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1 Introduction

This book chapter reviews fundamental concepts and results in the area of
online algorithms. We first address classical online problems and then study
various applications of current interest.

Online algorithms represent a theoretical framework for studying prob-
lems in interactive computing. They model, in particular, that the input in
an interactive system does not arrive as a batch but as a sequence of input
portions and that the system must react in response to each incoming por-
tion. Moreover, they take into account that at any point in time future input
is unknown. As the name suggests, online algorithms consider the algorith-
mic aspects of interactive systems: We wish to design strategies that always
compute good output and keep a given system in good state. No assumptions
are made about the input stream. The input can even be generated by an
adversary that creates new input portions based on the system’s reactions to
previous ones. We seek algorithms that have a provably good performance.

Formally, an online algorithm receives a sequence of requests
σ = σ(1), . . . , σ(m). These requests must be served in the order of occur-
rence. When serving request σ(t), an online algorithm does not know requests
σ(t′) with t′ > t. Serving requests incurs cost and the goal is to minimize the
total cost paid on the entire request sequence. This process can be viewed as
a request answer game. An adversary generates requests and an online algo-
rithm has to serve them one at a time. The performance of online algorithms
is usually evaluated using competitive analysis [65]. Here an online algorithm
ALG is compared to an optimal offline algorithm OPT that knows the entire
request sequence σ in advance and can serve it with minimum cost. Given
a sequence σ, let ALG(σ) and OPT (σ) denote the costs incurred by ALG
and OPT , respectively. Algorithm ALG is called c-competitive if there exists
a constant b such that ALG(σ) ≤ c · OPT (σ) + b, for all sequences σ. The
constant b must be independent of the input σ. We note that competitive
analysis is a strong worst-case performance measure.
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Over the past 15 years online algorithms have received tremendous re-
search interest. Online problems have been studied in many application ar-
eas including resource management in operating systems, data structuring,
scheduling, networks, and computational finance. In the following sections
we first survey fundamental results. We address the paging problem, self-
organizing lists, the k-server problem as well as metrical task systems. Then
we review a number of new results in application areas of current interest. We
focus on algorithmic problems in large networks and competitive auctions. Fi-
nally we present refinements of competitive analysis and conclude with some
remarks.

2 Basic Results

Paging is an extensively studied problem and perhaps one of the oldest exam-
ples of an interactive computing problem. It arises when a CPU communicates
with the underlying memory hierarchy. Paging is also an excellent problem to
illustrate basic concepts in the theory of online algorithms and we therefore
study it in the rest of this section.

In paging we have to maintain a two-level memory system consisting of
a small fast memory and a large slow memory. The memory is partitioned
into pages of equal size. The system receives a sequence of requests, where
each request specifies a page in the memory system. A request can be served
immediately if the referenced page is available in fast memory. If the requested
page is not in fast memory, a page fault occurs. The missing page is then loaded
from slow memory into fast memory so that the request can be served. At the
same time a page is evicted from fast memory to make room for the missing
one. A paging algorithm decides which page to evict on a fault. This decision
must usually be made online, i.e. without knowledge of any future requests.
The cost to be minimized is the number of page faults.

The two most popular online paging algorithms are LRU and FIFO.

LRU (Least Recently Used): On a fault, evict the page in fast memory that
was requested least recently.

FIFO (First-In First-Out): Evict the page that has been in fast memory
longest.

Sleator and Tarjan [65] analyzed the performance of the two algorithms. Let
k be the number of pages that can simultaneously reside in fast memory.

Theorem 1. [65] LRU and FIFO are k-competitive.

There exists a more general class of algorithms that achieve a competitiveness
of k.

Marking: A Marking strategy processes a request sequence in phases. At
the beginning of each phase all pages in the memory system are unmarked.
Whenever a page is requested, it is marked . On a fault, an arbitrary unmarked
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page in fast memory is evicted. A phase ends when all pages in fast memory
are marked and a page fault occurs. Then all marks are erased and a new
phase is started.

It is not hard to see that LRU is in fact a Marking algorithm. Marking
strategies were considered in [24, 37]. Torng [67] explicitly observed that any
Marking strategy is k-competitive. This factor is best possible for determin-
istic paging algorithms.

Theorem 2. [65] No deterministic online algorithm for the paging problem
can achieve a competitive ratio smaller than k.

An optimal offline algorithm for the paging problem was presented by
Belady [17]. The algorithm is called MIN and works as follows.

MIN: On a fault, evict the page whose next request occurs furthest in the
future.

Belady showed that on any sequence of requests, MIN incurs the minimum
number of page faults.

In many problems, such as paging, online algorithms can achieve a better
performance if they are allowed to make random choices. The competitive
ratio of a randomized online algorithm ALG is defined with respect to an
adversary. The adversary generates a request sequence σ and also has to serve
σ. When constructing σ, the adversary always knows the description of ALG .
The crucial question is: When generating requests, is the adversary allowed
to see the outcome of the random choices made by A on previous requests?
Oblivious adversaries do not have this ability while adaptive adversaries do.
In the literature there exist three kinds of adversaries, which were introduced
by Ben-David et al. [19].

Oblivious adversary: The oblivious adversary has to generate the entire request
sequence in advance before any requests are served by the online algorithm.
The adversary is charged the cost of the optimum offline algorithm for that
sequence.

Adaptive online adversary: This adversary may observe the online algorithm
and generate the next request based on the algorithm’s (randomized) answers
to all previous requests. The adversary must serve each request online, i.e.
without knowing the random choices made by the online algorithm on the
present or any future request.

