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Susanne AlbersOnline Algorithms: A SurveyReeived: date / Revised version: dateAbstrat. During the last 15 years online algorithms have reeived onsiderable researh in-terest. In this survey we give an introdution to the ompetitive analysis of online algorithmsand present important results. We study interesting appliation areas and identify open prob-lems.
1. IntrodutionThe traditional design and analysis of algorithms assumes that an algorithm,whih generates output, has omplete knowledge of the entire input. However,this assumption is often unrealisti in pratial appliations. Many of the algo-rithmi problems that arise in pratie are online. In these problems the inputis only partially available beause some relevant input data arrives in the fu-ture and is not aessible at present. An online algorithm must generate outputwithout knowledge of the entire input. Online problems arise in many areas ofomputer siene. We give some illustrating examples.Resoure management in operating systems: Paging is a lassial online problemwhere one has to maintain a two-level memory system onsisting of a small fastmemory and a large slow memory. The goal is to keep atively referened pagesin fast memory without knowing whih pages will be requested in the future.Data strutures: Consider a data struture suh as a linear linked list or a tree.We wish to dynamially maintain this struture so that a sequene of aessesto elements an be served at low ost. Future aess patterns are unknown.Sheduling: A sequene of jobs must be sheduled on a set of mahines so asto optimize a given objetive funtion. Jobs arrive one by one and must besheduled immediately without knowledge of future jobs.Networks: Many online problems in this area arise in the ontext of data trans-mission. The problem an be, for instane, to dynamially maintain a set ofopen onnetions between network nodes without knowing whih onnetionsare needed in the future.The quality of online algorithms is usually evaluated using ompetitive analy-sis. The idea of ompetitiveness is to ompare the output generated by an onlineInstitut f�ur Informatik, Albert-Ludwigs-Universit�at Freiburg Georges-K�ohler-Allee 79, 79110Freiburg, Germany. salbers�informatik.uni-freiburg.deMathematis Subjet Classi�ation (1991): 68W25, 68W40



2 Susanne Albersalgorithm to the output produed by an optimal o�ine algorithm. An optimalo�ine algorithm is an omnisient algorithm that knows the entire input data inadvane and an ompute an optimal output. The better an online algorithmapproximates the optimal solution, the more ompetitive this algorithm is.In the following we �rst present fundamental onepts used to study on-line algorithms. Then we study various online problems and present importantresults. The spei� problems we onsider inlude paging, self-organizing datastrutures, the k-server problem, metrial task systems, sheduling and load bal-aning as well as problems in large networks. Finally we address re�nements ofompetitive analysis and onlude with some remarks.
2. Basi oneptsFormally, many online problems an be desribed as follows. An online algorithmA is presented with a request sequene � = �(1); �(2); : : : ; �(m). The requests�(t), 1 � t � m, must be served in the order of ourrene. When servingrequest �(t), algorithm A does not know any request �(t0) with t0 > t. Servingrequests inurs ost and the goal is to minimize the total ost paid on the entirerequest sequene. This setting an also be regarded as a request-answer game:An adversary generates requests and an online algorithm has to serve them oneat a time.To illustrate this formal model we re-onsider the paging problem and startwith a preise de�nition.The paging problem: Consider a two-level memory system that onsists of asmall fast memory and a large slow memory. We assume that the fast memoryan simultaneously store k memory pages and that the slow memory an holdpotentially in�nitely many pages. Eah request spei�es a page in the memorysystem. A request is served if the orresponding page is in fast memory. If arequested page is not in fast memory, a page fault ours. Then a page mustbe moved from fast memory to slow memory so that the requested page anbe loaded into the vaated loation. A paging algorithm spei�es whih pageto evit on a fault. If the algorithm is online, then the deision whih page toevit must be made without knowledge of any future requests. The ost to beminimized is the total number of page faults inurred on the request sequene.Sleator and Tarjan [93℄ suggested evaluating the performane of an onlinealgorithm using ompetitive analysis . In a ompetitive analysis, an online al-gorithm A is ompared to an optimal o�ine algorithm. An optimal o�ine al-gorithm knows the entire request sequene in advane and an serve it withminimum ost. Given a request sequene �, let A(�) denote the ost inurredby A and let OPT (�) denote the ost inurred by an optimal o�ine algorithmOPT. The algorithm A is alled -ompetitive if there exists a onstant a suhthat A(�) �  � COPT (�) + a for all request sequenes �. Here we assume thatA is a deterministi online algorithm. Note that ompetitive analysis is a strongworst ase performane measure in the sense that a ompetitive algorithm mustperform well on all inputs.



Online Algorithms: A Survey 3With respet to the paging problem, there are two well-known deterministionline algorithms.LRU (Least Reently Used): On a fault, evit the page in fast memory that wasrequested least reently.FIFO (First-In First-Out): Evit the page that has been in fast memory longest.Sleator and Tarjan [93℄ analyzed the performane of LRU and FIFO andshowed that on any request sequene the number of page faults inurred bythese algorithms is bounded by k times the number of faults made by OPT.They also showed that this is optimal.Theorem 1. [93℄ LRU and FIFO are k-ompetitive.Theorem 2. [93℄ No deterministi online algorithm for the paging problem anahieve a ompetitive ratio smaller than k.An optimal o�ine algorithm for the paging problem was presented by Belady[25℄. The algorithm is alled MIN and works as follows.MIN: On a fault, evit the page whose next request ours furthest in the future.Belady showed that on any sequene of requests, MIN ahieves the minimumnumber of page faults.A natural question is: Can an online algorithm ahieve a better ompetitiveratio if it is allowed to use randomization?The ompetitive ratio of a randomized online algorithm A is de�ned withrespet to an adversary. The adversary generates a request sequene � and alsohas to serve �. When onstruting �, the adversary always knows the desriptionof A. The ruial question is: When generating requests, is the adversary allowedto see the outome of the random hoies made by A on previous requests? Ben-David et al. [27℄ introdued three kinds of adversaries.Oblivious adversary: The oblivious adversary has to generate the entire requestsequene in advane before any requests are served by the online algorithm. Theadversary is harged the ost of the optimum o�ine algorithm for that sequene.Adaptive online adversary: This adversary may observe the online algorithm andgenerate the next request based on the algorithm's (randomized) answers to allprevious requests. The adversary must serve eah request online, i.e. withoutknowing the random hoies made by the online algorithm on the present or anyfuture request.Adaptive o�ine adversary: This adversary also generates a request sequeneadaptively. However, it is harged the optimum o�ine ost for that sequene.A randomized online algorithm A is alled -ompetitive against any obliviousadversary if there is a onstant a suh for all request sequenes � generated byan oblivious adversary, E[A(�)℄ �  �OPT (�)+a: The expetation is taken overthe random hoies made by A.Given a randomized online algorithm A and an adaptive online (adaptiveo�ine) adversary ADV, let E[A(�)℄ and E[ADV (�)℄ denote the expeted ostsinurred by A and ADV in serving a request sequene generated by ADV. A



