
Mathemati
al Programming manus
ript No.(will be inserted by the editor)
Susanne AlbersOnline Algorithms: A SurveyRe
eived: date / Revised version: dateAbstra
t. During the last 15 years online algorithms have re
eived
onsiderable resear
h in-terest. In this survey we give an introdu
tion to the
ompetitive analysis of online algorithmsand present important results. We study interesting appli
ation areas and identify open prob-lems.
1. Introdu
tionThe traditional design and analysis of algorithms assumes that an algorithm,whi
h generates output, has
omplete knowledge of the entire input. However,this assumption is often unrealisti
 in pra
ti
al appli
ations. Many of the algo-rithmi
 problems that arise in pra
ti
e are online. In these problems the inputis only partially available be
ause some relevant input data arrives in the fu-ture and is not a

essible at present. An online algorithm must generate outputwithout knowledge of the entire input. Online problems arise in many areas of
omputer s
ien
e. We give some illustrating examples.Resour
e management in operating systems: Paging is a
lassi
al online problemwhere one has to maintain a two-level memory system
onsisting of a small fastmemory and a large slow memory. The goal is to keep a
tively referen
ed pagesin fast memory without knowing whi
h pages will be requested in the future.Data stru
tures: Consider a data stru
ture su
h as a linear linked list or a tree.We wish to dynami
ally maintain this stru
ture so that a sequen
e of a

essesto elements
an be served at low
ost. Future a

ess patterns are unknown.S
heduling: A sequen
e of jobs must be s
heduled on a set of ma
hines so asto optimize a given obje
tive fun
tion. Jobs arrive one by one and must bes
heduled immediately without knowledge of future jobs.Networks: Many online problems in this area arise in the
ontext of data trans-mission. The problem
an be, for instan
e, to dynami
ally maintain a set ofopen
onne
tions between network nodes without knowing whi
h
onne
tionsare needed in the future.The quality of online algorithms is usually evaluated using
ompetitive analy-sis. The idea of
ompetitiveness is to
ompare the output generated by an onlineInstitut f�ur Informatik, Albert-Ludwigs-Universit�at Freiburg Georges-K�ohler-Allee 79, 79110Freiburg, Germany. salbers�informatik.uni-freiburg.deMathemati
s Subje
t Classi�
ation (1991): 68W25, 68W40

2 Susanne Albersalgorithm to the output produ
ed by an optimal o�ine algorithm. An optimalo�ine algorithm is an omnis
ient algorithm that knows the entire input data inadvan
e and
an
ompute an optimal output. The better an online algorithmapproximates the optimal solution, the more
ompetitive this algorithm is.In the following we �rst present fundamental
on
epts used to study on-line algorithms. Then we study various online problems and present importantresults. The spe
i�
 problems we
onsider in
lude paging, self-organizing datastru
tures, the k-server problem, metri
al task systems, s
heduling and load bal-an
ing as well as problems in large networks. Finally we address re�nements of
ompetitive analysis and
on
lude with some remarks.
2. Basi

on
eptsFormally, many online problems
an be des
ribed as follows. An online algorithmA is presented with a request sequen
e � = �(1); �(2); : : : ; �(m). The requests�(t), 1 � t � m, must be served in the order of o

urren
e. When servingrequest �(t), algorithm A does not know any request �(t0) with t0 > t. Servingrequests in
urs
ost and the goal is to minimize the total
ost paid on the entirerequest sequen
e. This setting
an also be regarded as a request-answer game:An adversary generates requests and an online algorithm has to serve them oneat a time.To illustrate this formal model we re-
onsider the paging problem and startwith a pre
ise de�nition.The paging problem: Consider a two-level memory system that
onsists of asmall fast memory and a large slow memory. We assume that the fast memory
an simultaneously store k memory pages and that the slow memory
an holdpotentially in�nitely many pages. Ea
h request spe
i�es a page in the memorysystem. A request is served if the
orresponding page is in fast memory. If arequested page is not in fast memory, a page fault o

