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t. During the last 15 years online algorithms have re
eived 
onsiderable resear
h in-terest. In this survey we give an introdu
tion to the 
ompetitive analysis of online algorithmsand present important results. We study interesting appli
ation areas and identify open prob-lems.
1. Introdu
tionThe traditional design and analysis of algorithms assumes that an algorithm,whi
h generates output, has 
omplete knowledge of the entire input. However,this assumption is often unrealisti
 in pra
ti
al appli
ations. Many of the algo-rithmi
 problems that arise in pra
ti
e are online. In these problems the inputis only partially available be
ause some relevant input data arrives in the fu-ture and is not a

essible at present. An online algorithm must generate outputwithout knowledge of the entire input. Online problems arise in many areas of
omputer s
ien
e. We give some illustrating examples.Resour
e management in operating systems: Paging is a 
lassi
al online problemwhere one has to maintain a two-level memory system 
onsisting of a small fastmemory and a large slow memory. The goal is to keep a
tively referen
ed pagesin fast memory without knowing whi
h pages will be requested in the future.Data stru
tures: Consider a data stru
ture su
h as a linear linked list or a tree.We wish to dynami
ally maintain this stru
ture so that a sequen
e of a

essesto elements 
an be served at low 
ost. Future a

ess patterns are unknown.S
heduling: A sequen
e of jobs must be s
heduled on a set of ma
hines so asto optimize a given obje
tive fun
tion. Jobs arrive one by one and must bes
heduled immediately without knowledge of future jobs.Networks: Many online problems in this area arise in the 
ontext of data trans-mission. The problem 
an be, for instan
e, to dynami
ally maintain a set ofopen 
onne
tions between network nodes without knowing whi
h 
onne
tionsare needed in the future.The quality of online algorithms is usually evaluated using 
ompetitive analy-sis. The idea of 
ompetitiveness is to 
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2 Susanne Albersalgorithm to the output produ
ed by an optimal o�ine algorithm. An optimalo�ine algorithm is an omnis
ient algorithm that knows the entire input data inadvan
e and 
an 
ompute an optimal output. The better an online algorithmapproximates the optimal solution, the more 
ompetitive this algorithm is.In the following we �rst present fundamental 
on
epts used to study on-line algorithms. Then we study various online problems and present importantresults. The spe
i�
 problems we 
onsider in
lude paging, self-organizing datastru
tures, the k-server problem, metri
al task systems, s
heduling and load bal-an
ing as well as problems in large networks. Finally we address re�nements of
ompetitive analysis and 
on
lude with some remarks.
2. Basi
 
on
eptsFormally, many online problems 
an be des
ribed as follows. An online algorithmA is presented with a request sequen
e � = �(1); �(2); : : : ; �(m). The requests�(t), 1 � t � m, must be served in the order of o

urren
e. When servingrequest �(t), algorithm A does not know any request �(t0) with t0 > t. Servingrequests in
urs 
ost and the goal is to minimize the total 
ost paid on the entirerequest sequen
e. This setting 
an also be regarded as a request-answer game:An adversary generates requests and an online algorithm has to serve them oneat a time.To illustrate this formal model we re-
onsider the paging problem and startwith a pre
ise de�nition.The paging problem: Consider a two-level memory system that 
onsists of asmall fast memory and a large slow memory. We assume that the fast memory
an simultaneously store k memory pages and that the slow memory 
an holdpotentially in�nitely many pages. Ea
h request spe
i�es a page in the memorysystem. A request is served if the 
orresponding page is in fast memory. If arequested page is not in fast memory, a page fault o

urs. Then a page mustbe moved from fast memory to slow memory so that the requested page 
anbe loaded into the va
ated lo
ation. A paging algorithm spe
i�es whi
h pageto evi
t on a fault. If the algorithm is online, then the de
ision whi
h page toevi
t must be made without knowledge of any future requests. The 
ost to beminimized is the total number of page faults in
urred on the request sequen
e.Sleator and Tarjan [93℄ suggested evaluating the performan
e of an onlinealgorithm using 
ompetitive analysis . In a 
ompetitive analysis, an online al-gorithm A is 
ompared to an optimal o�ine algorithm. An optimal o�ine al-gorithm knows the entire request sequen
e in advan
e and 
an serve it withminimum 
ost. Given a request sequen
e �, let A(�) denote the 
ost in
urredby A and let OPT (�) denote the 
ost in
urred by an optimal o�ine algorithmOPT. The algorithm A is 
alled 
-
ompetitive if there exists a 
onstant a su
hthat A(�) � 
 � COPT (�) + a for all request sequen
es �. Here we assume thatA is a deterministi
 online algorithm. Note that 
ompetitive analysis is a strongworst 
ase performan
e measure in the sense that a 
ompetitive algorithm mustperform well on all inputs.



Online Algorithms: A Survey 3With respe
t to the paging problem, there are two well-known deterministi
online algorithms.LRU (Least Re
ently Used): On a fault, evi
t the page in fast memory that wasrequested least re
ently.FIFO (First-In First-Out): Evi
t the page that has been in fast memory longest.Sleator and Tarjan [93℄ analyzed the performan
e of LRU and FIFO andshowed that on any request sequen
e the number of page faults in
urred bythese algorithms is bounded by k times the number of faults made by OPT.They also showed that this is optimal.Theorem 1. [93℄ LRU and FIFO are k-
ompetitive.Theorem 2. [93℄ No deterministi
 online algorithm for the paging problem 
ana
hieve a 
ompetitive ratio smaller than k.An optimal o�ine algorithm for the paging problem was presented by Belady[25℄. The algorithm is 
alled MIN and works as follows.MIN: On a fault, evi
t the page whose next request o

urs furthest in the future.Belady showed that on any sequen
e of requests, MIN a
hieves the minimumnumber of page faults.A natural question is: Can an online algorithm a
hieve a better 
ompetitiveratio if it is allowed to use randomization?The 
ompetitive ratio of a randomized online algorithm A is de�ned withrespe
t to an adversary. The adversary generates a request sequen
e � and alsohas to serve �. When 
onstru
ting �, the adversary always knows the des
riptionof A. The 
ru
ial question is: When generating requests, is the adversary allowedto see the out
ome of the random 
hoi
es made by A on previous requests? Ben-David et al. [27℄ introdu
ed three kinds of adversaries.Oblivious adversary: The oblivious adversary has to generate the entire requestsequen
e in advan
e before any requests are served by the online algorithm. Theadversary is 
harged the 
ost of the optimum o�ine algorithm for that sequen
e.Adaptive online adversary: This adversary may observe the online algorithm andgenerate the next request based on the algorithm's (randomized) answers to allprevious requests. The adversary must serve ea
h request online, i.e. withoutknowing the random 
hoi
es made by the online algorithm on the present or anyfuture request.Adaptive o�ine adversary: This adversary also generates a request sequen
eadaptively. However, it is 
harged the optimum o�ine 
ost for that sequen
e.A randomized online algorithm A is 
alled 
-
ompetitive against any obliviousadversary if there is a 
onstant a su
h for all request sequen
es � generated byan oblivious adversary, E[A(�)℄ � 
 �OPT (�)+a: The expe
tation is taken overthe random 
hoi
es made by A.Given a randomized online algorithm A and an adaptive online (adaptiveo�ine) adversary ADV, let E[A(�)℄ and E[ADV (�)℄ denote the expe
ted 
ostsin
urred by A and ADV in serving a request sequen
e generated by ADV. A