4 Susanne Albersrandomized online algorithm A is alled -ompetitive against any adaptive on-line (adaptive o�line) adversary if there is a onstant a suh that for all adaptiveonline (adaptive o�ine) adversaries ADV, E[A(�)℄ �  �E[ADV (�)℄ + a, wherethe expetation is taken over the random hoies made by A.Ben-David et al. [27℄ investigated the relative strength of the adversaries andshowed the following statements.Theorem 3. [27℄ If there is a randomized online algorithm that is -ompetitiveagainst any adaptive o�ine adversary, then there also exists a -ompetitivedeterministi online algorithm.Theorem 4. [27℄ If A is a -ompetitive randomized algorithm against any adap-tive online adversary and if there is a d-ompetitive algorithm against any oblivi-ous adversary, then A is (�d)-ompetitive against any adaptive o�ine adversary.Theorem 3 implies that randomization does not help against the adaptiveo�ine adversary. An immediate onsequene of the two theorems above is:Corollary 1. If there exists a -ompetitive randomized algorithm against anyadaptive online adversary, then there is a 2-ompetitive deterministi algorithm.Against oblivious adversaries, randomized online paging algorithms an on-siderably improve the ratio of k shown for deterministi paging. The followingalgorithm was proposed by Fiat et al. [55℄.Marking: The algorithm proesses a request sequene in phases. At the begin-ning of eah phase, all pages in the memory system are unmarked. Whenever apage is requested, it is marked . On a fault, a page is hosen uniformly at randomfrom among the unmarked pages in fast memory, and that page is evited. Aphase ends when all pages in fast memory are marked and a page fault ours.Then, all marks are erased and a new phase is started.Fiat et al. [55℄ analyzed the performane of the Marking algorithm andshowed that it is 2Hk-ompetitive against any oblivious adversary, where Hk =Pki=1 1=i is the k-th Harmoni number. Note that Hk is roughly ln k.Fiat et al. [55℄ also proved that no randomized online paging algorithmagainst any oblivious adversary an be better than Hk-ompetitive. Thus theMarking algorithm is optimal, up to a onstant fator. More ompliated pagingalgorithms ahieving an optimal ompetitive ratio of Hk were given in [81,1℄.
3. Self-organizing data struturesThe list update problem is one of the �rst online problems that were studiedwith respet to ompetitiveness. The problem is to maintain a ditionary as anunsorted linear list. Consider a set of items that is represented as a linear linkedlist. We reeive a request sequene �, where eah request is one of the followingoperations. (1) It an be an aess to an item in the list, (2) it an be an insertionof a new item into the list, or (3) it an be a deletion of an item. To aess an



Online Algorithms: A Survey 5item, a list update algorithm starts at the front of the list and searhes linearlythrough the items until the desired item is found. To insert a new item, thealgorithm �rst sans the entire list to verify that the item is not already presentand then inserts the item at the end of the list. To delete an item, the algorithmsans the list to searh for the item and then deletes it.In serving requests a list update algorithm inurs ost. If a request is anaess or a delete operation, then the inurred ost is i, where i is the positionof the requested item in the list. If the request is an insertion, then the ost isn + 1, where n is the number of items in the list before the insertion. Whileproessing a request sequene, a list update algorithm may rearrange the list.Immediately after an aess or insertion, the requested item may be moved atno extra ost to any position loser to the front of the list. These exhangesare alled free exhanges . Using free exhanges, the algorithm an lower theost on subsequent requests. At any time two adjaent items in the list may beexhanged at a ost of 1. These exhanges are alled paid exhanges . The goalis to serve the request sequene so that the total ost is as small as possible.With respet to the list update problem, we require that a -ompetitiveonline algorithm has a performane ratio of  for all size lists . More preisely,a deterministi online algorithm for list update is alled -ompetitive if thereis a onstant a suh that for all size lists and all request sequenes �, A(�) � �OPT (�) + a:Linear lists are one possibility for representing a set of items. Certainly, thereare other data strutures suh as balaned searh trees or hash tables that,depending on the given appliation, an maintain a set in a more eÆient way.In general, linear lists are useful when the set is small and onsists of only a fewdozen items. Reently, list update tehniques have been applied very suessfullyin the development of data ompression algorithms [8,28,34℄.There are three well-known deterministi online algorithms for the list updateproblem.Move-To-Front: Move the requested item to the front of the list.Transpose: Exhange the requested item with the immediately preeding itemin the list.Frequeny-Count: Maintain a frequeny ount for eah item in the list. When-ever an item is requested, inrease its ount by 1. Maintain the list so that theitems always our in noninreasing order of frequeny ount.The formulations of list update algorithms generally assume that a requestsequene onsists of aesses only. It is obvious how to extend the algorithms sothat they an also handle insertions and deletions. On an insertion, the algorithm�rst appends the new item at the end of the list and then exeutes the samesteps as if the item was requested for the �rst time. On a deletion, the algorithm�rst searhes for the item and then just removes it.In the following, we disuss the algorithms Move-To-Front, Transpose andFrequeny-Count. We note that Move-To-Front and Transpose are memorylessstrategies, i.e. they do not need any extra memory to deide where a requesteditem should be moved. Thus, from a pratial point of view, they are more at-



6 Susanne Alberstrative than Frequeny-Count. Sleator and Tarjan [93℄ analyzed the ompetitiveratios of the three algorithms.Theorem 5. [93℄ The Move-To-Front algorithm is 2-ompetitive.Proposition 1. The algorithms Transpose and Frequeny-Count are not -om-petitive, for any onstant .Karp and Raghavan [72℄ developed a lower bound on the ompetitiveness thatan be ahieved by deterministi online algorithms. This lower bound impliesthat Move-To-Front has an optimal ompetitive ratio.Theorem 6. [72℄ Let A be a deterministi online algorithm for the list updateproblem. If A is -ompetitive, then  � 2.Amb�uhl [10℄ showed that the o�ine variant of the list update problem is NP-hard. Thus, in ontrast to the paging problem, there is no eÆient algorithm foromputing an optimal servie shedule for a given input.Next we address the problem of randomization in the list update problem.Against adaptive adversaries, no randomized online algorithm for list update anbe better than 2-ompetitive, see [27,86℄. Thus we onentrate on algorithmsagainst oblivious adversaries. Many randomized algorithms for list update havebeen proposed [2,9,64,86℄. We present the two most important algorithms. Rein-gold et al. [86℄ gave a very simple algorithm, alled Bit .Bit: Eah item in the list maintains a bit that is omplemented whenever theitem is aessed. If an aess auses a bit to hange to 1, then the requested itemis moved to the front of the list. Otherwise the list remains unhanged. The bitsof the items are initialized independently and uniformly at random.Theorem 7. [86℄ The Bit algorithm is 1.75-ompetitive against any obliviousadversary.Reingold et al. [86℄ generalized the Bit algorithm and proved an upper boundof p3 � 1:73 against oblivious adversaries. The best randomized algorithmurrently known is a ombination of the Bit algorithm and a deterministi 2-ompetitive online algorithm alled Timestamp proposed in [2℄.Timestamp (TS): Insert the requested item, say x, in front of the �rst itemin the list that preedes x and that has been requested at most one sine thelast request to x. If there is no suh item or if x has not been requested so far,then leave the position of x unhanged.As an example, onsider a list of six items being in the orderL : x1 ! x2 ! x3 ! x4 ! x5 ! x6. Suppose that algorithm TS has to servethe seond request to x5 in the request sequene � = : : : x5; x2; x2; x3; x1; x1; x5.Items x3 and x4 were requested at most one sine the last request to x5, whereasx1 and x2 were both requested twie. Thus, TS will insert x5 immediately infront of x3 in the list. A ombination of Bit and TS was proposed by [9℄.Combination: With probability 4/5 the algorithm serves a request sequeneusing Bit , and with probability 1/5 it serves a request sequene using TS .



