof: An adversary constructs a request sequence in phases . In each phasethe adversary inspects its current list and requests the n items in ascendingorder. To each of the n items, the adversary issues 1 + d consecutive requests,which form a round. In each phase the adversary incurs a cost of at mostPni=1(i+ 1 + d) = n(n+ 1)=2 + n(1 + d). Since the on-line algorithm can onlymoves items only after they have been requested, its cost in a phase is at leastPni=1(1 + d)i = (1 + d)n(n+ 1)=2.If a randomized on-line algorithm uses paid exchanges, our lower bound isslightly weaker.Theorem 10 Let A be a randomized on-line algorithm for the list update prob-lem with delayed action and suppose that A does use paid exchanges. If A isc-competitive against any oblivious adversary, then c � (1 + d)=2. This lowerbound holds for both types of adversaries.Proof: We give a probability distribution on request sequences such that theexpected cost incurred by any deterministic on-line algorithm is at least (1+d)=2times the expected cost incurred by an adversary. The result then follows fromYao's minimax principle [35]. The request sequence is constructed as follows.In each round one of the n items is chosen uniformly at random; this item isrequested 1 + d times. The expected cost incurred by a deterministic on-linealgorithm in a round is (1 + d)n=2 whereas the adversary's cost no more thann+ d. 12



4 Stock TradingWe consider an on-line stock market model studied in [15] based on similarprobabilistic models used for stock price 
uctuations (see, e.g., [21]). Considera game where at each step, the price of a stock either increases by a constantfactor � > 1 or decreases by a factor 1=�. The game lasts for n steps, and theprice moves up for m of these steps. At each step, one can invest a fraction sof one's wealth in the stock and the rest in cash. If the price moves up, thereturn from that step is the factor �s+1� s that the player's wealth increases;if the price moves down, the return s� +1� s is less than 1. The total return isthe factor by which the player's wealth increases over the course of the game.Following [15], we say in this setting that the on-line trader plays against an(�;m; n)-adversary if an adversary determines the price 
uctuations subject tothe initial constraints.We review the relevant results from [15]. Let R�(m;n) be the optimalon-line return against the (�;m; n)-adversary. We have boundary conditionsR�(n; n) = �n and R�(0; n) = 1. As the optimal algorithm obtains a return of�m by investing fully whenever the price will go up, studying the on-line returnin su�cient to �nd the competitive ratio. The return R�(m;n) satis�es therecurrence R�(m;n) = max0�s�1minf(�s+ 1� s)R�(m� 1; n� 1);� s� + 1� s�R�(m;n� 1)g;and if we de�ne the partial binomial sum B(k;n; p) = Pki=0 �ni�pi(1 � p)n�i,then the solution to the recurrence satis�esR�1� (m;n) = B�n�m� 1;n� 1; ��+ 1�+�n�2mB�m� 1;n� 1; ��+ 1� :An interesting consequence is that even if the number of up movements m isless than the number of down movements, that is m < n2 , the on-line player canmake a pro�t. In fact this holds true even if m = 1.We consider an extension of this model to two delayed models. In the �rstmodel, we consider the problem when the player initially sets a fraction s of hiswealth to remain invested over the next d+ 1 time steps, and can only changethe investment s every d+1 time steps. This model might apply, for example, toan investor who only performs trades at speci�c or less frequent time intervals,and is unwilling to follow every change in the market. When d = 0, we have theoriginal model. We call every set of d + 1 steps a round. For convenience welet r = d+ 1 be the round length below. Without loss of generality we assumethat n is a multiple of r.We let P�(r;m; n) be the optimal on-line return for a player playing againstan (�;m; n)-adversary who can change its investment only every r steps. (Of13