Adaptive offline adversary: This adversary also generates a request sequence
adaptively. However, it may serve the sequence offline and hence is charged
the optimum offline cost for that sequence.

A randomized online algorithm ALG is called c-competitive against oblivious
adversaries if there is a constant b such that, for all request sequences σ gener-
ated by an oblivious adversary, E[ALG(σ)] ≤ c ·OPT (σ)+b. The expectation
is taken over the random choices made by ALG.
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Given a randomized online algorithm ALG and an adaptive online (adap-
tive offline) adversary ADV , let E[ALG(σ)] and E[ADV (σ)] denote the ex-
pected costs incurred by ALG and ADV in serving a request sequence gener-
ated by ADV . Algorithm ALG is called c-competitive against adaptive online
(adaptive offline) adversaries if there is a constant b such that, for all adaptive
online (adaptive offline) adversaries ADV , E[ALG(σ)] ≤ c · E[ADV (σ)] + b
where the expectation is taken over the random choices made by ALG.

Ben-David et al. [19] investigated the relative strength of the adversaries
and proved the following results.

Theorem 3. [19] If there is a randomized online algorithm that is c-competi-
tive against adaptive offline adversaries, then there also exists a c-competitive
deterministic online algorithm.

Theorem 4. [19] If ALG is a c-competitive randomized algorithm against
adaptive online adversaries and if there is a d-competitive algorithm against
oblivious adversaries, then ALG is (c · d)-competitive against adaptive offline
adversaries.

Theorem 3 implies that randomization does not help against adaptive
offline adversaries, and we can ignore them when in search for improved com-
petitive ratios. An immediate consequence of the two theorems above is:

Corollary 1. If there exists a c-competitive randomized algorithm against
adaptive online adversaries, then there is a c2-competitive deterministic al-
gorithm.

A result by Raghavan and Snir [61] implies that against adaptive on-
line adversaries, no randomized online paging strategy can be better than
k-competitive. Hence we concentrate on oblivious adversaries and show that
we can achieve an exponential improvement over the deterministic bound of
k. The most popular randomized online paging algorithm is the Randomized-
Marking strategy presented by Fiat et al. [37]. It is optimal up to a constant
factor.

Randomized-Marking: The algorithm is a Marking strategy. On a fault, a
page is chosen uniformly at random from among the unmarked pages in fast
memory, and that page is evicted.

Let Hk =
∑k

i=1 1/i be the k-th Harmonic number, which is closely ap-
proximated by ln k, i.e. ln(k + 1) ≤ Hk ≤ ln k + 1.

Theorem 5. [37] Randomized-Marking is 2Hk-competitive against oblivious
adversaries.

Theorem 6. [37] The competitive ratio of randomized online paging algo-
rithms against oblivious adversaries is not smaller than Hk.

More complicated algorithms achieving an optimal competitiveness of Hk were
presented in [1, 58].
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3 Self-Organizing Data Structures

Data structuring is a classical field where many online problems arise. We
have to maintain a given structure not knowing which items in the structure
will be accessed next. There has been a lot of research on self-organizing lists
and trees.

The problem of self-organizing lists, also called the list update problem,
consists in maintaining a set of items as an unsorted linear list. We are given
an unsorted linear linked list of items. As input we receive a sequence of
requests, where each request specifies an item in the list. To serve a request,
we have to access the requested item. We start at the front of the list and
search linearly through the items until the desired item is found. Serving a
request to an item that is currently stored at position i in the list incurs a
cost of i. Immediately after a request, the referenced item may be moved at
no extra cost to any position closer to the front of the list. This can lower
the cost of subsequent requests. However, the decision where to move an item
must be made online, without knowledge of any future requests. At any time,
two adjacent items in the list may be exchanged at a cost of 1. The goal is to
serve the request sequence so that the total cost is as small as possible.

Self-organizing lists are useful when maintaining a small dictionary consist-
ing of only a few dozens of items and, moreover, have interesting applications
in data compression [5, 20, 27].

With respect to the list update problem we require that a c-competitive
online algorithm has a performance ratio of c, for all size lists. There exist
three very well-known deterministic algorithms.

Move-To-Front: Move the requested item to the front of the list.
Transpose: Exchange the requested item with the immediately preceding
item in the list.

Frequency-Count: Maintain a frequency count for each item in the list.
Whenever an item is requested, increase its count by 1. Maintain the list so
that the items always occur in nonincreasing order of frequency count.

Sleator and Tarjan analyzed these three algorithms. It shows that Move-
To-Front achieves an optimal competitiveness of 2 while the other strategies
are not competitive at all.

Theorem 7. [65] The Move-To-Front algorithm is 2-competitive.

Theorem 8. [50] The competitive ratio of any deterministic online algorithm
is not smaller than 2.

Proposition 1. The algorithms Transpose and Frequency-Count are not c-
competitive, for any constant c.

Ambühl [8] showed that the offline variant of the list update problem is NP-
hard. Thus, there is no efficient algorithm for computing an optimal service
schedule.
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We next consider the influence of randomization. Against adaptive online
adversaries no randomized strategy can be better than 2-competitive [62].
However, against oblivious adversaries we can improve the factor of 2. A
number of randomized strategies have been proposed in the literature. We
mention here only the two most important ones. Reingold et al. [62] presented
counter-based algorithms, which move an item to the front of the list if its
counter takes a certain value. Using mod 2 counters, we obtain the elegant
Bit algorithm.