Online Algorithms: A Survey 7Theorem 8. [9℄ The algorithm Combination is 1.6-ompetitive against any obliv-ious adversary.Amb�uhl et al. [11℄ presented a lower bound for randomized list update algo-rithms.Theorem 9. [11℄ Let A be a randomized online algorithm for the list updateproblem. If A is -ompetitive against any oblivious adversary, then  � 1:50084.An interesting open problem is to determine tight bounds on the ompetitiveratio that an be ahieved by randomized online algorithms against obliviousadversaries.Using tehniques from learning theory, Blum et al. [30℄ reently gave a ran-domized online algorithm that, for any � > 0, is (1:6+ �)-ompetitive and at thesame time (1 + �)-ompetitive against an o�ine algorithm that is restrited toserving a request sequene with a stati list.Many of the onepts shown for self-organizing linear lists an be extendedto binary searh trees. The most popular version of self-organizing binary searhtrees are the splay trees presented by Sleator and Tarjan [94℄. In a splay tree,after eah aess to an element x in the tree, the node storing x is moved tothe root of the tree using a speial sequene of rotations that depends on thestruture of the aess path. This reorganization of the tree is alled splaying.Sleator and Tarjan [94℄ analyzed splay trees and proved a series of interestingresults. They showed that the amortized asymptoti time of aess and updateoperations is as good as the orresponding time of balaned trees. More formally,in an n-node splay tree, the amortized time of eah operation is O(logn).Theorem 10. [94℄ Splay trees are O(logn)-ompetitive.It was also shown [94℄ that on any sequene of aesses, a splay tree is as eÆientas the optimum stati searh tree.Theorem 11. [94℄ Splay trees are O(1)-ompetitive against optimal stati searhtrees.Moreover, Sleator and Tarjan [94℄ presented a series of onjetures, some ofwhih have been resolved or partially resolved [45,46,95℄. On the other hand,the famous splay tree onjeture is still open: It is onjetured that on anysequene of aesses splay trees are as eÆient as any dynami binary searhtree. Blum et al. [30℄ showed that there is an O(1)-ompetitive algorithm if theonline algorithm is allowed to make free rotations after eah request.
4. The k-server problemThe k-server problem is one of the most fundamental problems in the theory ofonline algorithms. In the k-server problem we are given a metri spae S and kmobile servers that reside on points in S. Eah request spei�es a point x 2 S.To serve a request, one of the k servers must be moved to the requested point



8 Susanne Albersunless a server is already present. Moving a server from point x to point y inursa ost equal to the distane between x and y. The goal is to serve a sequene ofrequests so that the total distane traveled by all servers is as small as possible.The k-server problem ontains paging as a speial ase. Consider a metrispae in whih the distane between any two points in 1; eah point in the metrispae represents a page in the memory system and the pages overed by serversare those that reside in fast memory. The k-server problem also models moregeneral ahing problems, where the ost of loading an item into fast memorydepends on the size of the item. Suh a situation ours, for instane, when font�les are loaded into the ahe of a printer. More generally, the k-server probleman also be regarded as a vehile routing problem.The k-server problem was introdued in 1988 by Manasse et al. [80℄ who alsoshowed a lower bound for deterministi k-server algorithms.Theorem 12. [80℄ Let A be a deterministi online k-server algorithm in anarbitrary metri spae. If A is -ompetitive, then  � k.In their seminal paper Manasse et al. [80℄ also onjetured that there ex-ists a deterministi k-ompetitive online k-server algorithm. Seven years laterKoutsoupias and Papadimitriou [78℄ showed that there is a (2k� 1)-ompetitivealgorithm and hene ahieved a breakthrough. Before, k-ompetitive algorithmswere known for speial metri spaes (e.g. trees [39℄ and resistive spaes [47℄)and speial values of k (k = 2 and k = n� 1, where n is the number of points inthe metri spae [80℄). It is worthwhile to note that the greedy algorithm, whihalways moves the losest server to the requested point, is not ompetitive.The algorithm analyzed by Koutsoupias and Papadimitriou is the WorkFuntion algorithm. Let X be a on�guration of the servers. Given a requestsequene � = �(1); : : : ; �(t), the work funtion w(X) is the minimal ost ofserving � and ending in on�guration X. For any two points x and y in themetri spae, let dist(x; y) be the distane between x and y.Work Funtion: Suppose that the algorithm has served � = �(1); : : : ; �(t� 1)and that a new request r = �(t) arrives. Let X be the urrent on�guration ofthe servers and let xi be the point where server si, 1 � i � k, is loated. Servethe request by moving the server si that minimizes w(Xi) + dist(xi; r); whereXi = X � fxig+ frg.Theorem 13. [78℄ The Work Funtion algorithm is (2k � 1)-ompetitive in anarbitrary metri spae.An interesting open problem is to show that the Work Funtion algorithm isindeed k-ompetitive or to develop an other deterministi online k-server algo-rithm that ahieves a ompetitive ratio of k.The performane of randomized online algorithms is not as well understood.In partiular no randomized algorithm is known that has a ompetitiveness



Online Algorithms: A Survey 9smaller than 2k � 1 in arbitrary metri spaes. An elegant randomized strategyfor moving servers was proposed by Raghavan and Snir [85℄.Harmoni: Suppose that there is a new request at point r and that server si,1 � i � k, is urrently at point xi. Let di = dist(xi; r) be the distane betweenxi and r. Move server si with probability pi = 1=(diPkj=1 1dj ) to the request.Intuitively, the loser a server is to the request, the higher the probabilitythat it will be moved. Bartal and Grove [24℄ proved that the Harmoni algorithmahieves a ompetitive ratio of  � 54k � 2k � 2k against adaptive online adver-saries. Against these adversaries no randomized online algorithm an ahieve aompetitive ratio smaller than k [85℄. The ompetitiveness of Harmoni is notbetter than k(k + 1)=2, see [85℄. The algorithm has a ompetitive ratio of 3,for k = 3, and of k(k + 1)=2 in metri spaes onsisting of k + 1 points [40,85℄.Against lazy adversaries Harmoni ahieves a ompetitiveness of k(k+1)=2 [22℄.An adversary is lazy if, whenever one of its servers is loated on a point not ov-ered by the online algorithm's servers, it requests that point. It was onjeturedthat lazy adversaries ahieve the highest possible ompetitive ratio against ran-domized memoryless online algorithms that only move one of their servers ifthe requested point is not already overed by a server. However, Peserio [83℄disproved this onjeture.For randomized algorithms against oblivious adversaries the best lower boundurrently known is due to Bartal et al. [20℄Theorem 14. [20℄ The ompetitive ratio of a randomized online algorithm inan arbitrary metri spae is 
(log k= log2 log k) against oblivious adversaries.The bound an be improved to 
(log k) if the metri spae onsists of at leastklog� k points, for any � > 0, [20℄. It is onjetured that �(log k) is the trueompetitiveness of randomized algorithms against oblivious adversaries. Bartalet al. [21℄ presented an algorithm that has a ompetitive ratio of O(6 log6 k)in metri spaes onsisting of k +  points. Seiden [90℄ gave an algorithm thatahieves a ompetitive ratio polylogarithmi in k for metri spaes that an bedeomposed into a small number of widely separated subspaes. The main openproblem in the area of the k-server problem is to develop randomized onlinealgorithms that have a ompetitive ratio of  < k in an arbitrary metri spae.
5. Metrial task systemsMetrial task systems were introdued by Borodin et al. [33℄ and represent aframework for modeling a large lass of on-line problems. The de�nition of tasksystems is motivated by the observation that in many omputer systems thereare several ways to exeute a given job.A metrial task system is de�ned by a metri spae (S; d) and an assoiatedset T of tasks. The spae (S; d) onsists of a set S of n states and a distanefuntion d : S � S �! IR+0 , where d(i; j) � 0 denotes the ost of hangingfrom state i to state j. Sine the spae is metri, the funtion d is symmetri,