course P�(1;m; n) = R�(m;n).) For convenience we drop the � from the nota-tion where the meaning is clear.Note then that P (r;m; n) satis�es the following recurrence:P (r;m; n) = maxs mini0�i�r;mP (r;m� i; n� r)(�2i�rs+ 1� s):That is, for each round, the optimal player chooses the investment s that max-imizes his return regardless of the number of up movements the adversarychooses.Interestingly, the behavior in this delayed model depends precisely on whetherthe period length r is even or odd.Lemma 11 For r even, P (r;m; n) = 1 if m � n=2 and P (r;m; n) = �2m�n ifm � n=2.Proof: If m � n=2, then the adversary can arrange so that each round has atleast as many down moves as up moves, and hence no round has a return greaterthan 1. Of course the player can guarantee a return of 1 by not investing, i.e.choosing s = 0 in each round.Similarly, if m � n=2, then the player can guarantee a total return of �2m�nby investing everything each round, i.e., always choosing s = 1. The adversarycan ensure that no greater return is possible by alternating up and down moveson the �rst 2(n�m) steps.The analysis for r odd generalizes and makes use of the result from [15]corresponding to the case r = 1 (i.e. d = 0).Lemma 12 Let N = nr and M = m � b r2cnr . For r odd, P (r;m; n) = 1 ifm � b r2cN , P (r;m; n) = �2m�n if m � d r2eN , and P (r;m; n) = R�(M;N)otherwise.Proof: The trivial cases wherem � b r2cn orm � d r2en handled as in Lemma 11.Otherwise, the problem is more interesting. We �rst show in this case thatP (d;m; n) � R�(M;N). Suppose that the adversary announces that in eachround, there will either be dd2e or bd2c up moves. Then, in total, each roundthe invested value changes by a factor of � or 1=�, and there are M up roundsout of the N total rounds. In this case, the problem reduces to the standardcase (r = 1) from [15]. In particular, the adversary can guarantee a competitiveratio of no more than R�(M;N).To prove the other direction, P (r;m; n) � R�(M;N) we must show that theadversary cannot gain by using any other strategy. We use induction on n. Thebase case is trivial.Now suppose the adversary uses b r2c+ j up moves in the �rst round. (Thecases j > 0 and j < 0 are entirely similar.) By induction, the return for thesubsequent rounds is R�(M � j;N � 1). Simple algebraic manipulation (bydetermining the investor's �rst investment) yields that the payo� from the �rstround is �2j�1 � 1�� 1 (R�1� (M � 1; N � 1)�R�1� (M;N)) +R�1� (M;N):14



Hence we have left to show thath�2j�1 � 1�� 1 (R�1� (M � 1; N � 1)�R�1� (M;N))+R�1� (M;N)iR�(M � j;N � 1) � R�(M;N):This is a combinatorial identity that can be checked in a straightforward butquite tedious manner; we spare the reader the details.Next we consider our second delayed model. Suppose that information abouttrades is continuously updated, but remains d steps behind. That is, we onlyknow the results from the �rst trade after the (d+1)st trade completes. Againd = 0 corresponds to the original model. Investors can again invest a fractionof their wealth each step (even though they may not have accurate knowledgeof how much wealth they have, since not all trade results are known). Thismodel accounts for situations where one receives updates on prices, but not inreal-time. Surprisingly, we can show that there exist money-making schemes forarbitrarily large d even when there is only 1 up day.Theorem 13 There exist money-making schemes for m = 1, regardless of nand d.Proof: Let �i be the investment on the ith day. We may set �i = 0 at any pointafter the player sees a result which is an up move. It will also be convenientnotationally if we de�ne �i = 0 for i � n. If the up move is on day j, then thetotal return to the player will be(�j�+ 1� �j) Yi 6=j;i�j+d(�i� + 1� �i):Note that (�a� + 1� �a)(�b� + 1� �b) � (�a + �b� + 1� �a � �b):Also, (�a�+ 1� �a)(�b� + 1� �b) > 1 if �a > �b�(1� �b) :Hence, the condition(�j�+ 1� �j) Yi 6=j;i�j+d(�i� + 1� �i) > 1is satis�ed if �j > Pi 6=j;i�j+d �i�(1�Pi 6=j;i�j+d �i) :This condition is easily satis�ed by choosing the initial �i to be suitably smalland having the �i grow geometrically at a suitably small rate (say, less than�1=d). 15