Bit: Each item in the list maintains a bit that is complemented whenever the
item is accessed. If an access causes a bit to change to 1, then the requested
item is moved to the front of the list. Otherwise the list remains unchanged.
The bits of the items are initialized independently and uniformly at random.

Theorem 9. [62] The Bit algorithm is 1.75-competitive against oblivious ad-
versaries.

The best randomized algorithm known to date combines Bit with a determin-
istic 2-competitive online algorithm called Timestamp proposed in [2].

Timestamp (TS): Insert the requested item, say x, in front of the first item
in the list that precedes x and that has been requested at most once since the
last request to x. If there is no such item or if x has not been requested so
far, then leave the position of x unchanged.

Combination: With probability 4/5 serve a request sequence using Bit , and
with probability 1/5 serve it using TS .

Theorem 10. [6] The algorithm Combination is 1.6-competitive against obliv-
ious adversaries.

This factor of 1.6 is close to the best lower bound known.

Theorem 11. [9] Let A be a randomized online algorithm for the list update
problem. If A is c-competitive against oblivious adversaries, then c ≥ 1.50084.

The latest results on the list update problem are by Blum et al. [21]. Using
techniques from learning theory, they gave a randomized online algorithm
that, for any ǫ > 0, is (1.6 + ǫ)-competitive and at the same time (1 + ǫ)-
competitive against an offline algorithm that is restricted to serving a request
sequence with a static list. The main open problem with respect to the list
update problem is to develop tight upper and lower bounds on the performance
of randomized algorithms.

Many of the concepts shown for self-organizing linear lists can be extended
to binary search trees. The most popular version of self-organizing binary
search trees are the splay trees presented by Sleator and Tarjan [66]. In a
splay tree, after each access to an element x in the tree, the node storing x is
moved to the root of the tree using a special sequence of rotations that depends
on the structure of the access path. Sleator and Tarjan [66] showed that on
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any sequence of accesses a splay tree is as efficient as the optimum static
search tree. The famous splay tree conjecture is still open: It is conjectured
that on any sequence of accesses splay trees are as efficient as any dynamic
binary search tree.

4 The k-Server Problem

The k-server problem is one of the most famous online problems. It has re-
ceived a lot of research interest, partly because proving upper bounds on the
performance of k-server algorithms is a very challenging task. The k-server
problem generalizes paging as well as other caching problems. It can also be
viewed as an online vehicle routing problem.

In the k-server problem we are given a metric space S and k mobile servers
that reside on points in S. As usual we receive a sequence of requests, where
each request specifies a point x ∈ S. In response, a server must be moved to
the requested point, unless a server is already present. Moving a server from
point x to point y incurs a cost equal to the distance between the two points.
The goal is to minimize the total distance traveled by all servers.

It is easy to see that the k-server problem models paging: Consider a
metric space in which the distance between any two points in 1. Each point
in the metric space represents a page in the memory system and the pages
covered by servers are those that reside in fast memory. The k-server problem
was introduced in 1988 by Manasse et al. [57] who showed a lower bound for
deterministic k-server algorithms.

Theorem 12. [57] Let A be a deterministic online k-server algorithm in an
arbitrary metric space. If A is c-competitive, then c ≥ k.

Manasse et al. also conjectured that there exist k-competitive determinis-
tic online algorithms. This conjecture essentially is still open. In 1995, how-
ever, Koutsoupias and Papadimitriou [53] achieved a breakthrough. They
showed that the Work Function algorithm is (2k − 1)-competitive. Before,
k-competitive algorithms were known only for special metric spaces (e.g. trees
[29] and resistive spaces [31]) and special values of k (k = 2 and k = n − 1,
where n is the number of points in the metric space [57]).

The Work Function algorithm tries to mimic the optimal offline algorithm
and at the same time incorporates aspects of the Greedy strategy. Let X be a
configuration of the servers. Given a request sequence σ = σ(1), . . . , σ(t), the
work function w(X) is the minimal cost of serving σ and ending in configura-
tion X . For any two points x and y in the metric space, let dist(x, y) be the
distance between x and y.

Work Function: Suppose that the algorithm has served σ = σ(1), . . . , σ(t−1)
and that a new request r = σ(t) arrives. Let X be the current configuration
of the servers and let xi be the point where server si, 1 ≤ i ≤ k, is located.
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Serve the request by moving the server si that minimizes w(Xi) + dist(xi, r),
where Xi = X − {xi} + {r}.

Theorem 13. [53] The Work Function algorithm is (2k − 1)-competitive in
an arbitrary metric space.

An interesting open problem is to show that the Work Function algorithm
is indeed k-competitive or to develop an other deterministic online k-server
algorithm that achieves a competitive ratio of k.

Next we turn to randomized k-server algorithms. Against adaptive online
adversaries, no randomized strategy can be better than k-competitive. Against
oblivious adversaries the best lower bound currently known is due to Bartal
et al. [15].

Theorem 14. [15] The competitive ratio of a randomized online algorithm in
an arbitrary metric space is Ω(log k/ log2 log k) against oblivious adversaries.

The bound can be improved to Ω(log k) if the metric space consists of at least
klogǫ k points, for any ǫ > 0, [15]. It is conjectured that Θ(log k) is the true com-
petitiveness of randomized algorithms against oblivious adversaries. Bartal et
al. [14] presented an algorithm that has a competitive ratio of O(c6 log6 k) in
metric spaces consisting of k + c points. Seiden [64] gave an algorithm that
achieves a competitive ratio polylogarithmic in k for metric spaces that can
be decomposed into a small number of widely separated subspaces. A very
challenging open problem is to develop randomized online algorithms that
have a competitive ratio of c < k in an arbitrary metric space.