4 Susanne Albersrandomized online algorithm A is 
alled 
-
ompetitive against any adaptive on-line (adaptive o�line) adversary if there is a 
onstant a su
h that for all adaptiveonline (adaptive o�ine) adversaries ADV, E[A(�)℄ � 
 �E[ADV (�)℄ + a, wherethe expe
tation is taken over the random 
hoi
es made by A.Ben-David et al. [27℄ investigated the relative strength of the adversaries andshowed the following statements.Theorem 3. [27℄ If there is a randomized online algorithm that is 
-
ompetitiveagainst any adaptive o�ine adversary, then there also exists a 
-
ompetitivedeterministi
 online algorithm.Theorem 4. [27℄ If A is a 
-
ompetitive randomized algorithm against any adap-tive online adversary and if there is a d-
ompetitive algorithm against any oblivi-ous adversary, then A is (
�d)-
ompetitive against any adaptive o�ine adversary.Theorem 3 implies that randomization does not help against the adaptiveo�ine adversary. An immediate 
onsequen
e of the two theorems above is:Corollary 1. If there exists a 
-
ompetitive randomized algorithm against anyadaptive online adversary, then there is a 
2-
ompetitive deterministi
 algorithm.Against oblivious adversaries, randomized online paging algorithms 
an 
on-siderably improve the ratio of k shown for deterministi
 paging. The followingalgorithm was proposed by Fiat et al. [55℄.Marking: The algorithm pro
esses a request sequen
e in phases. At the begin-ning of ea
h phase, all pages in the memory system are unmarked. Whenever apage is requested, it is marked . On a fault, a page is 
hosen uniformly at randomfrom among the unmarked pages in fast memory, and that page is evi
ted. Aphase ends when all pages in fast memory are marked and a page fault o

urs.Then, all marks are erased and a new phase is started.Fiat et al. [55℄ analyzed the performan
e of the Marking algorithm andshowed that it is 2Hk-
ompetitive against any oblivious adversary, where Hk =Pki=1 1=i is the k-th Harmoni
 number. Note that Hk is roughly ln k.Fiat et al. [55℄ also proved that no randomized online paging algorithmagainst any oblivious adversary 
an be better than Hk-
ompetitive. Thus theMarking algorithm is optimal, up to a 
onstant fa
tor. More 
ompli
ated pagingalgorithms a
hieving an optimal 
ompetitive ratio of Hk were given in [81,1℄.
3. Self-organizing data stru
turesThe list update problem is one of the �rst online problems that were studiedwith respe
t to 
ompetitiveness. The problem is to maintain a di
tionary as anunsorted linear list. Consider a set of items that is represented as a linear linkedlist. We re
eive a request sequen
e �, where ea
h request is one of the followingoperations. (1) It 
an be an a

ess to an item in the list, (2) it 
an be an insertionof a new item into the list, or (3) it 
an be a deletion of an item. To a

ess an



Online Algorithms: A Survey 5item, a list update algorithm starts at the front of the list and sear
hes linearlythrough the items until the desired item is found. To insert a new item, thealgorithm �rst s
ans the entire list to verify that the item is not already presentand then inserts the item at the end of the list. To delete an item, the algorithms
ans the list to sear
h for the item and then deletes it.In serving requests a list update algorithm in
urs 
ost. If a request is ana

ess or a delete operation, then the in
urred 
ost is i, where i is the positionof the requested item in the list. If the request is an insertion, then the 
ost isn + 1, where n is the number of items in the list before the insertion. Whilepro
essing a request sequen
e, a list update algorithm may rearrange the list.Immediately after an a

ess or insertion, the requested item may be moved atno extra 
ost to any position 
loser to the front of the list. These ex
hangesare 
alled free ex
hanges . Using free ex
hanges, the algorithm 
an lower the
ost on subsequent requests. At any time two adja
ent items in the list may beex
hanged at a 
ost of 1. These ex
hanges are 
alled paid ex
hanges . The goalis to serve the request sequen
e so that the total 
ost is as small as possible.With respe
t to the list update problem, we require that a 
-
ompetitiveonline algorithm has a performan
e ratio of 
 for all size lists . More pre
isely,a deterministi
 online algorithm for list update is 
alled 
-
ompetitive if thereis a 
onstant a su
h that for all size lists and all request sequen
es �, A(�) �
 �OPT (�) + a:Linear lists are one possibility for representing a set of items. Certainly, thereare other data stru
tures su
h as balan
ed sear
h trees or hash tables that,depending on the given appli
ation, 
an maintain a set in a more eÆ
ient way.In general, linear lists are useful when the set is small and 
onsists of only a fewdozen items. Re
ently, list update te
hniques have been applied very su

essfullyin the development of data 
ompression algorithms [8,28,34℄.There are three well-known deterministi
 online algorithms for the list updateproblem.Move-To-Front: Move the requested item to the front of the list.Transpose: Ex
hange the requested item with the immediately pre
eding itemin the list.Frequen
y-Count: Maintain a frequen
y 
ount for ea
h item in the list. When-ever an item is requested, in
rease its 
ount by 1. Maintain the list so that theitems always o

ur in nonin
reasing order of frequen
y 
ount.The formulations of list update algorithms generally assume that a requestsequen
e 
onsists of a

esses only. It is obvious how to extend the algorithms sothat they 
an also handle insertions and deletions. On an insertion, the algorithm�rst appends the new item at the end of the list and then exe
utes the samesteps as if the item was requested for the �rst time. On a deletion, the algorithm�rst sear
hes for the item and then just removes it.In the following, we dis
uss the algorithms Move-To-Front, Transpose andFrequen
y-Count. We note that Move-To-Front and Transpose are memorylessstrategies, i.e. they do not need any extra memory to de
ide where a requesteditem should be moved. Thus, from a pra
ti
al point of view, they are more at-
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tive than Frequen
y-Count. Sleator and Tarjan [93℄ analyzed the 
ompetitiveratios of the three algorithms.Theorem 5. [93℄ The Move-To-Front algorithm is 2-
ompetitive.Proposition 1. The algorithms Transpose and Frequen
y-Count are not 
-
om-petitive, for any 
onstant 
.Karp and Raghavan [72℄ developed a lower bound on the 
ompetitiveness that
an be a
hieved by deterministi
 online algorithms. This lower bound impliesthat Move-To-Front has an optimal 
ompetitive ratio.Theorem 6. [72℄ Let A be a deterministi
 online algorithm for the list updateproblem. If A is 
-
ompetitive, then 
 � 2.Amb�uhl [10℄ showed that the o�ine variant of the list update problem is NP-hard. Thus, in 
ontrast to the paging problem, there is no eÆ
ient algorithm for
omputing an optimal servi
e s
hedule for a given input.Next we address the problem of randomization in the list update problem.Against adaptive adversaries, no randomized online algorithm for list update 
anbe better than 2-
ompetitive, see [27,86℄. Thus we 
on
entrate on algorithmsagainst oblivious adversaries. Many randomized algorithms for list update havebeen proposed [2,9,64,86℄. We present the two most important algorithms. Rein-gold et al. [86℄ gave a very simple algorithm, 
alled Bit .Bit: Ea
h item in the list maintains a bit that is 
omplemented whenever theitem is a

essed. If an a

ess 
auses a bit to 
hange to 1, then the requested itemis moved to the front of the list. Otherwise the list remains un
hanged. The bitsof the items are initialized independently and uniformly at random.Theorem 7. [86℄ The Bit algorithm is 1.75-
ompetitive against any obliviousadversary.Reingold et al. [86℄ generalized the Bit algorithm and proved an upper boundof p3 � 1:73 against oblivious adversaries. The best randomized algorithm
urrently known is a 
ombination of the Bit algorithm and a deterministi
 2-
ompetitive online algorithm 
alled Timestamp proposed in [2℄.Timestamp (TS): Insert the requested item, say x, in front of the �rst itemin the list that pre
edes x and that has been requested at most on
e sin
e thelast request to x. If there is no su
h item or if x has not been requested so far,then leave the position of x un
hanged.As an example, 
onsider a list of six items being in the orderL : x1 ! x2 ! x3 ! x4 ! x5 ! x6. Suppose that algorithm TS has to servethe se
ond request to x5 in the request sequen
e � = : : : x5; x2; x2; x3; x1; x1; x5.Items x3 and x4 were requested at most on
e sin
e the last request to x5, whereasx1 and x2 were both requested twi
e. Thus, TS will insert x5 immediately infront of x3 in the list. A 
ombination of Bit and TS was proposed by [9℄.Combination: With probability 4/5 the algorithm serves a request sequen
eusing Bit , and with probability 1/5 it serves a request sequen
e using TS .