urs. Then a page mustbe moved from fast memory to slow memory so that the requested page
anbe loaded into the va
ated lo
ation. A paging algorithm spe
i�es whi
h pageto evi
t on a fault. If the algorithm is online, then the de
ision whi
h page toevi
t must be made without knowledge of any future requests. The
ost to beminimized is the total number of page faults in
urred on the request sequen
e.Sleator and Tarjan [93℄ suggested evaluating the performan
e of an onlinealgorithm using
ompetitive analysis . In a
ompetitive analysis, an online al-gorithm A is
ompared to an optimal o�ine algorithm. An optimal o�ine al-gorithm knows the entire request sequen
e in advan
e and
an serve it withminimum
ost. Given a request sequen
e �, let A(�) denote the
ost in
urredby A and let OPT (�) denote the
ost in
urred by an optimal o�ine algorithmOPT. The algorithm A is
alled
-
ompetitive if there exists a
onstant a su
hthat A(�) �
 � COPT (�) + a for all request sequen
es �. Here we assume thatA is a deterministi
 online algorithm. Note that
ompetitive analysis is a strongworst
ase performan
e measure in the sense that a
ompetitive algorithm mustperform well on all inputs.

Online Algorithms: A Survey 3With respe
t to the paging problem, there are two well-known deterministi
online algorithms.LRU (Least Re
ently Used): On a fault, evi
t the page in fast memory that wasrequested least re
ently.FIFO (First-In First-Out): Evi
t the page that has been in fast memory longest.Sleator and Tarjan [93℄ analyzed the performan
e of LRU and FIFO andshowed that on any request sequen
e the number of page faults in
urred bythese algorithms is bounded by k times the number of faults made by OPT.They also showed that this is optimal.Theorem 1. [93℄ LRU and FIFO are k-
ompetitive.Theorem 2. [93℄ No deterministi
 online algorithm for the paging problem
ana
hieve a
ompetitive ratio smaller than k.An optimal o�ine algorithm for the paging problem was presented by Belady[25℄. The algorithm is
alled MIN and works as follows.MIN: On a fault, evi
t the page whose next request o

urs furthest in the future.Belady showed that on any sequen
e of requests, MIN a
hieves the minimumnumber of page faults.A natural question is: Can an online algorithm a
hieve a better
ompetitiveratio if it is allowed to use randomization?The
ompetitive ratio of a randomized online algorithm A is de�ned withrespe
t to an adversary. The adversary generates a request sequen
e � and alsohas to serve �. When
onstru
ting �, the adversary always knows the des
riptionof A. The
ru
ial question is: When generating requests, is the adversary allowedto see the out
ome of the random
hoi
es made by A on previous requests? Ben-David et al. [27℄ introdu
ed three kinds of adversaries.Oblivious adversary: The oblivious adversary has to generate the entire requestsequen
e in advan
e before any requests are served by the online algorithm. Theadversary is
harged the
ost of the optimum o�ine algorithm for that sequen
e.Adaptive online adversary: This adversary may observe the online algorithm andgenerate the next request based on the algorithm's (randomized) answers to allprevious requests. The adversary must serve ea
h request online, i.e. withoutknowing the random
hoi
es made by the online algorithm on the present or anyfuture request.Adaptive o�ine adversary: This adversary also generates a request sequen
eadaptively. However, it is
harged the optimum o�ine
ost for that sequen
e.A randomized online algorithm A is
alled
-
ompetitive against any obliviousadversary if there is a
onstant a su
h for all request sequen
es � generated byan oblivious adversary, E[A(�)℄ �
 �OPT (�)+a: The expe
tation is taken overthe random
hoi
es made by A.Given a randomized online algorithm A and an adaptive online (adaptiveo�ine) adversary ADV, let E[A(�)℄ and E[ADV (�)℄ denote the expe
ted
ostsin
urred by A and ADV in serving a request sequen
e generated by ADV. A

4 Susanne Albersrandomized online algorithm A is
alled
-
ompetitive against any adaptive on-line (adaptive o�line) adversary if there is a
onstant a su
h that for all adaptiveonline (adaptive o�ine) adversaries ADV, E[A(�)℄ �
 �E[ADV (�)℄ + a, wherethe expe
tation is taken over the random
hoi
es made by A.Ben-David et al. [27℄ investigated the relative strength of the adversaries andshowed the following statements.Theorem 3. [27℄ If there is a randomized online algorithm that is
-
ompetitiveagainst any adaptive o�ine adversary, then there also exists a
-
ompetitivedeterministi
 online algorithm.Theorem 4. [27℄ If A is a
-
ompetitive randomized algorithm against any adap-tive online adversary and if there is a d-
ompetitive algorithm against any oblivi-ous adversary, then A is (
�d)-
ompetitive against any adaptive o�ine adversary.Theorem 3 implies that randomization does not help against the adaptiveo�ine adversary. An immediate
onsequen
e of the two theorems above is:Corollary 1. If there exists a
-
ompetitive randomized algorithm against anyadaptive online adversary, then there is a
2-
ompetitive deterministi
 algorithm.Against oblivious adversaries, randomized online paging algorithms
an
on-siderably improve the ratio of k shown for deterministi
 paging. The followingalgorithm was proposed by Fiat et al. [55℄.Marking: The algorithm pro
esses a request sequen
e in phases. At the begin-ning of ea
h phase, all pages in the memory system are unmarked. Whenever apage is requested, it is marked . On a fault, a page is
hosen uniformly at randomfrom among the unmarked pages in fast memory, and that page is evi
ted. Aphase ends when all pages in fast memory are marked and a page fault o