5 Metrical Task Systems

So far we have presented a number of online problems and related results.
A natural question is if there exists a more general framework for studying
online algorithms. Borodin et al. [25] developed metrical task systems that
can model a very large class of online problems.

A metrical task system is defined by a metric space (S, d) and an associated
set T of tasks. The space (S, d) consists of a finite set S of, say, n states and
a distance function d : S × S −→ IR+

0 , where d(i, j) ≥ 0 denotes the cost of
changing from state i to state j. Since the space is metric, d is symmetric,
satisfies the triangle inequality and d(i, i) = 0, for all states i. The set T is the
set of allowable tasks. A task T ∈ T is a vector T = (T (1), T (2), . . . , T (n)),
where T (i) ∈ IR+

0 ∪ {∞} denotes the cost of processing the task while in
state i. A request sequence is a sequence of tasks σ = T 1, T 2, T 3, . . . , T m that
must be served starting from some initial state s(0). When receiving a new
task, an algorithm may serve the task in the current state or may change
states at a cost. Thus the algorithm must determine a schedule of states
s(1), s(2), . . . , s(m), such that task T i is processed in state s(i). The cost of
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serving a task sequence is the sum of all state transition costs and all task
processing costs:

∑m
i=1 d(s(i−1), s(i))+

∑m
i=1 T i(s(i)). The goal is to process

a given task sequence so that the cost is as small as possible.
Borodin et al. [25] settled the competitiveness of deterministic online algo-

rithms. Interestingly, the best competitiveness is achieved by a Work Function
algorithm. Given a request sequence σ = σ(1), . . . , σ(t), let the work function
wt(s) be the minimum cost to process σ starting from s(0) and ending in state
s.

Work Function: Suppose that the algorithm has served the first t requests
σ(1), . . . , σ(t) of a request sequence and that it is currently in state st. To
process the next task T t+1, move to state the st+1 = s that minimizes
wt+1(s) + d(st, s).

Theorem 15. [23, 25] The Work Function algorithm is (2n − 1)-competitive
for any metrical task system with n states.

Theorem 16. [25] Any deterministic online algorithm for the metrical task
systems problem has a competitive ratio of at least 2n − 1, where n is the
number of task system states.

Unfortunately, the competitive factor of 2n− 1 often does not provide mean-
ingful bounds when special online problems are investigated. Consider the list
update problem. Here the given list can be in n! states. Hence, we obtain a
bound of (2n!−1) on the competitive factor of a deterministic online algorithm
for the list update problem. However, Move-To-Front achieves a competitive
factor of 2.

For randomized algorithms against oblivious adversaries, the known bounds
are tight up to a logarithmic factor.

Theorem 17. [39] There exists a randomized online algorithm that is
O(log2 n/ log2 log n)-competitive against oblivious adversaries, for any met-
rical task system with n states.

Theorem 18. [15] Any randomized online algorithm for the metrical task sys-
tems problem has a competitive ratio of at least Ω(log n/ log2 log n) against
oblivious adversaries, where n is the number of task system states.

Better bounds hold for uniform metrical task systems, where the cost d(i, j)
of changing states is equal to 1, for all i 6= j. Borodin et al. [25] gave a
lower bound of Hn, where Hn is the n-th Harmonic number. The best upper
bound currently known was presented by Irani and Seiden [46] and is equal
to Hn + O(

√
log n).

6 Application Areas

In the previous sections we presented a selection of important results for
classical online problems. In this section we study two application areas that
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have received a lot of research interest recently, namely large networks and
competitive auctions.

6.1 Large Networks

With the advent of the Internet, researchers started investigating algorithmic
problems that arise in large networks. There exists a host of interesting online
problems addressing, e.g., the construction of networks, the maintenance of
TCP connections or the management of local caches and buffers. Due to space
limitations we only address a few recent problems here.

Network Switches

The performance of high-speed networks critically depends on switches that
route data packets arriving at the input ports to the appropriate output ports
so that the packets can reach their correct destinations in the network. To
reduce packet loss when the traffic is bursty, ports are equipped with buffers
where packets can be stored temporarily. However the buffers are of lim-
ited capacity so that effective buffer management strategies are important to
maximize the throughput at a switch. As a result there has recently been
considerable research interest in various single and multi-buffer management
problems.

We first study single buffer problems, which arise e.g. when maintaining
an output port queue. Consider a buffer that can simultaneously store up to B
data packets. Packets arrive online and can be buffered if space permits. More
specifically, at any time step t let Q(t) be the set of packets currently stored
in the buffer and let A(t) be the set of newly arriving packets. Each packet p
has a value v(p) that represents a QoS parameter. If |Q(t)|+ |A(t)| ≤ B, then
all new packets can be admitted to the buffer; otherwise |Q(t)| + |A(t)| − B
packets from Q(t)∪A(t) must be dropped. In the time step we can select one
packet from the buffer and transmit it through the output port. We assume
that the packet arrival step precedes the transmission step. The goal is to
maximize the total value of the transmitted packets.

Several problem variants are of interest. In a FIFO model packets must
be transmitted in the order they arrive. If packet p is transmitted before p′,
then p must not have arrived later than p′. In a non-FIFO model there is no
such restriction. In a preemptive model we may drop packets from the buffer,
while in a non-preemptive model this is not allowed.