5 Delayed Relaxed Task SystemsIn this section, we will consider the delayed action model applied to relaxedmetrical task systems [6, 9]. An example of a relaxed metrical task system isthe ski rental problem described in the introduction. Another example of arelaxed metrical task system is the k-page migration problem [9, 13]. For thisproblem, we wish to keep k copies of a page available on a network. When aprocessor wishes to access a page, it requests a copy from a processor holdingthat page. The communication cost incurred is proportional to the distancebetween processors. Alternatively, a page copy may migrate from one processorto another, at a higher communication cost proportional to the distance betweenprocessors. In the delayed model, we assume that the time to transfer a page isnon-negligible, and hence there is a time between when a migration begins andends during which the old copy serves these requests.A relaxed metrical task system is associated with a parameter D and anunderlying metrical task system with the same set of con�gurations. A con-�guration change in the relaxed task system is D times more expensive thanthe corresponding change in the underlying task system. Conveniently, we candemonstrate how to �nd a competitive algorithm for a relaxed metrical tasksystem in the delayed action model, given a competitive algorithm for the asso-ciated metrical task system. Hence we can e�ectively handle an entire generalclass of problems, generalizing the work of [6, 9] on relaxed metrical task sys-tems to the setting of delayed actions. We begin by de�ning a metrical tasksystem [14], and then move on to de�ne relaxed metrical task systems. Here wefollow [9].De�nition 14 A task system, P, consists of a set of con�gurations (or states)C and a distance function between any two con�gurations C1; C2 2 C, denoteddist(C1; C2). (this is the move cost between the con�gurations). The task systemconsists of a set of requests, called tasks. A task r is associated with a service costin each con�guration, denoted task(C; r) (this is the task cost). An algorithmfor P is associated with a con�guration C1. Given a request r, the algorithmmay serve it by moving to con�guration C2 paying a cost of cost(C1; C2; r) =dist(C1; C2) + task(C2; r). If the move cost function dist forms a metric spaceover C, then the task system is called metrical.De�nition 15 A D-relaxed task system, D-P, with respect to a task system Pand some parameter D � 1=2, is the task system with cost, distance, and taskfunctions denoted costD, distD and taskD respectively. distD and taskD arede�ned as follows: Given C1; C2 2 C, distD(C1; C2) = D � dist(C1; C2). GivenC 2 C and a task r, taskD(C; r) = minC0 dist(C;C 0) + task(C 0; r).Consider an algorithm for a task system P. Suppose the algorithm starts outin con�guration C0. It receives a sequence of requests r1; r2; : : :. When requestri is received, the algorithm is in con�guration Ci�1. The algorithm �rst movesto con�guration Ci and then services request ri from this con�guration. Thecost of the con�guration change is dist(Ci�1; Ci) and the request service cost is16