urs.Then, all marks are erased and a new phase is started.Fiat et al. [55℄ analyzed the performan
e of the Marking algorithm andshowed that it is 2Hk-
ompetitive against any oblivious adversary, where Hk =Pki=1 1=i is the k-th Harmoni
 number. Note that Hk is roughly ln k.Fiat et al. [55℄ also proved that no randomized online paging algorithmagainst any oblivious adversary
an be better than Hk-
ompetitive. Thus theMarking algorithm is optimal, up to a
onstant fa
tor. More
ompli
ated pagingalgorithms a
hieving an optimal
ompetitive ratio of Hk were given in [81,1℄.
3. Self-organizing data stru
turesThe list update problem is one of the �rst online problems that were studiedwith respe
t to
ompetitiveness. The problem is to maintain a di
tionary as anunsorted linear list. Consider a set of items that is represented as a linear linkedlist. We re
eive a request sequen
e �, where ea
h request is one of the followingoperations. (1) It
an be an a

ess to an item in the list, (2) it
an be an insertionof a new item into the list, or (3) it
an be a deletion of an item. To a

ess an

Online Algorithms: A Survey 5item, a list update algorithm starts at the front of the list and sear
hes linearlythrough the items until the desired item is found. To insert a new item, thealgorithm �rst s
ans the entire list to verify that the item is not already presentand then inserts the item at the end of the list. To delete an item, the algorithms
ans the list to sear
h for the item and then deletes it.In serving requests a list update algorithm in
urs
ost. If a request is ana

ess or a delete operation, then the in
urred
ost is i, where i is the positionof the requested item in the list. If the request is an insertion, then the
ost isn + 1, where n is the number of items in the list before the insertion. Whilepro
essing a request sequen
e, a list update algorithm may rearrange the list.Immediately after an a

ess or insertion, the requested item may be moved atno extra
ost to any position
loser to the front of the list. These ex
hangesare
alled free ex
hanges . Using free ex
hanges, the algorithm
an lower the
ost on subsequent requests. At any time two adja
ent items in the list may beex
hanged at a
ost of 1. These ex
hanges are
alled paid ex
hanges . The goalis to serve the request sequen
e so that the total
ost is as small as possible.With respe
t to the list update problem, we require that a
-
ompetitiveonline algorithm has a performan
e ratio of
 for all size lists . More pre
isely,a deterministi
 online algorithm for list update is
alled
-
ompetitive if thereis a
onstant a su
h that for all size lists and all request sequen
es �, A(�) �
 �OPT (�) + a:Linear lists are one possibility for representing a set of items. Certainly, thereare other data stru
tures su
h as balan
ed sear
h trees or hash tables that,depending on the given appli
ation,
an maintain a set in a more eÆ
ient way.In general, linear lists are useful when the set is small and
onsists of only a fewdozen items. Re
ently, list update te
hniques have been applied very su

essfullyin the development of data
ompression algorithms [8,28,34℄.There are three well-known deterministi
 online algorithms for the list updateproblem.Move-To-Front: Move the requested item to the front of the list.Transpose: Ex
hange the requested item with the immediately pre
eding itemin the list.Frequen
y-Count: Maintain a frequen
y
ount for ea
h item in the list. When-ever an item is requested, in
rease its
ount by 1. Maintain the list so that theitems always o

ur in nonin
reasing order of frequen
y
ount.The formulations of list update algorithms generally assume that a requestsequen
e
onsists of a

esses only. It is obvious how to extend the algorithms sothat they
an also handle insertions and deletions. On an insertion, the algorithm�rst appends the new item at the end of the list and then exe
utes the samesteps as if the item was requested for the �rst time. On a deletion, the algorithm�rst sear
hes for the item and then just removes it.In the following, we dis
uss the algorithms Move-To-Front, Transpose andFrequen
y-Count. We note that Move-To-Front and Transpose are memorylessstrategies, i.e. they do not need any extra memory to de
ide where a requesteditem should be moved. Thus, from a pra
ti
al point of view, they are more at-