Online Algorithms: A Survey 7Theorem 8. [9℄ The algorithm Combination is 1.6-
ompetitive against any obliv-ious adversary.Amb�uhl et al. [11℄ presented a lower bound for randomized list update algo-rithms.Theorem 9. [11℄ Let A be a randomized online algorithm for the list updateproblem. If A is 
-
ompetitive against any oblivious adversary, then 
 � 1:50084.An interesting open problem is to determine tight bounds on the 
ompetitiveratio that 
an be a
hieved by randomized online algorithms against obliviousadversaries.Using te
hniques from learning theory, Blum et al. [30℄ re
ently gave a ran-domized online algorithm that, for any � > 0, is (1:6+ �)-
ompetitive and at thesame time (1 + �)-
ompetitive against an o�ine algorithm that is restri
ted toserving a request sequen
e with a stati
 list.Many of the 
on
epts shown for self-organizing linear lists 
an be extendedto binary sear
h trees. The most popular version of self-organizing binary sear
htrees are the splay trees presented by Sleator and Tarjan [94℄. In a splay tree,after ea
h a

ess to an element x in the tree, the node storing x is moved tothe root of the tree using a spe
ial sequen
e of rotations that depends on thestru
ture of the a

ess path. This reorganization of the tree is 
alled splaying.Sleator and Tarjan [94℄ analyzed splay trees and proved a series of interestingresults. They showed that the amortized asymptoti
 time of a

ess and updateoperations is as good as the 
orresponding time of balan
ed trees. More formally,in an n-node splay tree, the amortized time of ea
h operation is O(logn).Theorem 10. [94℄ Splay trees are O(logn)-
ompetitive.It was also shown [94℄ that on any sequen
e of a

esses, a splay tree is as eÆ
ientas the optimum stati
 sear
h tree.Theorem 11. [94℄ Splay trees are O(1)-
ompetitive against optimal stati
 sear
htrees.Moreover, Sleator and Tarjan [94℄ presented a series of 
onje
tures, some ofwhi
h have been resolved or partially resolved [45,46,95℄. On the other hand,the famous splay tree 
onje
ture is still open: It is 
onje
tured that on anysequen
e of a

esses splay trees are as eÆ
ient as any dynami
 binary sear
htree. Blum et al. [30℄ showed that there is an O(1)-
ompetitive algorithm if theonline algorithm is allowed to make free rotations after ea
h request.
4. The k-server problemThe k-server problem is one of the most fundamental problems in the theory ofonline algorithms. In the k-server problem we are given a metri
 spa
e S and kmobile servers that reside on points in S. Ea
h request spe
i�es a point x 2 S.To serve a request, one of the k servers must be moved to the requested point



8 Susanne Albersunless a server is already present. Moving a server from point x to point y in
ursa 
ost equal to the distan
e between x and y. The goal is to serve a sequen
e ofrequests so that the total distan
e traveled by all servers is as small as possible.The k-server problem 
ontains paging as a spe
ial 
ase. Consider a metri
spa
e in whi
h the distan
e between any two points in 1; ea
h point in the metri
spa
e represents a page in the memory system and the pages 
overed by serversare those that reside in fast memory. The k-server problem also models moregeneral 
a
hing problems, where the 
ost of loading an item into fast memorydepends on the size of the item. Su
h a situation o

urs, for instan
e, when font�les are loaded into the 
a
he of a printer. More generally, the k-server problem
an also be regarded as a vehi
le routing problem.The k-server problem was introdu
ed in 1988 by Manasse et al. [80℄ who alsoshowed a lower bound for deterministi
 k-server algorithms.Theorem 12. [80℄ Let A be a deterministi
 online k-server algorithm in anarbitrary metri
 spa
e. If A is 
-
ompetitive, then 
 � k.In their seminal paper Manasse et al. [80℄ also 
onje
tured that there ex-ists a deterministi
 k-
ompetitive online k-server algorithm. Seven years laterKoutsoupias and Papadimitriou [78℄ showed that there is a (2k� 1)-
ompetitivealgorithm and hen
e a
hieved a breakthrough. Before, k-
ompetitive algorithmswere known for spe
ial metri
 spa
es (e.g. trees [39℄ and resistive spa
es [47℄)and spe
ial values of k (k = 2 and k = n� 1, where n is the number of points inthe metri
 spa
e [80℄). It is worthwhile to note that the greedy algorithm, whi
halways moves the 
losest server to the requested point, is not 
ompetitive.The algorithm analyzed by Koutsoupias and Papadimitriou is the WorkFun
tion algorithm. Let X be a 
on�guration of the servers. Given a requestsequen
e � = �(1); : : : ; �(t), the work fun
tion w(X) is the minimal 
ost ofserving � and ending in 
on�guration X. For any two points x and y in themetri
 spa
e, let dist(x; y) be the distan
e between x and y.Work Fun
tion: Suppose that the algorithm has served � = �(1); : : : ; �(t� 1)and that a new request r = �(t) arrives. Let X be the 
urrent 
on�guration ofthe servers and let xi be the point where server si, 1 � i � k, is lo
ated. Servethe request by moving the server si that minimizes w(Xi) + dist(xi; r); whereXi = X � fxig+ frg.Theorem 13. [78℄ The Work Fun
tion algorithm is (2k � 1)-
ompetitive in anarbitrary metri
 spa
e.An interesting open problem is to show that the Work Fun
tion algorithm isindeed k-
ompetitive or to develop an other deterministi
 online k-server algo-rithm that a
hieves a 
ompetitive ratio of k.The performan
e of randomized online algorithms is not as well understood.In parti
ular no randomized algorithm is known that has a 
ompetitiveness



Online Algorithms: A Survey 9smaller than 2k � 1 in arbitrary metri
 spa
es. An elegant randomized strategyfor moving servers was proposed by Raghavan and Snir [85℄.Harmoni
: Suppose that there is a new request at point r and that server si,1 � i � k, is 
urrently at point xi. Let di = dist(xi; r) be the distan
e betweenxi and r. Move server si with probability pi = 1=(diPkj=1 1dj ) to the request.Intuitively, the 
loser a server is to the request, the higher the probabilitythat it will be moved. Bartal and Grove [24℄ proved that the Harmoni
 algorithma
hieves a 
ompetitive ratio of 
 � 54k � 2k � 2k against adaptive online adver-saries. Against these adversaries no randomized online algorithm 
an a
hieve a
ompetitive ratio smaller than k [85℄. The 
ompetitiveness of Harmoni
 is notbetter than k(k + 1)=2, see [85℄. The algorithm has a 
ompetitive ratio of 3,for k = 3, and of k(k + 1)=2 in metri
 spa
es 
onsisting of k + 1 points [40,85℄.Against lazy adversaries Harmoni
 a
hieves a 
ompetitiveness of k(k+1)=2 [22℄.An adversary is lazy if, whenever one of its servers is lo
ated on a point not 
ov-ered by the online algorithm's servers, it requests that point. It was 
onje
turedthat lazy adversaries a
hieve the highest possible 
ompetitive ratio against ran-domized memoryless online algorithms that only move one of their servers ifthe requested point is not already 
overed by a server. However, Peseri
o [83℄disproved this 
onje
ture.For randomized algorithms against oblivious adversaries the best lower bound
urrently known is due to Bartal et al. [20℄Theorem 14. [20℄ The 
ompetitive ratio of a randomized online algorithm inan arbitrary metri
 spa
e is 
(log k= log2 log k) against oblivious adversaries.The bound 
an be improved to 
(log k) if the metri
 spa
e 
onsists of at leastklog� k points, for any � > 0, [20℄. It is 
onje
tured that �(log k) is the true
ompetitiveness of randomized algorithms against oblivious adversaries. Bartalet al. [21℄ presented an algorithm that has a 
ompetitive ratio of O(
6 log6 k)in metri
 spa
es 
onsisting of k + 
 points. Seiden [90℄ gave an algorithm thata
hieves a 
ompetitive ratio polylogarithmi
 in k for metri
 spa
es that 
an bede
omposed into a small number of widely separated subspa
es. The main openproblem in the area of the k-server problem is to develop randomized onlinealgorithms that have a 
ompetitive ratio of 
 < k in an arbitrary metri
 spa
e.
5. Metri
al task systemsMetri
al task systems were introdu
ed by Borodin et al. [33℄ and represent aframework for modeling a large 
lass of on-line problems. The de�nition of tasksystems is motivated by the observation that in many 
omputer systems thereare several ways to exe
ute a given job.A metri
al task system is de�ned by a metri
 spa
e (S; d) and an asso
iatedset T of tasks. The spa
e (S; d) 
onsists of a set S of n states and a distan
efun
tion d : S � S �! IR+0 , where d(i; j) � 0 denotes the 
ost of 
hangingfrom state i to state j. Sin
e the spa
e is metri
, the fun
tion d is symmetri
,