10 Susanne Alberssatis�es the triangle inequality and d(i; i) = 0, for all states i. The set T is theset of allowable tasks. A task T 2 T is a vetor T = (T (1); T (2); : : : ; T (n)),where T (i) 2 IR+0 [ f1g denotes the ost of proessing the task while in statei. A request sequene is a sequene of tasks � = T 1; T 2; T 3; : : : ; Tm that mustbe served starting from some initial state s(0). When reeiving a new task, analgorithm may serve the task in the urrent state or may hange states at a ost.Thus the algorithm must determine a shedule of states s(1); s(2); : : : ; s(m), suhthat task T i is proessed in state s(i). The ost of serving a task sequene isthe sum of all state transition osts and all task proessing osts: Pmi=1 d(s(i�1); s(i)) +Pmi=1 T i(s(i)): The goal is to proess a given task sequene so thatthe ost is as small as possible.Borodin et al. [33℄ settled the ompetitiveness of deterministi online algo-rithms.Theorem 15. [33℄ There exists a deterministi online algorithm that is (2n�1)-ompetitive for any metrial task system with n states.Theorem 16. [33℄ Any deterministi online algorithm for the metrial task sys-tems problem has a ompetitive ratio of at least 2n � 1, where n is the numberof task system states.It is worthwhile to notie that the ompetitive fator of 2n� 1 for deterministionline algorithms often does not provide meaningful bounds when speial onlineproblems are investigated. Consider the list update problem. Here the given listan be in n! states. Hene, we obtain a bound of (2n! � 1) on the ompetitivefator of a deterministi online algorithm for the list update problem. However,Move-To-Front ahieves a ompetitive fator of 2.For randomized algorithms, the known bounds are tight up to a logarithmifator.Theorem 17. [57℄ There exists a randomized online algorithm that isO(log2 n= log2 log n)-ompetitive against any oblivious adversary, for any met-rial task system with n states.Theorem 18. [20℄ Any randomized online algorithm for the metrial task sys-tems problem has a ompetitive ratio of at least 
(log n= log2 log n) againstoblivous adversaries, where n is the number of task system states.Better bounds hold for uniform metrial task systems, where the ost d(i; j) ofhanging states is equal to 1 for all i 6= j. Borodin at al. [33℄ gave a lower boundof Hn, where Hn is the n-th Harmoni number. The best upper bound urrentlyknown was presented by Irani and Seiden [67℄ and is equal to Hn +O(plogn).
6. Sheduling and load balaningSheduling is a lassial and well-studied problem that still reeives a lot ofresearh interest. The general situation in online sheduling is as follows. We



Online Algorithms: A Survey 11are given a set of m mahines. A sequene of jobs � = J1; J2; : : : ; Jn arrivesonline. Eah job Jk has a proessing pk time that may or may not be knownin advane. Whenever a new job arrives, it has to be sheduled immediately onone of the m mahines. The goal is to optimize a given objetive funtion. Thereare many problem variants: Preemption of jobs may or may not be allowed; wean study various mahine types and various objetive funtions. A very largenumber of di�erent problems have been investigated in the literature and we anonly disuss a few basi senarios in this survey.First we onsider one of the most basi problems in online sheduling. Sup-pose that we are given m idential mahines. The jobs � = J1; J2; : : : ; Jn arriveone by one. Whenever the sheduler is presented with a new job, its proessingtime is known in advane. Preemption of jobs is not allowed. We wish to mini-mize the makespan, whih is the ompletion time of the last job that �nishes inthe shedule.Graham [63℄ in 1966 proposed the elegant Greedy algorithm and analyzed itsperformane.Greedy: Assign a new job to the least loaded mahine.Theorem 19. [63℄ Greedy is (2� 1m)-ompetitive.Graham also showed that the ompetitive ratio of Greedy is not smaller than2� 1m . In reent years, researh has foused on �nding algorithms that ahieve aompetitive ratio asymptotially smaller than 2. In 1992, Bartal et al. [23℄ gavean algorithm that is 1:986-ompetitive. This bound was improved to 1.945, to1.923 and �nally to 1.9201, whih is the best upper bound known to date [69,3,60℄. All the algorithms are deterministi. The best lower bound urrently knownis due to Rudin [87℄. He proved that no deterministi online algorithm an bebetter 1.88-ompetitive. An interesting open problem is to lose the gap betweenthe lower and the upper bounds.Sine the publiation of the paper by Bartal et al. [23℄, there has also been re-searh interest in developing randomized online algorithms for the above shedul-ing problem. Bartal et al. gave a randomized algorithm for 2 mahines thatahieves an optimal ompetitive ratio of 4=3. Chen et al. [36℄ and Sgall [91℄proved that no randomized online algorithm an have a ompetitiveness smallerthan 1=(1� (1� 1=m)m). This expression tends to e=(e� 1) � 1:58 as m!1.Seiden [88℄ presented a randomized algorithm whose ompetitive ratio is smallerthan the best known deterministi ratio for m 2 f3; : : : ; 7g. The ompetitivenessis also smaller than the deterministi lower bound for m = 3; 4; 5.Reently, Albers [4℄ developed a randomized online algorithm that is 1.916-ompetitive, for all m, and hene gave the �rst algorithm that performs betterthan known deterministi algorithms for general m. She also showed that aperformane guarantee of 1.916 annot be proven for a deterministi online al-gorithm based on analysis tehniques that have been used in the literature sofar. An interesting feature of the new randomized algorithm, alled Rand , isthat at most two shedules have to be maintained at any time. In ontrast, thealgorithms by Bartal et al. [23℄ and by Seiden [90℄ have to maintain t shedules