task(Ci; ri). In the delayed action model, we distinguish between the real state ofthe algorithm and the ideal state of the algorithm. Ideally, the algorithm shouldbe in con�guration Ci when it is just about to service request ri. However, statechanges may not be instantaneous, but occur only after a certain delay. Hence,the algorithm's state may not be Ci, but some earlier state Ci�di , where di issome delay parameter. Thus, the algorithm must service the request Ci fromstate Ci�di . The request service cost is therefore task(Ci�di ; ri). Eventually, thealgorithm's real state will go through the same sequence of states as the idealstate, i.e. C0; C1; C2; : : :. Thus, we can think of the con�guration change cost asdist(Ci�1; Ci), even though the con�guration change may not occur right away.We will assume that the delay is bounded by d, i.e. di � d for some d. Note thatthe case d = 0 gives us the original task system. We consider algorithms fortask systems in the delayed action model and determine their competitive ratioas a function of the maximum delay d. For the analysis, we will assume that theadversary does not have any delay associated with its con�guration changes.For an arbitrary metrical task system P, the delayed action model may notbe meaningful. In fact, there are task systems P such that, in the delayedaction model, it is impossible to have a �nite competitive ratio even for delayd = 1, even though there is an algorithm with �nite competitive ratio for d = 0.For example, this could happen in the case of forcing task systems, where therequest service costs are either 0 or 1. For relaxed task systems, however, thedelayed action model is meaningful, as we now show.5.1 Cost analysis for delayed relaxed task systemsLet P be a metrical task system. Let task(C; r) be the cost of servicing requestr from con�guration C in P. Let Cmin(C; r) denote any con�guration C 0 whichminimizes dist(C;C 0) + task(C 0; r). Let taskD(C; r) be the cost if servicingrequest r from con�guration C in D-P. Then taskD(C; r) = dist(C;C 0) +task(C 0; r), where C 0 = Cmin(C; r).Consider an algorithm for D-P. The total cost in servicing a sequence of re-quests r1; r2; : : : ; rn by moving through the sequence of states CO ; C1; C2; : : : ; Cnis nXi=1 distD(Ci�1; Ci) + nXi=1 taskD(Ci; ri) =D nXi=1 dist(Ci�1; Ci) + nXi=1 �dist(Ci; C0i) + task(C0i; ri)�where C 0i = Cmin(Ci; ri).On the other hand, the cost of servicing the request sequence in the delayedmodel is nXi=1 distD(Ci�1; Ci) + nXi=1 taskD(Ci�di ; ri)17



� D nXi=1 dist(Ci�1; Ci)+ nXi=1 �dist(Ci�di ; C0i) + task(C0i; ri)�� D nXi=1 dist(Ci�1; Ci) + nXi=1 dist(Ci�di ; Ci)+ nXi=1 �dist(Ci; C0i) + task(C0i; ri)�� D nXi=1 dist(Ci�1; Ci) + nXi=1 iXj=i�d+1 dist(Cj�1; Cj)+ nXi=1 �dist(Ci; C0i) + task(C0i; ri)�� (D + d) nXi=1 dist(Ci�1; Ci)+ nXi=1 �dist(Ci; C0i) + task(C0i; ri)�Thus for the purpose of analysis, we can think of the delayed model asbeing equivalent to the model without delay where the cost of moving fromcon�guration C1 to C2 is (D+ d)dist(C1; C2) and the request service cost is thesame as before. The cost estimate we get using this approximation is an upperbound on the actual cost incurred by the algorithm in the delayed model. Onthe other hand, since we compare with an adversary that does not face delays,the cost for the adversary is the same as for the relaxed task system withoutdelays. This considerably simpli�es the analysis. In particular, this means thatif we use the same algorithm for the delayed model as for the original relaxedtask system, the cost increases by at most a factor of (1 + dD ). Hence if A isa c-competitive algorithm for the relaxed task system without delays, then Ais a c(1 + dD )-competitive algorithm for the relaxed task system in the delayedmodel.Since the results of [6, 9] show how to turn competitive algorithms for