10 Susanne Alberssatis�es the triangle inequality and d(i; i) = 0, for all states i. The set T is theset of allowable tasks. A task T 2 T is a ve
tor T = (T (1); T (2); : : : ; T (n)),where T (i) 2 IR+0 [ f1g denotes the 
ost of pro
essing the task while in statei. A request sequen
e is a sequen
e of tasks � = T 1; T 2; T 3; : : : ; Tm that mustbe served starting from some initial state s(0). When re
eiving a new task, analgorithm may serve the task in the 
urrent state or may 
hange states at a 
ost.Thus the algorithm must determine a s
hedule of states s(1); s(2); : : : ; s(m), su
hthat task T i is pro
essed in state s(i). The 
ost of serving a task sequen
e isthe sum of all state transition 
osts and all task pro
essing 
osts: Pmi=1 d(s(i�1); s(i)) +Pmi=1 T i(s(i)): The goal is to pro
ess a given task sequen
e so thatthe 
ost is as small as possible.Borodin et al. [33℄ settled the 
ompetitiveness of deterministi
 online algo-rithms.Theorem 15. [33℄ There exists a deterministi
 online algorithm that is (2n�1)-
ompetitive for any metri
al task system with n states.Theorem 16. [33℄ Any deterministi
 online algorithm for the metri
al task sys-tems problem has a 
ompetitive ratio of at least 2n � 1, where n is the numberof task system states.It is worthwhile to noti
e that the 
ompetitive fa
tor of 2n� 1 for deterministi
online algorithms often does not provide meaningful bounds when spe
ial onlineproblems are investigated. Consider the list update problem. Here the given list
an be in n! states. Hen
e, we obtain a bound of (2n! � 1) on the 
ompetitivefa
tor of a deterministi
 online algorithm for the list update problem. However,Move-To-Front a
hieves a 
ompetitive fa
tor of 2.For randomized algorithms, the known bounds are tight up to a logarithmi
fa
tor.Theorem 17. [57℄ There exists a randomized online algorithm that isO(log2 n= log2 log n)-
ompetitive against any oblivious adversary, for any met-ri
al task system with n states.Theorem 18. [20℄ Any randomized online algorithm for the metri
al task sys-tems problem has a 
ompetitive ratio of at least 
(log n= log2 log n) againstoblivous adversaries, where n is the number of task system states.Better bounds hold for uniform metri
al task systems, where the 
ost d(i; j) of
hanging states is equal to 1 for all i 6= j. Borodin at al. [33℄ gave a lower boundof Hn, where Hn is the n-th Harmoni
 number. The best upper bound 
urrentlyknown was presented by Irani and Seiden [67℄ and is equal to Hn +O(plogn).
6. S
heduling and load balan
ingS
heduling is a 
lassi
al and well-studied problem that still re
eives a lot ofresear
h interest. The general situation in online s
heduling is as follows. We
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hines. A sequen
e of jobs � = J1; J2; : : : ; Jn arrivesonline. Ea
h job Jk has a pro
essing pk time that may or may not be knownin advan
e. Whenever a new job arrives, it has to be s
heduled immediately onone of the m ma
hines. The goal is to optimize a given obje
tive fun
tion. Thereare many problem variants: Preemption of jobs may or may not be allowed; we
an study various ma
hine types and various obje
tive fun
tions. A very largenumber of di�erent problems have been investigated in the literature and we 
anonly dis
uss a few basi
 s
enarios in this survey.First we 
onsider one of the most basi
 problems in online s
heduling. Sup-pose that we are given m identi
al ma
hines. The jobs � = J1; J2; : : : ; Jn arriveone by one. Whenever the s
heduler is presented with a new job, its pro
essingtime is known in advan
e. Preemption of jobs is not allowed. We wish to mini-mize the makespan, whi
h is the 
ompletion time of the last job that �nishes inthe s
hedule.Graham [63℄ in 1966 proposed the elegant Greedy algorithm and analyzed itsperforman
e.Greedy: Assign a new job to the least loaded ma
hine.Theorem 19. [63℄ Greedy is (2� 1m)-
ompetitive.Graham also showed that the 
ompetitive ratio of Greedy is not smaller than2� 1m . In re
ent years, resear
h has fo
used on �nding algorithms that a
hieve a
ompetitive ratio asymptoti
ally smaller than 2. In 1992, Bartal et al. [23℄ gavean algorithm that is 1:986-
ompetitive. This bound was improved to 1.945, to1.923 and �nally to 1.9201, whi
h is the best upper bound known to date [69,3,60℄. All the algorithms are deterministi
. The best lower bound 
urrently knownis due to Rudin [87℄. He proved that no deterministi
 online algorithm 
an bebetter 1.88-
ompetitive. An interesting open problem is to 
lose the gap betweenthe lower and the upper bounds.Sin
e the publi
ation of the paper by Bartal et al. [23℄, there has also been re-sear
h interest in developing randomized online algorithms for the above s
hedul-ing problem. Bartal et al. gave a randomized algorithm for 2 ma
hines thata
hieves an optimal 
ompetitive ratio of 4=3. Chen et al. [36℄ and Sgall [91℄proved that no randomized online algorithm 
an have a 
ompetitiveness smallerthan 1=(1� (1� 1=m)m). This expression tends to e=(e� 1) � 1:58 as m!1.Seiden [88℄ presented a randomized algorithm whose 
ompetitive ratio is smallerthan the best known deterministi
 ratio for m 2 f3; : : : ; 7g. The 
ompetitivenessis also smaller than the deterministi
 lower bound for m = 3; 4; 5.Re
ently, Albers [4℄ developed a randomized online algorithm that is 1.916-
ompetitive, for all m, and hen
e gave the �rst algorithm that performs betterthan known deterministi
 algorithms for general m. She also showed that aperforman
e guarantee of 1.916 
annot be proven for a deterministi
 online al-gorithm based on analysis te
hniques that have been used in the literature sofar. An interesting feature of the new randomized algorithm, 
alled Rand , isthat at most two s
hedules have to be maintained at any time. In 
ontrast, thealgorithms by Bartal et al. [23℄ and by Seiden [90℄ have to maintain t s
hedules



12 Susanne Alberswhen t jobs have arrived. The Rand algorithm is a 
ombination of two determin-isti
 algorithms A1 and A2. Initially, when starting the s
heduling pro
ess,Rand
hooses Ai, i 2 f1; 2g, with probability 12 and then serves the entire job sequen
eusing the 
hosen algorithm. Algorithm A1 is a 
onservative strategy that triesto maintain s
hedules with a low makespan. On the other hand, A2 is an ag-gressive strategy that aims at generating s
hedules with a high makespan. A
hallenging open problem is to design randomized online algorithms that beatthe deterministi
 lower bound, for all m.We next 
onsider some variants of the basi
 s
enario studied so far.Identi
al ma
hines, restri
ted assignment: We have a set ofm identi
al ma
hines,but ea
h job 
an only be assigned to one of a subset of admissible ma
hines. Azaret al. [18℄ showed that the Greedy algorithm, whi
h always assigns a new job tothe least loaded ma
hine among the admissible ma
hines, a
hieves a 
ompeti-tiveness of dlog2me+1. They also proved that no deterministi
 online algorithm
an be better than dlog2me-
ompetitive.Related ma
hines: Ea
h ma
hine i has a speed si, 1 � i � m. The pro
essingtime of job Jk on ma
hine i is equal to pk=si. Aspnes et al. [13℄ showed that theGreedy algorithm, that always assigns a new job to a ma
hine so that the loadafter the assignment is minimized, is �(logm)-
ompetitive. They also presentedan algorithm that is 8-
ompetitive. The bound was improved to 5.828 in [30℄.Unrelated ma
hines: The pro
essing time of job Jk on ma
hine i is pk;i, 1 �k � n, 1 � i � m. Aspnes et al. [13℄ showed that Greedy is only m-
ompetitive.However, they also gave an algorithm that is O(logm)-
ompetitive.In online load balan
ing we have again a set of m ma
hines and a sequen
eof jobs � = J1; J2; : : : ; Jn that arrive online. Here, ea
h job Jk has a weight w(k)and an unknown duration. For any time t, let li(t) denote the load of ma
hinei, 1 � i � m, at time t, whi
h is the sum of the weights of the jobs presenton ma
hine i at time t. The goal is to minimize the maximum load that o