12 Susanne Alberswhen t jobs have arrived. The Rand algorithm is a ombination of two determin-isti algorithms A1 and A2. Initially, when starting the sheduling proess,Randhooses Ai, i 2 f1; 2g, with probability 12 and then serves the entire job sequeneusing the hosen algorithm. Algorithm A1 is a onservative strategy that triesto maintain shedules with a low makespan. On the other hand, A2 is an ag-gressive strategy that aims at generating shedules with a high makespan. Ahallenging open problem is to design randomized online algorithms that beatthe deterministi lower bound, for all m.We next onsider some variants of the basi senario studied so far.Idential mahines, restrited assignment: We have a set ofm idential mahines,but eah job an only be assigned to one of a subset of admissible mahines. Azaret al. [18℄ showed that the Greedy algorithm, whih always assigns a new job tothe least loaded mahine among the admissible mahines, ahieves a ompeti-tiveness of dlog2me+1. They also proved that no deterministi online algorithman be better than dlog2me-ompetitive.Related mahines: Eah mahine i has a speed si, 1 � i � m. The proessingtime of job Jk on mahine i is equal to pk=si. Aspnes et al. [13℄ showed that theGreedy algorithm, that always assigns a new job to a mahine so that the loadafter the assignment is minimized, is �(logm)-ompetitive. They also presentedan algorithm that is 8-ompetitive. The bound was improved to 5.828 in [30℄.Unrelated mahines: The proessing time of job Jk on mahine i is pk;i, 1 �k � n, 1 � i � m. Aspnes et al. [13℄ showed that Greedy is only m-ompetitive.However, they also gave an algorithm that is O(logm)-ompetitive.In online load balaning we have again a set of m mahines and a sequeneof jobs � = J1; J2; : : : ; Jn that arrive online. Here, eah job Jk has a weight w(k)and an unknown duration. For any time t, let li(t) denote the load of mahinei, 1 � i � m, at time t, whih is the sum of the weights of the jobs presenton mahine i at time t. The goal is to minimize the maximum load that oursduring the proessing of �.For the senario with m idential mahines, Azar and Epstein [16℄ showedthat the Greedy algorithm is (2� 1m )-ompetitive. The load balaning problembeomes more ompliated with restrited assignments, i.e. eah job an only beassigned to a subset of admissible mahines. Azar et al. [15℄ proved that Greedyahieves a ompetitive ratio of m2=3(1 + o(1)). They also proved that no onlinealgorithm an be better than 
(pm)-ompetitive. In a subsequent paper, Azaret al. [17℄ gave a mathing upper bound. The algorithm works as follows.Robin Hood: Let OPT be the optimum load ahieved by the o�ine algorithm.Robin Hoodmaintains an estimate L for OPT satisfying L � OPT . At any time t,mahine i is alled rih if li(t) � pmL; otherwise mahine i is alled poor . Whena new job Jk arrives, L is updated, i.e. L := maxfL;w(k); 1m (w(k)+Pmi=1 li(t))g:If possible, Jk is assigned to a poor mahine. Otherwise it is assigned to the rihmahine that beame rih most reently.Theorem 20. [17℄ Robin Hood is O(pm)-ompetitive.



Online Algorithms: A Survey 13For related mahines an upper bound of 20 and a lower bound of 3 � o(1)on the ompetitive ratio are known [17℄. Reently, Armon [12℄ settled the om-plexity for unrelated mahines. They proved a lower bound of 
(m= logm) onthe ompetitiveness of any deterministi online algorithm, almost mathing thetrivial upper bound of O(m) of the Greedy algorithm. We refer the reader to[14,92℄ for exellent surveys on online sheduling and load balaning.
7. Large networksWith the advent of the world-wide web, researhers have started investigatingalgorithmi problems that arise in large networks. Many of these problems areonline and we disuss some seleted problems.
7.1. Generalized ahingWe onsider the ahing of web douments. Cahes an be maintained by weblients or servers. Storing atively aessed douments in loal ahes an sub-stantially redue user response times as well as the network ongestion beauserequested douments do not have to be transmitted repeatedly over the web.Web ahing problems di�er from standard paging problems in that doumentshave varying sizes and inur varying osts when downloaded into a loal ahe.The loading ost depends, for instane, on the size of the douments and on theurrent ongestion in the network.In generalized ahing we have again a two-level memory system onsistingof a fast and a slow memory. In the network setting, the fast memory is a loalahe; the slow memory is the memory of the remaining network, i.e. the universeof all douments aessible in the network. We assume that the fast memory hasa apaity of K. For any doument d, let size(d) be the size and ost(d) be theost of d. The total size of the pages in fast memory may never exeed K. If arequested doument is not in ahe, the inurred ost is ost(d). The goal is toserve a sequene of requests so that the total loading ost is as small as possible.Various ost models have been proposed in the literature.1. The Bit Model [65℄: For eah doument d, we have ost(d) = size(d). (Thedelay in bringing the doument into fast memory depends only upon its size.)2. The Fault Model [65℄: For eah doument d, we have ost(d) = 1 while thesizes an be arbitrary.3. The Cost Model : For eah doument d, we have size(d) = 1 while the ostsan be arbitrary.4. The General Model : For eah doument d, both the ost and size an bearbitrary.Note that generalized ahing is a problem that arises in networks but thenetwork topology is not diretly part of a problem instane. It is aptured onlyimpliitly in the ost of downloading a doument.



14 Susanne AlbersFor the Bit and the Fault models, the LRU strategy is (k+1)-ompetitive [52℄,where k is the ratio of K to the size of the smallest doument ever requested.This bound holds in a relaxed ahing senario where the requested doumentdoes not neessarily have to be brought into fast memory, whih is an optionin web appliations. The performane ratio of k + 1 is optimal for determin-isti algorithms. For the Bit and the Fault Model, Irani presented random-ized O(log2 k)-ompetitive online algorithms. Cahing in the Cost Model is alsoknown as weighted ahing, whih is a speial instane of the k-server problem.Young [98℄ gave a K-ompetitive online algorithm for the General Model.Landlord: For eah d in fast memory, the algorithm maintains a variableredit(d) that takes values between 0 and ost(d). If a requested doument dis already in fast memory, then redit(d) is reset to any value between its ur-rent value and ost(d). If the requested page is not in fast memory, then thefollowing two steps are exeuted until there is enough room to load d. (1) Foreah doument d0 in fast memory, derease redit(d0) by � � size(d0), where� = mind02F redit(d0)=size(d0) and F is the set of douments in fast memory.(2) Evit any doument d0 from fast memory with redit(d0) = 0. When there isenough room, load d and set redit(d) to ost(d).Theorem 21. [98℄ Landlord is K-ompetitive in the General Model.The above bound is optimal. An interesting problem is to develop randomizedonline algorithms for generalized ahing. For the Bit and the Fault Model itwould be nie to design algorithms with improved ompetitive ratios. In theGeneral Model we are interested in o(K)-ompetitive randomized algorithms.This is a hallenging problem as it involves �nding o(k)-ompetitive algorithmsfor the k-server problem.
7.2. Maintaining TCP onnetionsWe study two algorithmi problems that arise in the ontext of maintaining openTCP onnetions.Cohen et al. [43℄ initiated the theoretial study of onnetion ahing inthe world-wide web. Communiation between lients and servers in the webis performed using HTTP (Hyper Text Transfer Protool), whih in turn usesTCP (Transmission Control Protool) to transmit data. The urrent protoolHTTP/1.1 works with persistent onnetions , i.e. one a TCP onnetion isestablished it may be kept open and used for transmission until the onnetionis expliitly losed by one of the endpoints. Of ourse, eah network node ansimultaneously maintain only a limited number of open TCP onnetions. If aonnetion is losed, there is a mehanism by whih one endpoint an signal thelose to the other endpoint [59℄.Formally, in onnetion ahing, we are given a network modeled as an undi-reted graph G. The nodes of the graph represent the nodes in the network.The edges represent the possible onnetions. Eah node has a ahe in whih