Kesselman et al. [51] analyzed a natural Greedy algorithm in the preemp-
tive FIFO model and proved that it is 2-competitive.

Greedy: In the event of buffer overflow, drop the packets with the smallest
values.

In the following let α be the ratio of the largest to smallest packet value.
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Theorem 19. [51] Greedy achieves a competitive ratio of min{2 − 1
B+1

, 2 −
2

α+1
}.

Recently Bansal et al. [13] gave an algorithm that achieves an improved com-
petitiveness of 1.75. Kesselman et al. [52] showed a lower bound of 1.419.

Aiello et al. [7] investigated non-preemptive single buffer problems. In this
case the buffer can simply be maintained as a FIFO queue. Andelman et
al. [10] gave asymptotically tight bounds for this scenario. They analyzed the
following algorithm. Suppose that the packet values are in the range [1, α].

Exponential-Interval-Round-Robin: Divide the buffer into k partitions
of size B/k, where k = ⌈lnα⌉. Split the interval [1, α] into k subintervals
[α0, α1), [α1, α2), . . . , [αk−1, αk), where αj = αj/k. Each partition of the buffer
is associated with one of the subintervals, accepting in a greedy manner pack-
ets from that subinterval. The partitions take turn in sending packets. If a
partition is empty, its turn is passed to the next partition.

Theorem 20. [10] Exponential-Interval-Round-Robin achieves a competitive
ratio of e⌈lnα⌉.
Theorem 21. [10] No online algorithm can achieve a competitive ratio smaller
than 1 + lnα in the non-preemptive model.

Kesselman et al. [51] also introduced a bounded delay model where packets
have deadlines. A packet that has not been transmitted by its deadline is
lost. There is no bound on the buffer size and packets may be reordered.
Kesselman et al. analyzed a Greedy strategy which at any time transmits the
packet of highest value among those with unexpired deadlines. This strategy
is 2-competitive.

Azar and Richter [12] extended many of the results mentioned so far to
multi-buffer problems. Consider a switch with m input ports, each of which is
equipped with a buffer that can simultaneously store up to B packets. These
buffers serve a common output port. At any time t, let Qi(t) be the set of
packets stored in buffer i and let Ai(t) be the set of packets arriving at that
buffer. If |Qi(t)| + |Ai(t)| ≤ B, then all arriving packets can be admitted to
buffer i; otherwise |Qi(t)|+ |Ai(t)|−B packets must be dropped. At any time,
the switch can select one non-empty buffer and transmit the packet at the
head through the output port. The goal is to maximize the total value of the
transmitted packets.

Azar and Richter presented a general technique that transforms a buffer
management strategy for a single queue (for both the preemptive and non-
preemptive models) into an algorithm for m queues. The technique is based
on the algorithm Transmit-Largest that works in the preemptive non-FIFO
model.

Transmit-Largest (TL):

1. Admission control: Use Greedy for admission control in any of the m
buffers. More precisely, enqueue a packet arriving at buffer i if buffer i



12 Susanne Albers

is not full or if the packet with the smallest value in the buffer has a lower
value than the new packet. In the latter case the packet with the smallest
value is dropped.

2. Transmission: In each time step transmit the packet with the largest value
among all packets in the m queues.

Using this algorithm, Azar and Richter designed a technique Generic-Switch
that takes a single buffer management algorithm A as input parameter. We
are interested in the preemptive FIFO and the non-preemptive models. Here
packets are always transmitted in the order they arrive (w.l.o.g., in the non-
preemptive model) and only A’s admission control strategy is relevant to us.

Generic-Switch:

1. Admission control: Apply admission control strategy A to any of the m
buffers.

2. Transmission: Run a simulation of TL (in the preemptive non-FIFO model)
with online paket arrival sequence σ. In each time step transmit the packet
from the head of the queue served by TL.

The main result by Azar and Richter is as follows.

Theorem 22. [12] If A is a c-competitive algorithm, then Generic-Switch is
2c-competitive.

Using this statement, one can derive a number of results for multi-queue
problems. In the preemptive FIFO model Greedy achieves a competitiveness
of min{4− 2

B+1
, 4− 4

α+1
}. The improved algorithm by Bansal et al. [13] gives a

3.5-competitive strategy. In the non-preemptive setting we obtain a 2e⌈lnα⌉-
competitive strategy.

TCP Acknowledgement

In large networks data transmission is performed using the Transmission Con-
trol Protocol (TCP). If two network nodes wish to exchange data, then there
has to exist an open TCP connection between these two nodes. The data is
partitioned into packets which are then sent across the connection. A node
receiving data must acknowledge the receipt of each incoming packet so that
the sending node is aware that the transmission was successful. In most TCP
implementations today data packets do not have to be acknowledged indi-
vidually. Instead, there is some delay mechanism which allows the TCP to
acknowledge multiple packets with a single acknowledgement and, possibly,
to piggyback the acknowledgement on an outgoing data packet. This reduces
the number of acknowledgements sent and hence the network congestion as
well as the overhead at the network nodes for sending and receiving acknowl-
edgements. On the other hand, by reducing the number of acknowledgements,
we add latency to the TCP connection, which is not desirable. Thus, the goal
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is to balance the reduction in the number of acknowledgements with the in-
crease in latency.