6 Susanne Alberstra
tive than Frequen
y-Count. Sleator and Tarjan [93℄ analyzed the
ompetitiveratios of the three algorithms.Theorem 5. [93℄ The Move-To-Front algorithm is 2-
ompetitive.Proposition 1. The algorithms Transpose and Frequen
y-Count are not
-
om-petitive, for any
onstant
.Karp and Raghavan [72℄ developed a lower bound on the
ompetitiveness that
an be a
hieved by deterministi
 online algorithms. This lower bound impliesthat Move-To-Front has an optimal
ompetitive ratio.Theorem 6. [72℄ Let A be a deterministi
 online algorithm for the list updateproblem. If A is
-
ompetitive, then
 � 2.Amb�uhl [10℄ showed that the o�ine variant of the list update problem is NP-hard. Thus, in
ontrast to the paging problem, there is no eÆ
ient algorithm for
omputing an optimal servi
e s
hedule for a given input.Next we address the problem of randomization in the list update problem.Against adaptive adversaries, no randomized online algorithm for list update
anbe better than 2-
ompetitive, see [27,86℄. Thus we
on
entrate on algorithmsagainst oblivious adversaries. Many randomized algorithms for list update havebeen proposed [2,9,64,86℄. We present the two most important algorithms. Rein-gold et al. [86℄ gave a very simple algorithm,
alled Bit .Bit: Ea
h item in the list maintains a bit that is
omplemented whenever theitem is a

essed. If an a

ess
auses a bit to
hange to 1, then the requested itemis moved to the front of the list. Otherwise the list remains un
hanged. The bitsof the items are initialized independently and uniformly at random.Theorem 7. [86℄ The Bit algorithm is 1.75-
ompetitive against any obliviousadversary.Reingold et al. [86℄ generalized the Bit algorithm and proved an upper boundof p3 � 1:73 against oblivious adversaries. The best randomized algorithm
urrently known is a
ombination of the Bit algorithm and a deterministi
 2-
ompetitive online algorithm
alled Timestamp proposed in [2℄.Timestamp (TS): Insert the requested item, say x, in front of the �rst itemin the list that pre
edes x and that has been requested at most on
e sin
e thelast request to x. If there is no su
h item or if x has not been requested so far,then leave the position of x un
hanged.As an example,
onsider a list of six items being in the orderL : x1 ! x2 ! x3 ! x4 ! x5 ! x6. Suppose that algorithm TS has to servethe se
ond request to x5 in the request sequen
e � = : : : x5; x2; x2; x3; x1; x1; x5.Items x3 and x4 were requested at most on
e sin
e the last request to x5, whereasx1 and x2 were both requested twi
e. Thus, TS will insert x5 immediately infront of x3 in the list. A
ombination of Bit and TS was proposed by [9℄.Combination: With probability 4/5 the algorithm serves a request sequen
eusing Bit , and with probability 1/5 it serves a request sequen
e using TS .

Online Algorithms: A Survey 7Theorem 8. [9℄ The algorithm Combination is 1.6-
ompetitive against any obliv-ious adversary.Amb�uhl et al. [11℄ presented a lower bound for randomized list update algo-rithms.Theorem 9. [11℄ Let A be a randomized online algorithm for the list updateproblem. If A is
-
ompetitive against any oblivious adversary, then
 � 1:50084.An interesting open problem is to determine tight bounds on the
ompetitiveratio that
an be a
hieved by randomized online algorithms against obliviousadversaries.Using te
hniques from learning theory, Blum et al. [30℄ re
ently gave a ran-domized online algorithm that, for any � > 0, is (1:6+ �)-
ompetitive and at thesame time (1 + �)-
ompetitive against an o�ine algorithm that is restri
ted toserving a request sequen
e with a stati
 list.Many of the
on
epts shown for self-organizing linear lists
an be extendedto binary sear
h trees. The most popular version of self-organizing binary sear
htrees are the splay trees presented by Sleator and Tarjan [94℄. In a splay tree,after ea
h a