Online Algorithms: A Survey 15it an maintain information on open onnetions. A onnetion  = (u; v) isopen if information on  is stored in the ahes of both u and v. For a node v,let k(v) denote the number of open onnetions that v an maintain simultane-ously. Let k be the size of the largest ahe in the network. For a onnetion = (u; v), let ost() be the establishment ost of  that is inurred when is opened. An algorithm for onnetion ahing is presented with a request se-quene � = �(1); �(2); : : : ; �(m), where eah request �(t) spei�es a onnetiont = (ut; vt), 1 � t � m. If the requested onnetion t is already open, then therequest an be served at ost 0; otherwise the onnetion has to be opened ata ost of ost(t). The goal is to serve the request sequene � so that the totalost is as small as possible.An important feature of this problem is that loal ahe on�gurations arenot independent of eah other. When one endpoint of an open onnetion deidesto lose the onnetion, then the other endpoint also annot use that onnetionanymore.Cohen et al. [43℄ investigated uniform onnetion ahing where the onne-tion establishment ost is uniform for all the onnetions. They �rst showed thatany -ompetitive algorithm for standard paging an be transformed into a 2-ompetitive algorithm for uniform onnetion ahing. Eah loal node simplyexeutes a paging strategy ignoring noti�ations of onnetions that were losedby other nodes. Using LRU or FIFO, we obtain 2k-ompetitive algorithms. Co-hen et al. [44℄ also onsidered deterministiMarking strategies, whih work in thesame way as their randomized ounterparts exept that on a fault an arbitraryunmarked page may be evited.Theorem 22. [44℄ Deterministi Marking strategies an be implemented in uni-form onnetion ahing suh that a ompetitive ratio of k is ahieved. For eahrequest, at most 1 bit of extra ommuniation is exhanged between the two or-responding network nodes.Obviously, the above performane is optimal sine the lower bound of k fordeterministi standard paging arries over to uniform onnetion ahing. Cohenet al. [44℄ also investigated randomized Marking strategies and showed that theyare 4Hk-ompetitive against oblivious adversaries.In [5℄ Albers investigated generalized onnetion ahing where the onne-tion establishment ost an be di�erent for the various onnetions. She showedthat the Landlord algorithm known for generalized ahing an be adapted sothat it ahieves an optimal ompetitiveness. The implementation is as follows.Landlord: For eah ahed onnetion , the algorithm maintains a redit valueredit() that takes values between 0 and ost(). Whenever a onnetion isopened, redit() is set to ost(). If a requested onnetion (u; v) is not alreadyopen, then eah node w 2 fu; vg that urrently has k(w) open onnetionsexeutes the following steps. Let Æ = min open at w redit(). Close a onnetionw at w with redit(w) = Æ and derease the redit of all the other openonnetions at w by Æ.Theorem 23. [5℄ Landlord is k-ompetitive for generalized onnetion ahing.



16 Susanne AlbersIdeally, we implement Landlord in a distributed fashion suh that, for eahopen onnetion  = (u; v), both endpoints u and v keep their opies of redit().If one endpoint, say u, redues the redit by Æ, then this hange has to be om-muniated to v so that v an update its redit() value aordingly. The amountof extra ommuniation for an open onnetion an be large if the repeated Æredutions are small. It is possible to redue the amount of extra ommuniationat the expense of inreasing slightly the ompetitiveness of the algorithm. Forany 0 < � � 1, Landlord an be modi�ed so that it is (1 + �)k-ompetitive anduses at most d 1� e � 1 bits of extra ommuniation for eah open onnetion [5℄.Setting � = 1, we obtain a 2k-ompetitive algorithm that does not use any extraommuniation. For � = 1=2, the resulting algorithm is 32k-ompetitive and usesonly one bit of extra ommuniation.Interestingly no extra ommuniation is neessary if we are willing to userandomization. It is possible to implement the Harmoni algorithm for the k-server problem in suh a way that it does not need any extra ommuniationbetween network nodes. The implementation ahieves a ompetitiveness of kagainst adaptive online adversaries [5℄.Seondly in this setion we study a dynami TCP aknowledgement prob-lem. Consider an open TCP onnetion between two network nodes that wishto exhange data. The data is partitioned into segments or pakets that are sentaross the onnetion. A node reeiving data must aknowledge the arrival ofeah inoming paket so that the sending node is noti�ed that the transmissionwas suessful; lost pakets must be retransmitted. However, data pakets donot have to be aknowledged individually. Instead, most TCP implementationsemploy some delay mehanism that allows the TCP to aknowledge multipleinoming pakets with a single aknowledgement and, possibly, to piggybakthe aknowledgement on an outgoing data segment. Reduing the number ofaknowledgements has several advantages, e.g. the overhead inurred at the net-work nodes for sending and reeiving aknowledgements is redued and, moreimportantly, the network ongestion is redued. On the other hand, by redu-ing the number of aknowledgements, one adds lateny to a TCP onnetion,whih is not desirable. The goal is to balane the redution in the number ofaknowledgements with the inrease in lateny.Motivated by the fat that TCP supports dynami aknowledgement meh-anisms, Dooly et al. [51℄ formulated the following problem. A network nodereeives a sequene of n data pakets. Let ai denote the arrival time of paketi, 1 � i � n. At time ai, the arrival times aj , j > i; are not known. We haveto partition the sequene � = (a1; : : : ; an) of paket arrival times into m subse-quenes �1; : : : ; �m, for some m � 1, suh that eah subsequene ends with anaknowledgement. We use �i to denote the set of arrivals in the partition. Letti be the time when the aknowledgement for �i is sent. We require ti � aj ,for all aj 2 �i. If data pakets are not aknowledged immediately, there are a-knowledgement delays . Dooley et al. [51℄ onsidered the objetive funtion thatminimizes the number of aknowledgements and the sum of the delays inurred



Online Algorithms: A Survey 17for all of the pakets, i.e. we wish to minimize f = m +Pmi=1Paj2�i(ti � aj).They analyzed the following algorithm.Greedy: Send an aknowledgement when the total delay of the unaknowledgedpakets is equal to 1, i.e. equal to the ost of an aknowledgement.Theorem 24. [51℄ The Greedy algorithm is 2-ompetitive and this is the bestompetitive ratio a deterministi online algorithm an ahieve.Karlin et al. [70℄ studied randomized algorithms and proved the following result.Theorem 25. [70℄ There exists a randomized online strategy that ahieves aompetitiveness of e=(e� 1) � 1:58 against oblivious adversaries.Noga [82℄ and independently Seiden [89℄ showed that no randomized algorithman do better.Dooly et al. [51℄ also studied the minimization of a seond objetive funtionf 0 = m+Pmi=1maxaj2�i(ti � aj) where one onsiders the sum of the maximumdelays inurred in subsequenes �i in addition to the number of aknowledge-ments sent. They showed that the best ompetitive ratio of a deterministi onlinealgorithm is equal to 2.In [6℄ Albers and Bals investigate a new family of objetive funtions thatpenalize long aknowledgement delays of individual data pakets more heavily.In appliations where a TCP onnetion is used for interative data transfer,long delays are not desirable as they are notieable to a user. Hene [6℄ studiesthe objetive funtion that minimizes the number of aknowledgements and themaximum delay inurred for any of the data pakets. Given an input �, onsider apartitioning �1; : : : ; �m. Let di = maxaj2�i(ti�aj) be the maximum delay of anypaket in �i, 1 � i � m. We wish to minimize the funtion g = m+max1�i�m di.The following family of algorithms is de�ned for any positive real z.Linear-Delay(z): Initially, set d = z and send the �rst aknowledgement attime a1 + d. In general, suppose that the i-th aknowledgement has just beensent and that j pakets have been proessed so far. Set d = (i + 1)z and sendthe (i+ 1)-st aknowledgement at time aj+1 + d.Theorem 26. [6℄ For any z with z � 1=2, Linear-Delay(z) is -ompetitive,where  = maxf1+ z; (1+ z)=(2+ z� �2=6)g. Setting z = �2=6� 1 the resultingalgorithm ahieves a ompetitive ratio of �2=6 � 1:644.It is well known that �2=6 = P1i=1 1=i2. This performane ratio annot beimproved.Theorem 27. [6℄ No deterministi online algorithm an ahieve a ompetitiveratio smaller than �2=6.Additionally, Albers and Bals [6℄ investigate a generalization of the objetivefuntion g where delays are taken to the p-th power and hene are penalizedeven more heavily. Again, they present tight upper and lower bounds on thebest possible ompetitiveness of deterministi algorithms. The best ompetitive