met-rical task system into competitive algorithms for relaxed metrical task systems,we now have a means of turning competitive algorithms for metrical task sys-tem into competitive algorithms for relaxed metrical task system in the delayedmodel. The above observation shows that the competitive ratio we achieve forthe delayed model is at most a factor of (1+ dD ) times the competitive ratio forthe original relaxed task system. In fact, it is possible to improve on this ob-servation and get better competitive ratios by modifying the algorithm and/orthe analysis of [6, 9] to tailor them to the delayed model. We demonstrate thisbelow. Our results generalize the algorithms of [6, 9]; in fact, when d = 0, our18



arguments reduce to theirs.5.2 Randomized AlgorithmLet A be a c-competitive algorithm for P , and let D � 1=2. We give a ran-domized algorithm Delayed D-Alg that is competitive against adaptive on-lineadversaries for D-P in the delayed model. The algorithm is exactly the sameas the algorithm in [6] for relaxed task systems.Algorithm Delayed D-Alg: Algorithm Delayed D-Alg simulates a version ofalgorithm A. At all times, the con�guration of Delayed D-Alg is equal to that ofthe simulated version of A. Upon receiving a request r, with probability 12D , feedA with new request r, and change the con�guration to the new con�guration ofA. With probability 1� 12D , the algorithm stays in the same con�guration.Theorem 16 Let P be a metrical task system, and let A be c-competitive forP against adaptive on-line adversaries. Algorithm Delayed D-Alg is (3+ d�1D )c-competitive for D-P with delay d, against adaptive on-line adversaries, for D �1=2.The proof is a modi�cation of the proof of Theorem 4.1 in [6]. The de�nitionof relaxed task system we use is from [9]. This is slightly more general than thede�nition of relaxed task systems used in [6]. However, the proof of Theorem4.1 in [6] can be easily modi�ed to work for the more general de�nition [36]. Webrie
y indicate the modi�cations in the proof of [6] to obtain the above theoremfor relaxed task systems with delay. We will use the same notation as in [6]; werefer the reader to their paper for de�nitions.The potential function used is�(hn; An) = (3D + d� 1) �Up(ĥn; An)where Up is de�ned byUp(ĥn; An) = minA fUp(ĥn; A) + c � dist(A;An)g:When the adversary changes con�guration from An to An+1, the change inpotential is bounded by�� � �3 + d� 1D � � c � distD(An; An+1):The expected cost of algorithm Delayed D-Alg on receiving request rn+1 isbounded byE(CostDel D�Alg(hn; rn+1)) � 3D + d� 12D � E(CostAlg(ĥn; rn+1)):This then allows us to prove thatE(��) � �3 + d� 1D � � c � taskD(An+1; rn+1)� E(CostDel D�Alg(hn; rn+1)):19



5.3 Deterministic AlgorithmFor any deterministic algorithmA, request sequence � and request r, let costA(�; r)(or costA(r) when � follows from the context) be the cost incurred by A whileservicing r from the con�guration reached by previously servicing �. Also, letcostA(�) be the total cost of A on �. Assuming that A is c-competitive forP, we de�ne the competitive algorithm Delayed D-DAlg for D-P as follows.(The algorithm is a modi�cation of the algorithm D-DAlg in [9] for relaxed tasksystems.)AlgorithmDelayed D-DAlg: Algorithm DelayedD-DAlg simulates 2D copiesA1 : : : A2D of A. Let � = 2+p1 + d=D. The con�guration of Delayed D-DAlgis always the same as that of A1. When given a new request r, the algorithmgives it to one of the Ai according to the following rule:� if there exists i � 2 such that costAi(r) � 1�ccostA1(r), r is given to Ai (i.e.the simulated con�guration of Ai is updated). Then DelayedD-DAlg servicesr remotely, without changing its con�guration.