ess to an element x in the tree, the node storing x is moved tothe root of the tree using a spe
ial sequen
e of rotations that depends on thestru
ture of the a

ess path. This reorganization of the tree is
alled splaying.Sleator and Tarjan [94℄ analyzed splay trees and proved a series of interestingresults. They showed that the amortized asymptoti
 time of a

ess and updateoperations is as good as the
orresponding time of balan
ed trees. More formally,in an n-node splay tree, the amortized time of ea
h operation is O(logn).Theorem 10. [94℄ Splay trees are O(logn)-
ompetitive.It was also shown [94℄ that on any sequen
e of a

esses, a splay tree is as eÆ
ientas the optimum stati
 sear
h tree.Theorem 11. [94℄ Splay trees are O(1)-
ompetitive against optimal stati
 sear
htrees.Moreover, Sleator and Tarjan [94℄ presented a series of
onje
tures, some ofwhi
h have been resolved or partially resolved [45,46,95℄. On the other hand,the famous splay tree
onje
ture is still open: It is
onje
tured that on anysequen
e of a

esses splay trees are as eÆ
ient as any dynami
 binary sear
htree. Blum et al. [30℄ showed that there is an O(1)-
ompetitive algorithm if theonline algorithm is allowed to make free rotations after ea
h request.
4. The k-server problemThe k-server problem is one of the most fundamental problems in the theory ofonline algorithms. In the k-server problem we are given a metri
 spa
e S and kmobile servers that reside on points in S. Ea
h request spe
i�es a point x 2 S.To serve a request, one of the k servers must be moved to the requested point

8 Susanne Albersunless a server is already present. Moving a server from point x to point y in
ursa
ost equal to the distan
e between x and y. The goal is to serve a sequen
e ofrequests so that the total distan
e traveled by all servers is as small as possible.The k-server problem
ontains paging as a spe
ial
ase. Consider a metri
spa
e in whi
h the distan
e between any two points in 1; ea
h point in the metri
spa
e represents a page in the memory system and the pages
overed by serversare those that reside in fast memory. The k-server problem also models moregeneral
a
hing problems, where the
ost of loading an item into fast memorydepends on the size of the item. Su
h a situation o

urs, for instan
e, when font�les are loaded into the
a
he of a printer. More generally, the k-server problem
an also be regarded as a vehi
le routing problem.The k-server problem was introdu
ed in 1988 by Manasse et al. [80℄ who alsoshowed a lower bound for deterministi
 k-server algorithms.Theorem 12. [80℄ Let A be a deterministi
 online k-server algorithm in anarbitrary metri
 spa
e. If A is
-
ompetitive, then
 � k.In their seminal paper Manasse et al. [80℄ also
onje
tured that there ex-ists a deterministi
 k-
ompetitive online k-server algorithm. Seven years laterKoutsoupias and Papadimitriou [78℄ showed that there is a (2k� 1)-
ompetitivealgorithm and hen
e a
hieved a breakthrough. Before, k-
ompetitive algorithmswere known for spe
ial metri
 spa
es (e.g. trees [39℄ and resistive spa
es [47℄)and spe
ial values of k (k = 2 and k = n� 1, where n is the number of points inthe metri
 spa
e [80℄). It is worthwhile to note that the greedy algorithm, whi
halways moves the
losest server to the requested point, is not
ompetitive.The algorithm analyzed by Koutsoupias and Papadimitriou is the WorkFun
tion algorithm. Let X be a
on�guration of the servers. Given a requestsequen
e � = �(1); : : : ; �(t), the work fun
tion w(X) is the minimal
ost ofserving � and ending in
on�guration X. For any two points x and y in themetri
 spa
e, let dist(x; y) be the distan
e between x and y.Work Fun
tion: Suppose that the algorithm has served � = �(1); : : : ; �(t� 1)and that a new request r = �(t) arrives. Let X be the
urrent
on�guration ofthe servers and let xi be the point where server si, 1 � i � k, is lo
ated. Servethe request by moving the server si that minimizes w(Xi) + dist(xi; r); whereXi = X � fxig+ frg.Theorem 13. [78℄ The Work Fun
tion algorithm is (2k � 1)-
ompetitive in anarbitrary metri
 spa
e.An interesting open problem is to show that the Work Fun
tion algorithm isindeed k-
ompetitive or to develop an other deterministi
 online k-server algo-rithm that a
hieves a
ompetitive ratio of k.The performan
e of randomized online algorithms is not as well understood.In parti
ular no randomized algorithm is known that has a
ompetitiveness