18 Susanne Albersratio is an alternating sum of Riemann's zeta funtion. The ratio is dereasingin p and tends to 1.5 as p ! 1. An interesting open problem is to developrandomized online algorithms for the objetive funtions g and its generalization.Some initial lower bounds were given in [6℄.Frederiksen and Larsen [61℄ studied a modi�ed version of the TCP aknowl-edgement problem, where it is required that there is some minimum delay be-tween sending two aknowledgements to reet the physial properties of thenetwork.
7.3. Routers and swithesRouters and swithes handle the data traÆ in networks and ensure that datapakets sent over onnetions reah their orret destination. Typially, traÆis bursty , i.e. the number of pakets that reah a bu�er or swith during a er-tain time interval exeeds the number of pakets that an be proessed duringthat interval. This leads to paket loss, whih is not desirable as the orrespond-ing pakets have to be resent. To redue paket loss, routers and swithes areequipped with bu�ers in whih pakets an be stored temporarily until they areforwarded. We study two algorithmi problems related to the maintenane ofsuh bu�ers.Bar-Noy et al. [19℄ and independently Koga [77℄ address the question howlarge bu�ers should be in order to avoid paket loss. Consider n data streamsthat share a ommon output hannel at a router. The data is partitioned intopakets of equal size. At time t, N(t; i) pakets of stream i arrive, 1 � t � mand 1 � i � n. Assoiated with eah data stream is a FIFO queue of potentiallyin�nite apaity, in whih the pakets of the stream an be stored. In eah timestep a sheduling algorithm in the router an selet one of the queues and sendthe paket at the head over the output hannel. The goal is to minimize themaximum queue length that ever ours at any of the queues.Bar-Noy et al. [19℄ and Koga [77℄ gave tight lower and upper bounds on thebest possible ompetitiveness.Theorem 28. [19,77℄ Any deterministi online algorithm has a ompetitive ratioof 
(logn).Koga showed that the popular Round Robin algorithm is not better than n-ompetitive. A natural greedy algorithm works as follows.Longest Queue First: Always serve the longest queue, ties an be brokenarbitrarily.Theorem 29. [19,77℄ Longest Queue First is O(logn)-ompetitive.Thus the greedy algorithm ahieves an optimal ompetitive ratio. The LongestQueue First algorithm was proposed and analyzed by Koga. Bar-Noy et al. on-sidered a slight variant of that algorithm. Koga also showed that randomizationdoes not help in this problem; the ompetitiveness of any randomized strategy is



Online Algorithms: A Survey 19still 
(logn). Additionally, Koga proposed a seond objetive funtion that aimsat balaning the paket delays among the n queues. Let the ow time of a datapaket be the length of the time interval when the paket resides in one of thequeues. Koga suggested to sum up, for eah queue, the ow times of the pakets.The goal is to minimize the maximum sum. Koga proved that no deterministionline algorithm is better than 
(logn)-ompetitive. An interesting problem isto develop upper bounds for this seond objetive funtion.The seond problem we study onsiders senarios where bu�ers or queueshave bounded apaity. In this ase paket loss annot be avoided and the goalis to transmit the pakets of highest value. Kesselman et al. [74℄ investigatedthe following problem in the ontext of managing the output bu�er of a routeror swith. At time t, a set N(t) of new data pakets arrives. Eah paket p hasa value v(p), whih is a positive real number. There is a bu�er in whih thedata pakets an be stored temporarily. In eah time step t an algorithm antransmit one of the pakets that are available in the bu�er or in the set N(t).The goal is to maximize the value of the transmitted pakets. Kesselman etal. investigate two types of bu�ers. In a FIFO bu�er the paket transmissiontimes must be onsistent with the arrival times. More preisely, if paket p istransmitted before p0, then p must not have arrived later than p0. Moreover, thebu�er an simultaneously hold only B pakets. An algorithm has to deide whihpakets to drop so as to obey this bu�er apaity. In a bounded-delay bu�er eahpaket p has an assoiated slak time sl(p). If the paket arrives at time t, thenit must be transmitted or dropped by time t+ sl(p). There is no expliit boundon the bu�er size and pakets may be re-ordered.First onsider the FIFO model. Kesselman et al. [74℄ analyzed the followingalgorithm.Greedy: If there is a bu�er overow, disard the pakets with the smallestvalues; ties are broken arbitrarily.Theorem 30. [74℄ Greedy ahieves a ompetitive ratio of 2� 1B+1 . This ratio istight for that algorithm.Kesselman et al. also showed that Greedy has a ompetitiveness of 2� 2�+1 , where� is the ratio of the maximum to minimum paket value. Zhu [99℄ reently gavea lower bound.Theorem 31. [99℄ In the FIFO model no deterministi online algorithm anahieve a ompetitive ratio smaller than p2.A hallenging problem is to lose the gap between the lower and the upperbounds. For the speial ase B = 2, Zhu showed tight bounds of (5 +p13)=6 �1:434.Next we examine the bounded-delay model. Again Kesselman et al. [74℄ pro-posed a Greedy strategy.Greedy: In eah step, send the paket with the highest value.Theorem 32. The Greedy algorithm ahieves a ompetitive ratio of 2 and thisis tight for that algorithm.