Dooly et al. [34] formulated the following TCP acknowledgement problem.
A network node receives a sequence of m data packets. Let ai denote the
arrival time of packet i, 1 ≤ i ≤ m. At time ai, the arrival times aj, j > i,
are not known. We have to partition the sequence σ = (a1, . . . , am) of packet
arrival times into n subsequences σ1, . . . , σn, for some n ≥ 1, such that each
subsequence ends with an acknowledgement. We use σi to denote the set of
arrivals in the partition. Let ti be the time when the acknowledgement for σi is
sent. We require ti ≥ aj , for all aj ∈ σi. If data packets are not acknowledged
immediately, there are acknowledgement delays. Dooley et al. [34] considered
the objective function that minimizes the number of acknowledgements and
the sum of the delays incurred for all of the packets, i.e. we wish to minimize
f = n +

∑n
i=1

∑
aj∈σi

(ti − aj). It turns out that a simple Greedy strategy is
optimal for this problem.

Greedy: Send an acknowledgement whenever the total delay of the unac-
knowledged packets is equal to 1, i.e. equal to the cost of an acknowledgement.

Theorem 23. [34] The Greedy algorithm is 2-competitive and no determinis-
tic online algorithm can achieve a smaller competitive ratio.

Noga [59] and independently Seiden [63] showed that no randomized algo-
rithm can achieve a competitive ratio smaller than e/(e − 1) ≈ 1.58 against
oblivious adversaries. Karlin et al. [48] presented a randomized strategy that
achieves this factor. Let P (t, t′) be the set of packets that arrive after time
t but up to (and including) time t. The following algorithm works for pos-
itive real numbers between 0 and 1. It sends an acknowledgement when, in
hindsight, z time units of latency could have been saved by sending an earlier
acknowledgement.

Save(z): Let t be the time when the last acknowledgement was sent. Send
the next acknowledgement at the first time t′ > t such that there is a time τ
with t ≤ τ ≤ t′ and P (t, t′)(t′ − τ) = z.

Theorem 24. [48] If z is chosen according to the probability density function
p(z) = ez/(e − 1), Save(z) achieves a competitive ratio of e/(e − 1).

Albers and Bals [3] investigate another family of objective functions that
penalize long acknowledgement delays of individual data packets more heavily.
When TCP is used for interactive data transfer, long delays are not desirable
as they are noticeable to a user. Hence we wish to minimize the function
g = n + max1≤i≤n di, where di = maxaj∈σi

(ti − aj) is the maximum delay of
any packet in σi. The following family of algorithms is defined for any positive
real z.

Linear-Delay(z): Initially, set d = z and send the first acknowledgement at
time a1 + d. In general, suppose that the i-th acknowledgement has just been
sent and that j packets have been processed so far. Set d = (i + 1)z and send
the (i + 1)-st acknowledgement at time aj+1 + d.
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Theorem 25. [3] Setting z = π2/6 − 1, Linear-Delay(z) achieves a competi-
tive ratio of π2/6 ≈ 1.644 and no deterministic strategy can achieve a smaller
competitiveness.

It is well known that π2/6 =
∑∞

i=1 1/i2. Additionally, Albers and Bals [3]
investigate a generalization of the objective function g where delays are taken
to the p-th power and hence are penalized even more heavily. They proved
that the best competitive ratio is an alternating sum of Riemann’s zeta func-
tion. The ratio is decreasing in p and tends to 1.5 as p → ∞. Frederiksen and
Larsen [41] studied a variant of the TCP acknowledgement problem, where it
is required that there is some minimum delay between sending two acknowl-
edgements to reflect the physical properties of the network.

6.2 Competitive Auctions

In electronic markets goods are often sold using protocols that resemble clas-
sical auctions. The goods available for distribution are not physical but digital
and may include e.g. electronic books, software and digital copies of music or
movies. The players who are interested in buying such goods send bids to an
auctioneer, who then decides which bidders receive goods at which price. The
mechanisms by which resources are transferred should be truthful and com-
petitive, i.e. players should place bids which reflect their true valuations of
the goods and the revenue of the auction should be close to the optimal one.
There has recently been considerable research interest in designing truthful
competitive auctions [22, 35, 42, 43, 44, 55, 56] and we consider two basic
settings here.

Lavi and Nisan [56] were among the first who studied truthful auction
mechanisms. In their model k identical invisible goods are to be sold. The
players arrive online. When player i arrives he has valuations for buying var-
ious quantities of the good. More precisely, let vi(q) be the additional benefit
gained from a q-th item of the good. The total valuation from receiving q
goods is

∑q
j=1 vi(j). We assume vi(q + 1) ≤ vi(q), which is a common as-

sumption in economics. The valuations are only known to the player himself.
To buy goods the player sends bids bi(q), q = 1, . . . , k, where bi(q) is the bid
made for receiving a q-th item. The auctioneer then determines a quantity
qi to be sold to the player as well as a price pi. The utility of player i is
Ui(qi, pi) =

∑qi

j=1 vi(j) − pi. As mentioned already before, we are interested
in mechanisms where bidders declare their true valuations. More formally a
bidding strategy bi(q) of player i is dominant if Ui(qi, pi) ≥ Ui(q

′
i, p

′
i), for any

other strategy b′i(q) that results in quantity q′i and price p′i. Using this defini-
tion, an auction is called truthful if, for each player, declaring true valuations
bi(q) = vi(q) is a dominant strategy.

Lavi and Nisan give an exact characterization of truthful auctions in the
setting under consideration. An auction is based on supply curves if before
receiving the i-th bids bi(q), the auctioneer fixes prices Pi(q). The quantity
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qi sold to player i is the value q that maximizes
∑q

j=1(bi(j) − Pi(j)) and the

prize to be paid is
∑qi

i=1 Pi(j).