� otherwise, r is given to A1. Then Delayed D-DAlg services r and moves tothe new con�guration of A1.Theorem 17 Let P be a metrical task system and let A be a c-competitive deter-ministic algorithm for P. Then algorithm Delayed D-DAlg is �2c2-competitivefor the D-relaxed task system D-P.Proof: The proof is a modi�cation of the proof of Theorem 2.1 in [9]. It consistsof two steps. First, we show that the sum of the costs of algorithms A1 : : : A2Dis within a factor 2c from the optimal o�-line cost of servicing the requests inD-P. Then we show that the cost of Delayed D-DAlg is within a factor �22 cfrom the above sum. The result will follow. For brevity, we will often refer tothe algorithm Delayed D-DAlg as simply D-DAlg .The following lemma is proved in [9] (Lemma 2.1).Lemma 18 Let � be a request sequence, and let �1 : : : �2D be (possibly empty)subsequences of � such that each request from � appears in exactly one �i. Also,let A be a c-competitive algorithm for P and let costAdv(�) be the optimal o�-linecost of servicing � in D-P. ThenP2Di=1 costA(�i) � 2c � costAdv(�):The next lemma is analogous to Lemma 2.2 in [9].Lemma 19 Let �i be a sequence of requests given to Ai while running D-DAlgon �. Then costD-DAlg(�) � �22 cP2Di=1 costAi(�i):20



Proof: We may split costD-DAlg(�) into costSD-DAlg(�) (the cost of servicingrequests) and costMD-DAlg(�) (the cost of moving between con�gurations).We analyze the cost incurred by D-DAlg to service a request r. If r is givento Ai, the cost of servicing r from the current con�guration of D-DAlg is at most�c times costAi(r). Hence, we can bound the total cost of servicing requests by�cP2Di=1 costAi(�i).Therefore, it is su�cient to bound costMD-DAlg(�) = (D + d) � costA1(�1) interms of P2Di=1 costAi(�i). To this end, consider algorithms A0i which simulateAi on �i, but also service all requests from �1 in the following way: wheneverr 2 �1 appears, A0i moves from its current con�guration C to C 0 = Cmin(C; r),services r and moves back to C, paying costA0i(r) := 2�dist(C;C 0)+task(C 0; r) �2 � (dist(C;C 0)+task(C 0; r)) � 2 �costAi(r). As r was given to A1, we know thatcostAi(r) � 1�ccostA1(r)which implies costA0i(r) � 2�ccostA1(r):Hence the total cost of A0i (denoted by costA0i(�1)) is bounded bycostAi(�i) + Xr2�1 costAi(r)� costAi(�i) + 2�c Xr2�1 costA1(r)= costAi(�i) + 2�ccostA1(�1):On the other hand, the algorithm A1 is c-competitive, so costA1(�1) � c �costA0i(�1). Hence1c costA1(�1) � costA0i(�1)� costAi(�i) + 2�ccostA1(�1)and thus costA1(�1) � �c(��2) � costAi(�i). Now we can bound the moving costas follows: costMD-DAlg(�)= (D + d) � costA1(�1)� 12 �1 + dD� 2DXi=1 costA1(�1)� �c2(� � 2) �1 + dD� 2DXi=1 costAi(�i):21



costD-DAlg(�1)= costSD-DAlg(�) + costMD-DAlg(�)� �� + �2(� � 2) �1 + dD�� c 2DXi=1 costAi(�i)= �22 c 2DXi=1 costAi(�i):Theorem 17 follows from Lemmas 18 and 19.5.4 Other ResultsSimilar to the results in [9], we can get slightly better competitive ratios formonotonic task systems (de�ned below), as well as randomized algorithmsagainst oblivious adversaries.Monotonic Task SystemsDe�nition 20 AMonotonic Task System is a forcing task system with a mono-tonicity property between con�gurations as follows. A con�guration C is said tobe dominated by C 0 if for all tasks for which C is allowable so is C 0. A forcingtask system is monotonic if for every pair of con�gurations C1; C2 there exists acon�guration C dominating both, and for every con�guration C 01 dominated byC1, dist(C1; C) � dist(C 01; C2).A better ratio of 
2c2 (where 
 = 1 +q1 + dD ) may be obtained when theunderlying task system P is monotonic. An example of a monotonic task systemis the Steiner tree problem. The corresponding relaxed version is the pagereplication problem. Another example is the generalized Steiner tree problem;the relaxed version is the network leasing problem.To get the better bound, we use a modi�ed version of Delayed D-DAlg,which now simulates D algorithms A1 : : : AD and gives a requests r to Ai forwhich costAi(v) � 1