ursduring the pro
essing of �.For the s
enario with m identi
al ma
hines, Azar and Epstein [16℄ showedthat the Greedy algorithm is (2� 1m )-
ompetitive. The load balan
ing problembe
omes more 
ompli
ated with restri
ted assignments, i.e. ea
h job 
an only beassigned to a subset of admissible ma
hines. Azar et al. [15℄ proved that Greedya
hieves a 
ompetitive ratio of m2=3(1 + o(1)). They also proved that no onlinealgorithm 
an be better than 
(pm)-
ompetitive. In a subsequent paper, Azaret al. [17℄ gave a mat
hing upper bound. The algorithm works as follows.Robin Hood: Let OPT be the optimum load a
hieved by the o�ine algorithm.Robin Hoodmaintains an estimate L for OPT satisfying L � OPT . At any time t,ma
hine i is 
alled ri
h if li(t) � pmL; otherwise ma
hine i is 
alled poor . Whena new job Jk arrives, L is updated, i.e. L := maxfL;w(k); 1m (w(k)+Pmi=1 li(t))g:If possible, Jk is assigned to a poor ma
hine. Otherwise it is assigned to the ri
hma
hine that be
ame ri
h most re
ently.Theorem 20. [17℄ Robin Hood is O(pm)-
ompetitive.
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hines an upper bound of 20 and a lower bound of 3 � o(1)on the 
ompetitive ratio are known [17℄. Re
ently, Armon [12℄ settled the 
om-plexity for unrelated ma
hines. They proved a lower bound of 
(m= logm) onthe 
ompetitiveness of any deterministi
 online algorithm, almost mat
hing thetrivial upper bound of O(m) of the Greedy algorithm. We refer the reader to[14,92℄ for ex
ellent surveys on online s
heduling and load balan
ing.
7. Large networksWith the advent of the world-wide web, resear
hers have started investigatingalgorithmi
 problems that arise in large networks. Many of these problems areonline and we dis
uss some sele
ted problems.
7.1. Generalized 
a
hingWe 
onsider the 
a
hing of web do
uments. Ca
hes 
an be maintained by web
lients or servers. Storing a
tively a

essed do
uments in lo
al 
a
hes 
an sub-stantially redu
e user response times as well as the network 
ongestion be
auserequested do
uments do not have to be transmitted repeatedly over the web.Web 
a
hing problems di�er from standard paging problems in that do
umentshave varying sizes and in
ur varying 
osts when downloaded into a lo
al 
a
he.The loading 
ost depends, for instan
e, on the size of the do
uments and on the
urrent 
ongestion in the network.In generalized 
a
hing we have again a two-level memory system 
onsistingof a fast and a slow memory. In the network setting, the fast memory is a lo
al
a
he; the slow memory is the memory of the remaining network, i.e. the universeof all do
uments a

essible in the network. We assume that the fast memory hasa 
apa
ity of K. For any do
ument d, let size(d) be the size and 
ost(d) be the
ost of d. The total size of the pages in fast memory may never ex
eed K. If arequested do
ument is not in 
a
he, the in
urred 
ost is 
ost(d). The goal is toserve a sequen
e of requests so that the total loading 
ost is as small as possible.Various 
ost models have been proposed in the literature.1. The Bit Model [65℄: For ea
h do
ument d, we have 
ost(d) = size(d). (Thedelay in bringing the do
ument into fast memory depends only upon its size.)2. The Fault Model [65℄: For ea
h do
ument d, we have 
ost(d) = 1 while thesizes 
an be arbitrary.3. The Cost Model : For ea
h do
ument d, we have size(d) = 1 while the 
osts
an be arbitrary.4. The General Model : For ea
h do
ument d, both the 
ost and size 
an bearbitrary.Note that generalized 
a
hing is a problem that arises in networks but thenetwork topology is not dire
tly part of a problem instan
e. It is 
aptured onlyimpli
itly in the 
ost of downloading a do
ument.



14 Susanne AlbersFor the Bit and the Fault models, the LRU strategy is (k+1)-
ompetitive [52℄,where k is the ratio of K to the size of the smallest do
ument ever requested.This bound holds in a relaxed 
a
hing s
enario where the requested do
umentdoes not ne
essarily have to be brought into fast memory, whi
h is an optionin web appli
ations. The performan
e ratio of k + 1 is optimal for determin-isti
 algorithms. For the Bit and the Fault Model, Irani presented random-ized O(log2 k)-
ompetitive online algorithms. Ca
hing in the Cost Model is alsoknown as weighted 
a
hing, whi
h is a spe
ial instan
e of the k-server problem.Young [98℄ gave a K-
ompetitive online algorithm for the General Model.Landlord: For ea
h d in fast memory, the algorithm maintains a variable
redit(d) that takes values between 0 and 
ost(d). If a requested do
ument dis already in fast memory, then 
redit(d) is reset to any value between its 
ur-rent value and 
ost(d). If the requested page is not in fast memory, then thefollowing two steps are exe
uted until there is enough room to load d. (1) Forea
h do
ument d0 in fast memory, de
rease 
redit(d0) by � � size(d0), where� = mind02F 
redit(d0)=size(d0) and F is the set of do
uments in fast memory.(2) Evi
t any do
ument d0 from fast memory with 
redit(d0) = 0. When there isenough room, load d and set 
redit(d) to 
ost(d).Theorem 21. [98℄ Landlord is K-
ompetitive in the General Model.The above bound is optimal. An interesting problem is to develop randomizedonline algorithms for generalized 
a
hing. For the Bit and the Fault Model itwould be ni
e to design algorithms with improved 
ompetitive ratios. In theGeneral Model we are interested in o(K)-
ompetitive randomized algorithms.This is a 
hallenging problem as it involves �nding o(k)-
ompetitive algorithmsfor the k-server problem.
7.2. Maintaining TCP 
onne
tionsWe study two algorithmi
 problems that arise in the 
ontext of maintaining openTCP 
onne
tions.Cohen et al. [43℄ initiated the theoreti
al study of 
onne
tion 
a
hing inthe world-wide web. Communi
ation between 
lients and servers in the webis performed using HTTP (Hyper Text Transfer Proto
ol), whi
h in turn usesTCP (Transmission Control Proto
ol) to transmit data. The 
urrent proto
olHTTP/1.1 works with persistent 
onne
tions , i.e. on
e a TCP 
onne
tion isestablished it may be kept open and used for transmission until the 
onne
tionis expli
itly 
losed by one of the endpoints. Of 
ourse, ea
h network node 
ansimultaneously maintain only a limited number of open TCP 
onne
tions. If a
onne
tion is 
losed, there is a me
hanism by whi
h one endpoint 
an signal the
lose to the other endpoint [59℄.Formally, in 
onne
tion 
a
hing, we are given a network modeled as an undi-re
ted graph G. The nodes of the graph represent the nodes in the network.The edges represent the possible 
onne
tions. Ea
h node has a 
a
he in whi
h
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an maintain information on open 
onne
tions. A 
onne
tion 
 = (u; v) isopen if information on 
 is stored in the 
a
hes of both u and v. For a node v,let k(v) denote the number of open 
onne
tions that v 
an maintain simultane-ously. Let k be the size of the largest 
a
he in the network. For a 
onne
tion
 = (u; v), let 
ost(
) be the establishment 
ost of 
 that is in
urred when 
is opened. An algorithm for 
onne
tion 
a
hing is presented with a request se-quen
e � = �(1); �(2); : : : ; �(m), where ea
h request �(t) spe
i�es a 
onne
tion
t = (ut; vt), 1 � t � m. If the requested 
onne
tion 
t is already open, then therequest 
an be served at 
ost 0; otherwise the 
onne
tion has to be opened ata 
ost of 
ost(
t). The goal is to serve the request sequen
e � so that the total
ost is as small as possible.An important feature of this problem is that lo
al 
a
he 
on�gurations arenot independent of ea
h other. When one endpoint of an open 
onne
tion de
idesto 
lose the 
onne
tion, then the other endpoint also 
annot use that 
onne
tionanymore.Cohen et al. [43℄ investigated uniform 
onne
tion 
a
hing where the 
onne
-tion establishment 
ost is uniform for all the 
onne
tions. They �rst showed thatany 
-
ompetitive algorithm for standard paging 
an be transformed into a 2
-
ompetitive algorithm for uniform 
onne
tion 
a
hing. Ea
h lo
al node simplyexe
utes a paging strategy ignoring noti�
ations of 
onne
tions that were 
losedby other nodes. Using LRU or FIFO, we obtain 2k-
ompetitive algorithms. Co-hen et al. [44℄ also 
onsidered deterministi
Marking strategies, whi
h work in thesame way as their randomized 
ounterparts ex
ept that on a fault an arbitraryunmarked page may be evi
ted.Theorem 22. [44℄ Deterministi
 Marking strategies 
an be implemented in uni-form 
onne
tion 
a
hing su
h that a 
ompetitive ratio of k is a
hieved. For ea
hrequest, at most 1 bit of extra 
ommuni
ation is ex
hanged between the two 
or-responding network nodes.Obviously, the above performan
e is optimal sin
e the lower bound of k fordeterministi
 standard paging 
arries over to uniform 
onne
tion 
a
hing. Cohenet al. [44℄ also investigated randomized Marking strategies and showed that theyare 4Hk-
ompetitive against oblivious adversaries.In [5℄ Albers investigated generalized 
onne
tion 
a
hing where the 
onne
-tion establishment 
ost 
an be di�erent for the various 
onne
tions. She showedthat the Landlord algorithm known for generalized 
a
hing 
an be adapted sothat it a
hieves an optimal 
ompetitiveness. The implementation is as follows.Landlord: For ea
h 
a
hed 
onne
tion 
, the algorithm maintains a 
redit value
redit(
) that takes values between 0 and 
ost(
). Whenever a 
onne
tion isopened, 
redit(
) is set to 
ost(
). If a requested 
onne
tion (u; v) is not alreadyopen, then ea
h node w 2 fu; vg that 
urrently has k(w) open 
onne
tionsexe
utes the following steps. Let Æ = min
 open at w 
redit(
). Close a 
onne
tion
w at w with 
redit(
w) = Æ and de
rease the 
redit of all the other open
onne
tions at w by Æ.Theorem 23. [5℄ Landlord is k-
ompetitive for generalized 
onne
tion 
a
hing.