Theorem 26. [56] An auction is truthful if and only if it is based on supply
curves.

Lavi and Nisan consider two performance measures of an auction, namely
revenue and social efficiency. Suppose that the valuations are in the range
[pmin, pmax]. For any auction A and valuation sequence σ, the revenue RA(σ)
to the auctioneer is defined as RA(σ) =

∑
i pi + pmin(k −

∑
i qi), i.e. we sum

up the prices paid by the players and the minimum value of the unsold items.
The social efficiency is EA(σ) =

∑
i

∑qi

j=1 vi(j) + pmin(k −∑
i qi), i.e. we sum

up the valuations of all players and the auctioneer. Lavi and Nisan compare
an auction to the k-item Vickrey auction. This offline truthful auction sells
the k items to the k highest bids at the price of the (k + 1)-st highest bid.
An online auction A is c-competitive with respect to revenue if, for every
valuation sequence σ, RA(σ) ≥ RV IC(σ)/c. Similarly, A is c-competitive with
respect to social efficiency if, for every σ, EA(σ) ≥ EV IC(σ)/c.

Based on these definitions Lavi and Nisan present a truthful competitive
auction for selling k identical invisible goods. We only have to specify the
supply curve.

Discrete-Online-Auction: Let Φ = pmax/pmin. Use the supply curve P (j) =

pminΦ
j

k+1 .

Theorem 27. [56] The Discrete-Online-Auction achieves a competitive ratio

of kΦ
1

k+1 with respect to revenue and social efficiency.

Theorem 28. [56] The competitive ratio of any truthful online auction with

respect to revenue and social efficiency is at least max{Φ 1
k+1 , c}, where c is

the solution of the equation c = ln(Φ−1
c−1

).

The second scenario we study here are single-round, sealed-bid competitive
auctions as introduces by Goldberg et al. [43]. We first consider the offline
problem, which is interesting and instructive in itself. Then we discuss the
online variant. There are n players, each of whom is interested in buying
one item of a given good. An auctioneer has available n items so that each
player can potentially receive one copy. Player i, 1 ≤ i ≤ n, submits a bid bi

representing the maximum amount that he is willing to pay for an item. Given
the vector B of bids, the auctioneer computes an allocation X = (x1, . . . , xn) ∈
{0, 1}n and prices P = (p1, . . . , pn). If xi = 1, then player i receives an item,
i.e. he wins , and pays a cost of pi. We assume 0 ≤ pi ≤ bi. If xi = 0, then the
player does not receive an item, i.e. he loses, and pi = 0. The utility of player
i is vixi − pi. The profit of the auction is

∑
i pi. An auction is truthful if, for

each player i and any choice of bid values of the other players, the utility of
the i-th player is maximized by setting bi = vi.
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Given a bid vector B and an auction A, let A(B) be the profit of A on input
B. If A is randomized, then A(B) is a random variable. Goldberg et al. [43]
define competitiveness with respect to the optimal single price omniscient
auction F , which is defined as follows. In a bid vector B, let li be i-th largest
bid. Auction F determines the largest k such that kℓk is maximized. All
players with bi ≥ lk win; the remaining players lose. The profit of F on B
is F (B) = max1≤i≤n iℓi. A truthful auction is called c-competitive against F
if, for all bid vectors B, the expected profit of A on B satisfies E[A(B)] ≥
F (B)/c.

Goldberg et al. give an exact characterization of truthful auctions based
on the notion of bid-independence. Let fi, 1 ≤ i ≤ n, be a family of functions
from bid vectors to prices. The deterministic bid-independent auction defined
by functions fi has the following property for each player i.

Let pi = fi(B−i), where B−i = (b1, . . . , bi−1, bi+1, . . . , bn). If bi ≥ pi,
player i wins at a price of pi; otherwise player i loses.

Theorem 29. [43] An auction is truthful if and only if it is bid-independent.

Goldberg et al. presented and elegant randomized 4-competitive truthful auc-
tion which is based on the following cost-sharing mechanism.

Cost-Share(C): Given bid vector B, find the largest k such that the highest
k bidders can equally share the cost of C. Charge each C/k.

The actual auction then works as follows.

Sampling-Cost-Sharing:
1. Partition B uniformly at random into two sets, resulting in bid vectors B′

and B′′.
2. Compute F ′ = F (B′) and F ′′ = F (B′′).
3. Compute the auction results by running Cost-Share(F ′) on B′′ and Cost-

Share(F ′′) on B′.

Theorem 30. [43] Sampling-Cost-Sharing is a truthful 4-competitive auction.

Recently Goldberg and Hartline [42] presented a randomized auction that
achieves a competitiveness of 3.39 and uses only two random bits.

Bar-Yossef et al. [16] investigated the online variant of the above problem
setting where players arrive one by one. A player has access to all prior bids in
determining his own bid. When player i has submitted his bid, the auctioneer
must fix a price pi before any other player arrives. If pi ≤ bi, player i wins; oth-
erwise he loses. In the online scenario an auction A is called bid-independent
if the price for player i depends only on the previous bids and not on bi. That
is, for any sequence of bids b1, . . . , bi−1 and for any two choices of the i-th bid
bi and b′i, fi(b1, . . . , bi−1, bi) = fi(b1, . . . , bi−1, b

′
i). Bar-Yossef et al. show that

an online auction is truthful if and only if it is bid-independent.
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Assume that all bids are in the range [1, h]. Furthermore, let B<i =
(b1, . . . , bi−1) be the bids up to player i. Bar-Yossef et al. presented the fol-
lowing randomized auction. The parameter d will be determined later.