ccostA1(r) (if such an algorithm exists) or to A1 otherwise.The analysis is similar to that in [9].Randomized Algorithm against Oblivious AdversaryOne can de�ne a randomized version of D-DAlg, called D-RAlg, which is (3 +dD )c-competitive against an oblivious adversary. For monotonic task systems itis (2 + dD )c-competitive. The algorithm is exactly the same as the randomizedalgorithm for relaxed task systems given in [9]; hence the same name. Thealgorithm D-RAlg simulates 2D algorithms A1 : : : A2D (D algorithms in themonotonic case). At the beginning it chooses one of them at random (say Ai)and then always keeps the same con�guration as Ai. The requests are always22



given to the algorithm which incurs the highest cost. The following lemmabounds the expected cost of the algorithm D-RAlg.6 ConclusionWe have considered the e�ects of delayed action and delayed information for avariety of on-line problems, including the general class of problems correspond-ing to relaxed metrical task systems. Our results demonstrate that in manycases appropriate algorithms can deal gracefully with delay, to the extent thatthe competitive ratio grows slowly as the delay increases. We believe that ex-amining delayed situations, besides yielding interesting problems, gives moreinsight into these on-line problems. In particular, by studying delay one learnsmore about the underlying model and how reasonable it appears as well as howrobust suggested algorithms are for handling slightly di�erent situations.Further directions to pursue include studying the e�ects of delay on morechallenging on-line problems, such as the k-server problem. Also, determininghow to introduce notions of delay in more general models of on-line problemsmay yield interesting results.References[1] S. Albers. Better Bounds for Online Scheduling. In Proc. 29th Ann. ACM Symp.on Theory of Computing, pp. 130{139, 1996.[2] S. Albers, B. von Stengel, and R. Werchner. A Combined BIT and TIMESTAMPalgorithm for the List Update Problem. Information Processing Letters, 56:135{139, 1995.[3] N. Alon, G. Kalai, M. Ricklin, and L. Stockmeyer. Lower Bounds on the Com-petitive Ratio for Mobile User Tracking and Distributed Job Scheduling. In Proc.33rd Ann. Symp. on the Foundations of Computer Science, pp. 334-343, 1992.[4] E. Altman and P. Nain. Closed Loop Control with Delayed Information. In Pro-ceedings of the ACM Sigmetrics Conference on Measurement and Modeling ofComputer Systems, Newport, Rhode Island, pp. 193-204, ACM, June 1992.[5] E. Altman and S. Stidham. Optimality of Monotonic Policies for Two-ActionMarkovian Decision Processes, with Applications to Control of Queues with De-layed Information. In Queueing Systems: Theory and Applications, 1996.[6] B. Awerbuch, Y. Azar, and Y. Bartal. On-line Generalized Steiner Problem. InProc. 7th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 68{74, 1996.[7] B. Awerbuch, Y. Azar, A. Fiat, and T. Leighton. Making Commitments in theFace of Uncertainty: How to Pick a Winner Almost Every Time. In Proc. 28thAnn. ACM Symp. on Theory of Computing, pp. 519{530, 1996.[8] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive Distributed File Allocation.In Proc. 25 ACM Symp. on Theory of Computing, pp. 164{173, 1993.[9] Y. Bartal, M. Charikar, and P. Indyk. On Page Migration and Other Relaxed TaskSystems. Submitted to TCS Special Issue on On-line Algorithms. Preliminaryversion in Proc. 8th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 43{52,1997. 23