Online Algorithms: A Survey 9smaller than 2k � 1 in arbitrary metri
 spa
es. An elegant randomized strategyfor moving servers was proposed by Raghavan and Snir [85℄.Harmoni
: Suppose that there is a new request at point r and that server si,1 � i � k, is
urrently at point xi. Let di = dist(xi; r) be the distan
e betweenxi and r. Move server si with probability pi = 1=(diPkj=1 1dj) to the request.Intuitively, the
loser a server is to the request, the higher the probabilitythat it will be moved. Bartal and Grove [24℄ proved that the Harmoni
 algorithma
hieves a
ompetitive ratio of
 � 54k � 2k � 2k against adaptive online adver-saries. Against these adversaries no randomized online algorithm
an a
hieve a
ompetitive ratio smaller than k [85℄. The
ompetitiveness of Harmoni
 is notbetter than k(k + 1)=2, see [85℄. The algorithm has a
ompetitive ratio of 3,for k = 3, and of k(k + 1)=2 in metri
 spa
es
onsisting of k + 1 points [40,85℄.Against lazy adversaries Harmoni
 a
hieves a
ompetitiveness of k(k+1)=2 [22℄.An adversary is lazy if, whenever one of its servers is lo
ated on a point not
ov-ered by the online algorithm's servers, it requests that point. It was
onje
turedthat lazy adversaries a
hieve the highest possible
ompetitive ratio against ran-domized memoryless online algorithms that only move one of their servers ifthe requested point is not already
overed by a server. However, Peseri
o [83℄disproved this
onje
ture.For randomized algorithms against oblivious adversaries the best lower bound
urrently known is due to Bartal et al. [20℄Theorem 14. [20℄ The
ompetitive ratio of a randomized online algorithm inan arbitrary metri
 spa
e is
(log k= log2 log k) against oblivious adversaries.The bound
an be improved to
(log k) if the metri
 spa
e
onsists of at leastklog� k points, for any � > 0, [20℄. It is
onje
tured that �(log k) is the true
ompetitiveness of randomized algorithms against oblivious adversaries. Bartalet al. [21℄ presented an algorithm that has a
ompetitive ratio of O(
6 log6 k)in metri
 spa
es
onsisting of k +
 points. Seiden [90℄ gave an algorithm thata
hieves a
ompetitive ratio polylogarithmi
 in k for metri
 spa
es that
an bede
omposed into a small number of widely separated subspa
es. The main openproblem in the area of the k-server problem is to develop randomized onlinealgorithms that have a
ompetitive ratio of
 < k in an arbitrary metri
 spa
e.
5. Metri
al task systemsMetri
al task systems were introdu
ed by Borodin et al. [33℄ and represent aframework for modeling a large
lass of on-line problems. The de�nition of tasksystems is motivated by the observation that in many
omputer systems thereare several ways to exe
ute a given job.A metri
al task system is de�ned by a metri
 spa
e (S; d) and an asso
iatedset T of tasks. The spa
e (S; d)
onsists of a set S of n states and a distan
efun
tion d : S � S �! IR+0 , where d(i; j) � 0 denotes the
ost of
hangingfrom state i to state j. Sin
e the spa
e is metri
, the fun
tion d is symmetri
,