Weighted-Interval-Auction(d): Partition the range [1, h] into l = ⌊log h⌋+
1 subintervals I0, . . . , Il−1 with Ik = [2k, 2k+1). When player i arrives, deter-
mine the set of previous players with bids in Ik, for any k. More precisely, let
Sk = {j | j ≤ i − 1, bj ∈ Ik} and compute the weight wk(B<i) =

∑
j∈Sk

bj .

Choose the price pi = 2k with probability

Prob[pi = 2k] =
wk(B<i)

d

∑l−1

r=0 wr(B<i)d
.

Theorem 31. [16] Weighted-Interval-Auction(d) is a truthful auction. Re-
stricting to bidding sequences with F (B) ≥ 9h and setting d =

√
log log h, the

competitive ratio is O(exp(
√

log log h)).

Using methods from learning theory, Blum et al [22] developed a constant
competitive truthful auction.

7 Refinements of Competitive Analysis

Competitive analysis is a worst-case performance measure. Unfortunately, for
some online problems, the competitive ratios of online algorithms are much
higher than the performance ratios observed in practice. The reason is, typ-
ically, that a competitive algorithm considers arbitrary request sequences
whereas in practice only restricted classes of input occur.

We consider the paging problem in more detail. In Section 2 we saw that
the best competitiveness of deterministic online algorithms is equal to k, where
k is the number of pages that can be stored in fast memory. Both LRU and
FIFO achieve this bound. From a practical point of view the bound of k is
not very meaningful as a fast memory can usually store several hundreds or
thousands of pages. On the other hand, the performance ratios of LRU and
FIFO in practice are much lower. An experimental study by Young [68] reports
ratios in the range between 1.5 and 4. Moreover, in practice, LRU performs
better than FIFO. This is not evident in competitive analysis, either. In the
paging problem standard competitive analysis ignores the fact that request
sequences generated by real programs exhibit locality of reference: Whenever
a page is requested, the next request is to an associated page.

Borodin et al. [24] introduced access graphs for modeling locality of ref-
erence. In an access graph the nodes represent the memory pages. Whenever
a page p is requested, the next request must be to a page that is is adjacent
to p in the access graph. A number of results have been developed in this
model [24, 30, 36, 38, 45]. It has been shown that, for any access graph, LRU
is never worse than FIFO. For access graphs that are trees, LRU is in fact an
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optimal algorithm. Moreover, a number of improved paging algorithms have
been proposed that take into account the structure of the access graph.

Karlin et al. [49] modeled locality of reference by assuming that request
sequences are generated by a Markov chain. They evaluate paging algorithms
in terms of their fault rate which is the performance measure preferred by
practitioners. In particular, they developed an algorithm that achieves an
optimal fault rate, for any Markov chain. Torng [67] analyzed the total access
time of paging algorithms. He assumes that the service of a request to a page
in fast memory costs 1, whereas a fault incurs a penalty of p, p > 1. In his
model a request sequence exhibits locality of reference if the average length
of a subsequence containing requests to m distinct pages is much larger than
m.

Recently, Albers et al. [4] proposed another framework for modeling local-
ity of reference that goes back to the working set concept by Denning [32, 33].
In practice, during any phase of execution, a process references only a rela-
tively small fraction of its pages. The set of pages that a process is currently
using is called the working set . Determining the working set size in a window
of size n at any point in a request sequence, one obtains, for variable n, a func-
tion that is increasing and concave. Albers et al. restrict the input to request
sequences in which the maximum or the average number of distinct pages ref-
erenced in windows of size n is bounded by f(n), f being a concave function.
They give tight upper and lower bounds on the page fault rates achieved by
popular paging algorithms. It shows that LRU is an optimal online algorithm
whereas other algorithms, such as FIFO, are not optimal in general.

With respect to arbitrary online problems, other refinements of competi-
tive analysis include extra resource analyses, see e.g. [47, 65], statistical ad-
versaries [28, 60], accomodating functions [26] and the max/max ratio [18].
Koutsoupias and Papadimitriou [54] introduced the diffuse adversary model .
An adversary must generate an input according to a probability distribution
D that belongs to a class ∆ of possible distributions known to the online
algorithm. We wish to determine, for the given class ∆ of distributions, the
performance ratio

R(∆) = min
A

max
D∈∆

ED[A(σ)]

ED[OPT (σ)]
.

Secondly, Koutsoupias and Papadimitriou [54] introduced comparative analy-
sis , which compares the performance of online algorithms from given classes
of algorithms.

8 Concluding Remarks

In this book chapter we have presented a number of fundamental results in
the area of online algorithms and studied some applications that have received
a lot of research attention lately. There are several important application
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areas that we have not addressed here. Online bin packing is a fundamental
problem where we have to pack a sequence of items into bins so that the
number of bins is minimized. Problems in online scheduling are still actively
investigated. Here a sequence of jobs has to be scheduled on a number of
machines so that a given objective function is optimized. Online coloring and
online matching are two classical online problems related to graph theory.
In these problems, the vertices of a graph arrive online and must be colored
resp. matched immediately. The book by Fiat and Woeginger [40] contains a
collection of survey articles on these and many other topics. More generally,
an excellent text book on online algorithms was written by Borodin and El-
Yaniv [23].
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