16 Susanne AlbersIdeally, we implement Landlord in a distributed fashion su
h that, for ea
hopen 
onne
tion 
 = (u; v), both endpoints u and v keep their 
opies of 
redit(
).If one endpoint, say u, redu
es the 
redit by Æ, then this 
hange has to be 
om-muni
ated to v so that v 
an update its 
redit(
) value a

ordingly. The amountof extra 
ommuni
ation for an open 
onne
tion 
an be large if the repeated Æredu
tions are small. It is possible to redu
e the amount of extra 
ommuni
ationat the expense of in
reasing slightly the 
ompetitiveness of the algorithm. Forany 0 < � � 1, Landlord 
an be modi�ed so that it is (1 + �)k-
ompetitive anduses at most d 1� e � 1 bits of extra 
ommuni
ation for ea
h open 
onne
tion [5℄.Setting � = 1, we obtain a 2k-
ompetitive algorithm that does not use any extra
ommuni
ation. For � = 1=2, the resulting algorithm is 32k-
ompetitive and usesonly one bit of extra 
ommuni
ation.Interestingly no extra 
ommuni
ation is ne
essary if we are willing to userandomization. It is possible to implement the Harmoni
 algorithm for the k-server problem in su
h a way that it does not need any extra 
ommuni
ationbetween network nodes. The implementation a
hieves a 
ompetitiveness of kagainst adaptive online adversaries [5℄.Se
ondly in this se
tion we study a dynami
 TCP a
knowledgement prob-lem. Consider an open TCP 
onne
tion between two network nodes that wishto ex
hange data. The data is partitioned into segments or pa
kets that are senta
ross the 
onne
tion. A node re
eiving data must a
knowledge the arrival ofea
h in
oming pa
ket so that the sending node is noti�ed that the transmissionwas su

essful; lost pa
kets must be retransmitted. However, data pa
kets donot have to be a
knowledged individually. Instead, most TCP implementationsemploy some delay me
hanism that allows the TCP to a
knowledge multiplein
oming pa
kets with a single a
knowledgement and, possibly, to piggyba
kthe a
knowledgement on an outgoing data segment. Redu
ing the number ofa
knowledgements has several advantages, e.g. the overhead in
urred at the net-work nodes for sending and re
eiving a
knowledgements is redu
ed and, moreimportantly, the network 
ongestion is redu
ed. On the other hand, by redu
-ing the number of a
knowledgements, one adds laten
y to a TCP 
onne
tion,whi
h is not desirable. The goal is to balan
e the redu
tion in the number ofa
knowledgements with the in
rease in laten
y.Motivated by the fa
t that TCP supports dynami
 a
knowledgement me
h-anisms, Dooly et al. [51℄ formulated the following problem. A network nodere
eives a sequen
e of n data pa
kets. Let ai denote the arrival time of pa
keti, 1 � i � n. At time ai, the arrival times aj , j > i; are not known. We haveto partition the sequen
e � = (a1; : : : ; an) of pa
ket arrival times into m subse-quen
es �1; : : : ; �m, for some m � 1, su
h that ea
h subsequen
e ends with ana
knowledgement. We use �i to denote the set of arrivals in the partition. Letti be the time when the a
knowledgement for �i is sent. We require ti � aj ,for all aj 2 �i. If data pa
kets are not a
knowledged immediately, there are a
-knowledgement delays . Dooley et al. [51℄ 
onsidered the obje
tive fun
tion thatminimizes the number of a
knowledgements and the sum of the delays in
urred
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kets, i.e. we wish to minimize f = m +Pmi=1Paj2�i(ti � aj).They analyzed the following algorithm.Greedy: Send an a
knowledgement when the total delay of the una
knowledgedpa
kets is equal to 1, i.e. equal to the 
ost of an a
knowledgement.Theorem 24. [51℄ The Greedy algorithm is 2-
ompetitive and this is the best
ompetitive ratio a deterministi
 online algorithm 
an a
hieve.Karlin et al. [70℄ studied randomized algorithms and proved the following result.Theorem 25. [70℄ There exists a randomized online strategy that a
hieves a
ompetitiveness of e=(e� 1) � 1:58 against oblivious adversaries.Noga [82℄ and independently Seiden [89℄ showed that no randomized algorithm
an do better.Dooly et al. [51℄ also studied the minimization of a se
ond obje
tive fun
tionf 0 = m+Pmi=1maxaj2�i(ti � aj) where one 
onsiders the sum of the maximumdelays in
urred in subsequen
es �i in addition to the number of a
knowledge-ments sent. They showed that the best 
ompetitive ratio of a deterministi
 onlinealgorithm is equal to 2.In [6℄ Albers and Bals investigate a new family of obje
tive fun
tions thatpenalize long a
knowledgement delays of individual data pa
kets more heavily.In appli
ations where a TCP 
onne
tion is used for intera
tive data transfer,long delays are not desirable as they are noti
eable to a user. Hen
e [6℄ studiesthe obje
tive fun
tion that minimizes the number of a
knowledgements and themaximum delay in
urred for any of the data pa
kets. Given an input �, 
onsider apartitioning �1; : : : ; �m. Let di = maxaj2�i(ti�aj) be the maximum delay of anypa
ket in �i, 1 � i � m. We wish to minimize the fun
tion g = m+max1�i�m di.The following family of algorithms is de�ned for any positive real z.Linear-Delay(z): Initially, set d = z and send the �rst a
knowledgement attime a1 + d. In general, suppose that the i-th a
knowledgement has just beensent and that j pa
kets have been pro
essed so far. Set d = (i + 1)z and sendthe (i+ 1)-st a
knowledgement at time aj+1 + d.Theorem 26. [6℄ For any z with z � 1=2, Linear-Delay(z) is 
-
ompetitive,where 
 = maxf1+ z; (1+ z)=(2+ z� �2=6)g. Setting z = �2=6� 1 the resultingalgorithm a
hieves a 
ompetitive ratio of �2=6 � 1:644.It is well known that �2=6 = P1i=1 1=i2. This performan
e ratio 
annot beimproved.Theorem 27. [6℄ No deterministi
 online algorithm 
an a
hieve a 
ompetitiveratio smaller than �2=6.Additionally, Albers and Bals [6℄ investigate a generalization of the obje
tivefun
tion g where delays are taken to the p-th power and hen
e are penalizedeven more heavily. Again, they present tight upper and lower bounds on thebest possible 
ompetitiveness of deterministi
 algorithms. The best 
ompetitive