[10] Y. Bartal, J. Byers, and D. Raz. Global Optimization Using Local Informationwith Applications to Flow Control. In Proc. 38th Ann. Symp. on Foundations ofComputer Science, pp. 303-312, 1997.[11] Y. Bartal, A. Fiat, and Y. Rabani. Competitive Algorithms for Distributed DataManagement. In Proc. 24th Ann. ACM Symp. on the Theory of Computing, pp.39-49, 1992.[12] S. Ben-David and A. Borodin. A New Measure for the Study of On-Line Algo-rithms. Algorithmica, 11:73{91, 1994.[13] D.L. Black and D.D. Sleator. Competitive Algorithms for Replication and Mi-gration Problems. Technical Report CMU-CS-89-201, Department of ComputerScience, Carnegie-Mellon University, 1989.[14] A. Borodin, N. Linial and M. Saks. An Optimal On-Line Algorithm for MetricalTask Systems. Journal of the ACM, 39:745{763, 1992.[15] A. Chou, J. Cooperstock, R. El-Yaniv, M. Klugerman, and T. Leighton. TheStatistical Adversary Allows Optimal Money-Making Trading Schemes. In Proc.6th Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 467{476, 1995.[16] T.M. Cover. Universal Portfolios. Mathematical Finance, 1:1{29, 1991.[17] X. Deng and C.H. Papadimitriou. Competitive Distributed Decision-Making. InProc. 12th IFIP Congress, pp. 350{356, 1992.[18] R. El-Yaniv, A. Fiat, R. Karp, and G. Turpin. Competitive Analysis of FinancialGames. In Proc. 33rd Ann. Symp. on Foundations of Computer Science, pp. 327-333, 1992.[19] R.L. Graham. Bounds for Certain Multi-Processing Anomalies. Bell System Tech-nical Journal, 45:1563{1581, 1966.[20] M.M. Halld�orsson and M. Szegedy. Lower Bounds for On-Line Graph Coloring.In Proc. 3rd Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 211{216, 1992.[21] J.C. Hull. Options, Futures, and other Derivative Securities: Second Edition,Prentice-Hall, Inc, 1993.[22] S. Irani. Coloring Inductive Graphs On-Line. Algorithmica, 11:53{62, 1994.[23] S. Irani and Y. Rabani. On the Value of Information in Coordination Games. InProc. 34th Ann. Symp. on Foundations of Computer Science, pp. 12{21, 1993.[24] R. Karp and P. Raghavan. From a personal communication cited in [32].[25] E. Koutsoupias and C.H. Papadimitriou. Beyond Competitive Analysis. InProc. 35th Ann. Symp. on Foundations of Computer Science, pp. 394{400, 1994.[26] J. Kuri and A. Kumar. Optimal Control of Arrivals to Queues with DelayedQueue Length Information. IEEE Transactions on Automatic Control, Vol. 40,pp. 1444-1450, 1995.[27] M. Mitzenmacher. How Useful is Old Information ? In Proc. 16th Ann. ACMSymp. on Principles of Distributed Computing, pp. 83{91, 1997.[28] R. Mirchandaney, D. Towsley, and J. A. Stankovic, Analysis E�ects of Delays onLoad Sharing. IEEE Transactions on Computers, 38:1513{1525, 1989.[29] C.H. Papadimitriou and M. Yannakakis. On the Value of Information in Dis-tributed Decision Making. In Proc. 25th ACM Symp. on Principles of DistributedComputing, pp. 61{64, 1991.[30] C.H. Papadimitriou and M. Yannakakis. Linear Programming Without the Ma-trix. In Proc. 25th ACM Symp. on Theory of Computing, pp. 121{129, 1993.[31] P. Raghavan. A Statistical Adversary for On-Line Algorithms. On-Line Algo-rithms DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-ence, pp. 79{83, 1991. 24



[32] N. Reingold, J. Westbrook, and D.D. Sleator. Randomized Competitive Algo-rithms for the List Update Problem. Algorithmica, 11:15{32, 1994.[33] D.D. Sleator and R.E. Tarjan, Amortized E�ciency of List Update and PagingRules. Communications of ACM, 28:202{208, 1985.[34] D. Towsley and R. Mirchandaney. The E�ect of Communication Delays on thePerformance of Load Balancing Policies in Distributed Systems. In Proc. SecondInternational MCPR Workshop, pp. 213{226, 1988.[35] A.C.-C. Yao. Probabilistic Computations: Towards a Uni�ed Measure of Com-plexity. In Proc. 17th Ann. Symp. on Foundations of Computer Science, pages222{227, 1977.[36] Y. Bartal. Personal communication, 1997.

25