20 Susanne AlbersIf there are only two paket values (heap and expensive), then Greedy hasa ompetitiveness of exatly 1 + 1=�, where � is the ratio of the expensive tothe heap value. Zhu [99℄ gave a lower bound of 1:366. This bound even holdsin a restrited model where the slak time of eah paket is equal to 2. For thisspeial senario, Zhu also showed an upper bound of p2. Finally tight upper andlower bounds of (1 +p5)=2 � 1:618 are known for the ase that the slak timeof eah paket is at most 2, see [74,99℄. The major open problem is to determinetight bounds for the general bounded-delay model.
8. Re�nements of ompetitive analysisCompetitive analysis is a strong worst-ase performane measure. For some on-line problems, suh as paging, the ompetitive ratios of online algorithms aremuh higher than the orresponding performane ratios observed in pratie.The reason is typially that in a ompetitive analysis we have to onsider ar-bitrary request sequenes whereas in pratie only restrited lasses of inputsour. Therefore, a line of researh has analyzed online algorithms on restritedrequest sequenes and proposed other measures for evaluating online algorithms.We onsider the paging problem in more detail. As disussed in Setion 2 thebest ompetitive ratio of deterministi online algorithms is equal to k, where kis the number of pages in fast memory, and both LRU and FIFO ahieve thisompetitiveness. From a pratial point of view this bound is not very meaningfulas fast memories an often store several hundreds or thousands of pages. In fat,the ratio of k is muh higher than the algorithms' performane in pratie. In anexperimental study presented by Young [97℄, LRU ahieved ompetitive ratiosbetween 1 and 2. Also, in pratie, the performane of LRU is muh better thanthat of FIFO. This is not evident in the ompetitive analysis.In the paging problem standard ompetitive analysis ignores the fat thatrequest sequenes generated by real programs have a speial struture, i.e. theyexhibit loality of referene: Whenever a page is requested, the next request isusually to a page that omes from a very small set of assoiated pages. Borodinet al. [32℄ proposed aess graphs for modeling loality of referene. In an aessgraph, the nodes represent the memory pages. Whenever a page p is requested,the next request an only be to a page that is adjaent to p in the aess graph.Formally, let G = (V;E) be an undireted graph. V represents the set of mem-ory pages and E is a set of edges. A request sequene � = �(1); : : : ; �(m), isonsistent with G if (�(t); �(t+ 1)) 2 E for all t = 1; : : : ;m� 1. We say that anonline algorithm A is -ompetitive on G if there exists a onstant a suh thatA(�) �  � OPT (�) + a for all � onsistent with G. The ompetitive ratio of Aon G, denoted by R(A;G), is the in�mum of all  suh that A is -ompetitiveon G. Let R(G) = minAR(A;G) be the best ompetitive ratio ahievable on G.Borodin et al. [32℄ showed that LRU ahieves the best possible ompetitiveratio on aess graphs that are trees. Trees represent the aess graphs for manydata strutures. Borodin et al. also analyzed R(LRU;G) on arbitrary graphs. Inpartiular they showed that there exist graphs for whih the ompetitive ratio



Online Algorithms: A Survey 21of FIFO is muh higher than that of LRU. Another important result, due toChrobak and Noga [41℄, is that LRU is never worse than FIFO on aess graphs.Theorem 33. [41℄ For any graph G, R(LRU;G) � R(FIFO;G).Borodin et al. [32℄ also presented an optimal online algorithm for any aessgraph.FAR: The algorithm is a marking strategy. If there is a fault at a request toa page p, then FAR evits an unmarked page from fast memory that has thelargest distane to a marked page in the aess graph.Irani et al. [66℄ showed that this algorithm ahieves the best possible om-petitive ratio, up to a onstant fator, for all aess graphs.Theorem 34. [66℄ For any graph G, R(FAR; G) = O(R(G)).Fiat and Karlin [54℄ presented randomized online paging algorithms for aessgraphs that ahieve an optimal ompetitive ratio. A disadvantage of FAR andthe randomized algorithms by Fiat and Karlin [54℄ is that the aess graphhas to be known in advane. Fiat and Mendel [57℄ presented deterministi andrandomized online algorithms that do not have to know the aess graph butstill ahieve the best possible ompetitive ratios.So far we have addressed undireted aess graphs. An initial investigationof direted aess graph was presented by Irani et al. [66℄, who onsidered stru-tured program graphs. A fundamental open problem is to develop online pagingalgorithms for general direted aess graphs.As an alternative to aess graphs, Karlin et al. [71℄ modeled loality of ref-erene by assuming that request sequenes are generated by a Markov hain.They analyzed paging algorithm in terms of their fault rate whih is the perfor-mane measure used in pratie. In partiular, they developed an algorithm thatahieves an optimal fault rate, for any Markov hain. Torng [96℄ analyzed thetotal aess time of paging algorithms. He assumes that the servie of a requestto a page in fast memory osts 1, whereas a fault inurs a penalty of p, p > 1. Inhis model a request sequene exhibits loality of referene if the average lengthof a subsequene ontaining requests to m distint pages is muh larger than m.Reently, Albers et al. [7℄ proposed another framework for modeling loalityof referene that goes bak again to the working set onept by Denning [49,50℄.In pratie, during any phase of exeution, a proess referenes only a relativelysmall fration of its pages. The set of pages that a proess is urrently using isalled the working set . Determining the working set size in a window of size nat any point in a request sequene, one obtains, for variable n, a funtion whosegeneral behavior is depited in Figure 1. The funtion is inreasing and onave.Inspired by this simple and natural model, [7℄ devises two ways of modelingloality of referene. In both models, it is assumed that an appliation is har-aterized by a onave funtion f ; the appliation generates request sequenesthat are onsistent with f . In the Max-Model a request sequene is onsistentwith f if the maximum number of distint pages referened in a window of size nis at most f(n), for any n 2 IN. In the Average-Model a request sequene is on-sistent with f if the average number of distint pages referened in a window of
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Fig. 1. Working set size as a funtion of the window size.
size n is at most f(n), for any n 2 IN. Albers et al. performed extensive experi-ments with traes from standard orpora, analyzing maximum/average workingset sizes in windows of size n. In all of the ases, the funtions have an overallonave shape. The authors use again the page fault rate to evaluate the qualityof paging algorithms, and develop tight or nearly tight bounds on the fault ratesahieved by LRU, FIFO, deterministi Marking strategies and MIN. It showsthat LRU is an optimal online algorithm, whereas FIFO and Marking strategiesare not optimal in general. Finally [7℄ presents an experimental study omparingthe page fault rates proven in the analyses to the page fault rates observed inpratie. The gap between the theoretial and observed bounds is onsiderablysmaller than the orresponding gap in ompetitive analysis.Further re�nements of ompetitive analysis inlude extra resoure analyses,see e.g. [68,93℄, statistial adversaries [37,84℄, aomodating funtions [35℄ andthe max/max ratio [26℄. With respet to arbitrary online problems, Koutsoupiasand Papadimitriou [79℄ proposed the di�use adversary model . An adversary mustgenerate an input aording to a probability distribution D that belongs to alass � of possible distributions known to the online algorithm. We wish todetermine, for the given lass � of distributions, the performane ratioR(�) = minA maxD2� ED[A(�)℄ED[OPT (�)℄ :Koutsoupias and Papadimitriou show that LRU is optimal against di�use ad-versaries. Seondly, Koutsoupias and Papadimitriou [79℄ introdued omparativeanalysis , whih ompares the performane of online algorithms from given lassesof algorithms.
9. ConlusionsIn this paper we gave an introdution to ompetitive online algorithms andpresented a number of important results. An exellent text book on the subjetwas written by Borodin and El-Yaniv [31℄. The book [58℄ ontains many surveyartiles on various online problems. Of ourse, there are many appliation areasthat we have not addressed here. Bin paking is a lassial problem that is still



Online Algorithms: A Survey 23atively investigated, see e.g. [42,48℄ and referenes therein. Online oloring andonline mathing are two lassial online problems related to graph theory. Inthese problems, the verties of a graph arrive online and must be olored resp.mathed immediately. We refer the reader to [75,76,73℄ for some basi literature.Reently, there has been researh interest in ompetitive autions, see e.g. [53,62℄, a fresh �eld that deserves further investigations. In summary there is nodoubt that online algorithms ontinue to be an interesting researh area andthat ompetitive analysis will be a powerful tool to analyze their performane.
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