18 Susanne Albersratio is an alternating sum of Riemann's zeta fun
tion. The ratio is de
reasingin p and tends to 1.5 as p ! 1. An interesting open problem is to developrandomized online algorithms for the obje
tive fun
tions g and its generalization.Some initial lower bounds were given in [6℄.Frederiksen and Larsen [61℄ studied a modi�ed version of the TCP a
knowl-edgement problem, where it is required that there is some minimum delay be-tween sending two a
knowledgements to re
e
t the physi
al properties of thenetwork.
7.3. Routers and swit
hesRouters and swit
hes handle the data traÆ
 in networks and ensure that datapa
kets sent over 
onne
tions rea
h their 
orre
t destination. Typi
ally, traÆ
is bursty , i.e. the number of pa
kets that rea
h a bu�er or swit
h during a 
er-tain time interval ex
eeds the number of pa
kets that 
an be pro
essed duringthat interval. This leads to pa
ket loss, whi
h is not desirable as the 
orrespond-ing pa
kets have to be resent. To redu
e pa
ket loss, routers and swit
hes areequipped with bu�ers in whi
h pa
kets 
an be stored temporarily until they areforwarded. We study two algorithmi
 problems related to the maintenan
e ofsu
h bu�ers.Bar-Noy et al. [19℄ and independently Koga [77℄ address the question howlarge bu�ers should be in order to avoid pa
ket loss. Consider n data streamsthat share a 
ommon output 
hannel at a router. The data is partitioned intopa
kets of equal size. At time t, N(t; i) pa
kets of stream i arrive, 1 � t � mand 1 � i � n. Asso
iated with ea
h data stream is a FIFO queue of potentiallyin�nite 
apa
ity, in whi
h the pa
kets of the stream 
an be stored. In ea
h timestep a s
heduling algorithm in the router 
an sele
t one of the queues and sendthe pa
ket at the head over the output 
hannel. The goal is to minimize themaximum queue length that ever o

urs at any of the queues.Bar-Noy et al. [19℄ and Koga [77℄ gave tight lower and upper bounds on thebest possible 
ompetitiveness.Theorem 28. [19,77℄ Any deterministi
 online algorithm has a 
ompetitive ratioof 
(logn).Koga showed that the popular Round Robin algorithm is not better than n-
ompetitive. A natural greedy algorithm works as follows.Longest Queue First: Always serve the longest queue, ties 
an be brokenarbitrarily.Theorem 29. [19,77℄ Longest Queue First is O(logn)-
ompetitive.Thus the greedy algorithm a
hieves an optimal 
ompetitive ratio. The LongestQueue First algorithm was proposed and analyzed by Koga. Bar-Noy et al. 
on-sidered a slight variant of that algorithm. Koga also showed that randomizationdoes not help in this problem; the 
ompetitiveness of any randomized strategy is
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(logn). Additionally, Koga proposed a se
ond obje
tive fun
tion that aimsat balan
ing the pa
ket delays among the n queues. Let the 
ow time of a datapa
ket be the length of the time interval when the pa
ket resides in one of thequeues. Koga suggested to sum up, for ea
h queue, the 
ow times of the pa
kets.The goal is to minimize the maximum sum. Koga proved that no deterministi
online algorithm is better than 
(logn)-
ompetitive. An interesting problem isto develop upper bounds for this se
ond obje
tive fun
tion.The se
ond problem we study 
onsiders s
enarios where bu�ers or queueshave bounded 
apa
ity. In this 
ase pa
ket loss 
annot be avoided and the goalis to transmit the pa
kets of highest value. Kesselman et al. [74℄ investigatedthe following problem in the 
ontext of managing the output bu�er of a routeror swit
h. At time t, a set N(t) of new data pa
kets arrives. Ea
h pa
ket p hasa value v(p), whi
h is a positive real number. There is a bu�er in whi
h thedata pa
kets 
an be stored temporarily. In ea
h time step t an algorithm 
antransmit one of the pa
kets that are available in the bu�er or in the set N(t).The goal is to maximize the value of the transmitted pa
kets. Kesselman etal. investigate two types of bu�ers. In a FIFO bu�er the pa
ket transmissiontimes must be 
onsistent with the arrival times. More pre
isely, if pa
ket p istransmitted before p0, then p must not have arrived later than p0. Moreover, thebu�er 
an simultaneously hold only B pa
kets. An algorithm has to de
ide whi
hpa
kets to drop so as to obey this bu�er 
apa
ity. In a bounded-delay bu�er ea
hpa
ket p has an asso
iated sla
k time sl(p). If the pa
ket arrives at time t, thenit must be transmitted or dropped by time t+ sl(p). There is no expli
it boundon the bu�er size and pa
kets may be re-ordered.First 
onsider the FIFO model. Kesselman et al. [74℄ analyzed the followingalgorithm.Greedy: If there is a bu�er over
ow, dis
ard the pa
kets with the smallestvalues; ties are broken arbitrarily.Theorem 30. [74℄ Greedy a
hieves a 
ompetitive ratio of 2� 1B+1 . This ratio istight for that algorithm.Kesselman et al. also showed that Greedy has a 
ompetitiveness of 2� 2�+1 , where� is the ratio of the maximum to minimum pa
ket value. Zhu [99℄ re
ently gavea lower bound.Theorem 31. [99℄ In the FIFO model no deterministi
 online algorithm 
ana
hieve a 
ompetitive ratio smaller than p2.A 
hallenging problem is to 
lose the gap between the lower and the upperbounds. For the spe
ial 
ase B = 2, Zhu showed tight bounds of (5 +p13)=6 �1:434.Next we examine the bounded-delay model. Again Kesselman et al. [74℄ pro-posed a Greedy strategy.Greedy: In ea
h step, send the pa
ket with the highest value.Theorem 32. The Greedy algorithm a
hieves a 
ompetitive ratio of 2 and thisis tight for that algorithm.
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ket values (
heap and expensive), then Greedy hasa 
ompetitiveness of exa
tly 1 + 1=�, where � is the ratio of the expensive tothe 
heap value. Zhu [99℄ gave a lower bound of 1:366. This bound even holdsin a restri
ted model where the sla
k time of ea
h pa
ket is equal to 2. For thisspe
ial s
enario, Zhu also showed an upper bound of p2. Finally tight upper andlower bounds of (1 +p5)=2 � 1:618 are known for the 
ase that the sla
k timeof ea
h pa
ket is at most 2, see [74,99℄. The major open problem is to determinetight bounds for the general bounded-delay model.
8. Re�nements of 
ompetitive analysisCompetitive analysis is a strong worst-
ase performan
e measure. For some on-line problems, su
h as paging, the 
ompetitive ratios of online algorithms aremu
h higher than the 
orresponding performan
e ratios observed in pra
ti
e.The reason is typi
ally that in a 
ompetitive analysis we have to 
onsider ar-bitrary request sequen
es whereas in pra
ti
e only restri
ted 
lasses of inputso

ur. Therefore, a line of resear
h has analyzed online algorithms on restri
tedrequest sequen
es and proposed other measures for evaluating online algorithms.We 
onsider the paging problem in more detail. As dis
ussed in Se
tion 2 thebest 
ompetitive ratio of deterministi
 online algorithms is equal to k, where kis the number of pages in fast memory, and both LRU and FIFO a
hieve this
ompetitiveness. From a pra
ti
al point of view this bound is not very meaningfulas fast memories 
an often store several hundreds or thousands of pages. In fa
t,the ratio of k is mu
h higher than the algorithms' performan
e in pra
ti
e. In anexperimental study presented by Young [97℄, LRU a
hieved 
ompetitive ratiosbetween 1 and 2. Also, in pra
ti
e, the performan
e of LRU is mu
h better thanthat of FIFO. This is not evident in the 
ompetitive analysis.In the paging problem standard 
ompetitive analysis ignores the fa
t thatrequest sequen
es generated by real programs have a spe
ial stru
ture, i.e. theyexhibit lo
ality of referen
e: Whenever a page is requested, the next request isusually to a page that 
omes from a very small set of asso
iated pages. Borodinet al. [32℄ proposed a

ess graphs for modeling lo
ality of referen
e. In an a

essgraph, the nodes represent the memory pages. Whenever a page p is requested,the next request 
an only be to a page that is adja
ent to p in the a

ess graph.Formally, let G = (V;E) be an undire
ted graph. V represents the set of mem-ory pages and E is a set of edges. A request sequen
e � = �(1); : : : ; �(m), is
onsistent with G if (�(t); �(t+ 1)) 2 E for all t = 1; : : : ;m� 1. We say that anonline algorithm A is 
-
ompetitive on G if there exists a 
onstant a su
h thatA(�) � 
 � OPT (�) + a for all � 
onsistent with G. The 
ompetitive ratio of Aon G, denoted by R(A;G), is the in�mum of all 
 su
h that A is 
-
ompetitiveon G. Let R(G) = minAR(A;G) be the best 
ompetitive ratio a
hievable on G.Borodin et al. [32℄ showed that LRU a
hieves the best possible 
ompetitiveratio on a

ess graphs that are trees. Trees represent the a

ess graphs for manydata stru
tures. Borodin et al. also analyzed R(LRU;G) on arbitrary graphs. Inparti
ular they showed that there exist graphs for whi
h the 
ompetitive ratio
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h higher than that of LRU. Another important result, due toChrobak and Noga [41℄, is that LRU is never worse than FIFO on a

ess graphs.Theorem 33. [41℄ For any graph G, R(LRU;G) � R(FIFO;G).Borodin et al. [32℄ also presented an optimal online algorithm for any a

essgraph.FAR: The algorithm is a marking strategy. If there is a fault at a request toa page p, then FAR evi
ts an unmarked page from fast memory that has thelargest distan
e to a marked page in the a

ess graph.Irani et al. [66℄ showed that this algorithm a
hieves the best possible 
om-petitive ratio, up to a 
onstant fa
tor, for all a

ess graphs.Theorem 34. [66℄ For any graph G, R(FAR; G) = O(R(G)).Fiat and Karlin [54℄ presented randomized online paging algorithms for a

essgraphs that a
hieve an optimal 
ompetitive ratio. A disadvantage of FAR andthe randomized algorithms by Fiat and Karlin [54℄ is that the a

ess graphhas to be known in advan
e. Fiat and Mendel [57℄ presented deterministi
 andrandomized online algorithms that do not have to know the a

ess graph butstill a
hieve the best possible 
ompetitive ratios.So far we have addressed undire
ted a

ess graphs. An initial investigationof dire
ted a

ess graph was presented by Irani et al. [66℄, who 
onsidered stru
-tured program graphs. A fundamental open problem is to develop online pagingalgorithms for general dire
ted a

ess graphs.As an alternative to a

ess graphs, Karlin et al. [71℄ modeled lo
ality of ref-eren
e by assuming that request sequen
es are generated by a Markov 
hain.They analyzed paging algorithm in terms of their fault rate whi
h is the perfor-man
e measure used in pra
ti
e. In parti
ular, they developed an algorithm thata
hieves an optimal fault rate, for any Markov 
hain. Torng [96℄ analyzed thetotal a

ess time of paging algorithms. He assumes that the servi
e of a requestto a page in fast memory 
osts 1, whereas a fault in
urs a penalty of p, p > 1. Inhis model a request sequen
e exhibits lo
ality of referen
e if the average lengthof a subsequen
e 
ontaining requests to m distin
t pages is mu
h larger than m.Re
ently, Albers et al. [7℄ proposed another framework for modeling lo
alityof referen
e that goes ba
k again to the working set 
on
ept by Denning [49,50℄.In pra
ti
e, during any phase of exe
ution, a pro
ess referen
es only a relativelysmall fra
tion of its pages. The set of pages that a pro
ess is 
urrently using is
alled the working set . Determining the working set size in a window of size nat any point in a request sequen
e, one obtains, for variable n, a fun
tion whosegeneral behavior is depi
ted in Figure 1. The fun
tion is in
reasing and 
on
ave.Inspired by this simple and natural model, [7℄ devises two ways of modelinglo
ality of referen
e. In both models, it is assumed that an appli
ation is 
har-a
terized by a 
on
ave fun
tion f ; the appli
ation generates request sequen
esthat are 
onsistent with f . In the Max-Model a request sequen
e is 
onsistentwith f if the maximum number of distin
t pages referen
ed in a window of size nis at most f(n), for any n 2 IN. In the Average-Model a request sequen
e is 
on-sistent with f if the average number of distin
t pages referen
ed in a window of
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Window Size

Program Size
Working SetSize

Fig. 1. Working set size as a fun
tion of the window size.
size n is at most f(n), for any n 2 IN. Albers et al. performed extensive experi-ments with tra
es from standard 
orpora, analyzing maximum/average workingset sizes in windows of size n. In all of the 
ases, the fun
tions have an overall
on
ave shape. The authors use again the page fault rate to evaluate the qualityof paging algorithms, and develop tight or nearly tight bounds on the fault ratesa
hieved by LRU, FIFO, deterministi
 Marking strategies and MIN. It showsthat LRU is an optimal online algorithm, whereas FIFO and Marking strategiesare not optimal in general. Finally [7℄ presents an experimental study 
omparingthe page fault rates proven in the analyses to the page fault rates observed inpra
ti
e. The gap between the theoreti
al and observed bounds is 
onsiderablysmaller than the 
orresponding gap in 
ompetitive analysis.Further re�nements of 
ompetitive analysis in
lude extra resour
e analyses,see e.g. [68,93℄, statisti
al adversaries [37,84℄, a

omodating fun
tions [35℄ andthe max/max ratio [26℄. With respe
t to arbitrary online problems, Koutsoupiasand Papadimitriou [79℄ proposed the di�use adversary model . An adversary mustgenerate an input a

ording to a probability distribution D that belongs to a
lass � of possible distributions known to the online algorithm. We wish todetermine, for the given 
lass � of distributions, the performan
e ratioR(�) = minA maxD2� ED[A(�)℄ED[OPT (�)℄ :Koutsoupias and Papadimitriou show that LRU is optimal against di�use ad-versaries. Se
ondly, Koutsoupias and Papadimitriou [79℄ introdu
ed 
omparativeanalysis , whi
h 
ompares the performan
e of online algorithms from given 
lassesof algorithms.
9. Con
lusionsIn this paper we gave an introdu
tion to 
ompetitive online algorithms andpresented a number of important results. An ex
ellent text book on the subje
twas written by Borodin and El-Yaniv [31℄. The book [58℄ 
ontains many surveyarti
les on various online problems. Of 
ourse, there are many appli
ation areasthat we have not addressed here. Bin pa
king is a 
lassi
al problem that is still
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tively investigated, see e.g. [42,48℄ and referen
es therein. Online 
oloring andonline mat
hing are two 
lassi
al online problems related to graph theory. Inthese problems, the verti
es of a graph arrive online and must be 
olored resp.mat
hed immediately. We refer the reader to [75,76,73℄ for some basi
 literature.Re
ently, there has been resear
h interest in 
ompetitive au
tions, see e.g. [53,62℄, a fresh �eld that deserves further investigations. In summary there is nodoubt that online algorithms 
ontinue to be an interesting resear
h area andthat 
ompetitive analysis will be a powerful tool to analyze their performan
e.
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