10 Susanne Alberssatis�es the triangle inequality and d(i; i) = 0, for all states i. The set T is theset of allowable tasks. A task T 2 T is a ve
tor T = (T (1); T (2); : : : ; T (n)),where T (i) 2 IR+0 [f1g denotes the
ost of pro
essing the task while in statei. A request sequen
e is a sequen
e of tasks � = T 1; T 2; T 3; : : : ; Tm that mustbe served starting from some initial state s(0). When re
eiving a new task, analgorithm may serve the task in the
urrent state or may
hange states at a
ost.Thus the algorithm must determine a s
hedule of states s(1); s(2); : : : ; s(m), su
hthat task T i is pro
essed in state s(i). The
ost of serving a task sequen
e isthe sum of all state transition
osts and all task pro
essing
osts: Pmi=1 d(s(i�1); s(i)) +Pmi=1 T i(s(i)): The goal is to pro
ess a given task sequen
e so thatthe
ost is as small as possible.Borodin et al. [33℄ settled the
ompetitiveness of deterministi
 online algo-rithms.Theorem 15. [33℄ There exists a deterministi
 online algorithm that is (2n�1)-
ompetitive for any metri
al task system with n states.Theorem 16. [33℄ Any deterministi
 online algorithm for the metri
al task sys-tems problem has a
ompetitive ratio of at least 2n � 1, where n is the numberof task system states.It is worthwhile to noti
e that the
ompetitive fa
tor of 2n� 1 for deterministi
online algorithms often does not provide meaningful bounds when spe
ial onlineproblems are investigated. Consider the list update problem. Here the given list
an be in n! states. Hen
e, we obtain a bound of (2n! � 1) on the
ompetitivefa
tor of a deterministi
 online algorithm for the list update problem. However,Move-To-Front a
hieves a
ompetitive fa
tor of 2.For randomized algorithms, the known bounds are tight up to a logarithmi
fa
tor.Theorem 17. [57℄ There exists a randomized online algorithm that isO(log2 n= log2 log n)-
ompetitive against any oblivious adversary, for any met-ri
al task system with n states.Theorem 18. [20℄ Any randomized online algorithm for the metri
al task sys-tems problem has a
ompetitive ratio of at least
(log n= log2 log n) againstoblivous adversaries, where n is the number of task system states.Better bounds hold for uniform metri
al task systems, where the
ost d(i; j) of
hanging states is equal to 1 for all i 6= j. Borodin at al. [33℄ gave a lower boundof Hn, where Hn is the n-th Harmoni
 number. The best upper bound
urrentlyknown was presented by Irani and Seiden [67℄ and is equal to Hn +O(plogn).
6. S
heduling and load balan
ingS
heduling is a
lassi
al and well-studied problem that still re
eives a lot ofresear
h interest. The general situation in online s
heduling is as follows. We

Online Algorithms: A Survey 11are given a set of m ma
hines. A sequen
e of jobs � = J1; J2; : : : ; Jn arrivesonline. Ea
h job Jk has a pro
essing pk time that may or may not be knownin advan
e. Whenever a new job arrives, it has to be s
heduled immediately onone of the m ma
hines. The goal is to optimize a given obje
tive fun
tion. Thereare many problem variants: Preemption of jobs may or may not be allowed; we
an study various ma
hine types and various obje
tive fun
tions. A very largenumber of di�erent problems have been investigated in the literature and we
anonly dis
uss a few basi
 s
enarios in this survey.First we
onsider one of the most basi
 problems in online s
heduling. Sup-pose that we are given m identi
al ma
hines. The jobs � = J1; J2; : : : ; Jn arriveone by one. Whenever the s
heduler is presented with a new job, its pro
essingtime is known in advan
e. Preemption of jobs is not allowed. We wish to mini-mize the makespan, whi
h is the
ompletion time of the last job that �nishes inthe s
hedule.Graham [63℄ in 1966 proposed the elegant Greedy algorithm and analyzed itsperforman
e.Greedy: Assign a new job to the least loaded ma
hine.Theorem 19. [63℄ Greedy is (2� 1m)-
ompetitive.Graham also showed that the
ompetitive ratio of Greedy is not smaller than2� 1m . In re
ent years, resear
h has fo
used on �nding algorithms that a
hieve a
ompetitive ratio asymptoti
ally smaller than 2. In 1992, Bartal et al. [23℄ gavean algorithm that is 1:986-
ompetitive. This bound was improved to 1.945, to1.923 and �nally to 1.9201, whi
h is the best upper bound known to date [69,3,60℄. All the algorithms are deterministi
. The best lower bound
urrently knownis due to Rudin [87℄. He proved that no deterministi
 online algorithm
an bebetter 1.88-
ompetitive. An interesting open problem is to
lose the gap betweenthe lower and the upper bounds.Sin
e the publi
ation of the paper by Bartal et al. [23℄, there has also been re-sear
h interest in developing randomized online algorithms for the above s
hedul-ing problem. Bartal et al. gave a randomized algorithm for 2 ma
hines thata
hieves an optimal
ompetitive ratio of 4=3. Chen et al. [36℄ and Sgall [91℄proved that no randomized online algorithm
an have a
ompetitiveness smallerthan 1=(1� (1� 1=m)m). This expression tends to e=(e� 1) � 1:58 as m!1.Seiden [88℄ presented a randomized algorithm whose
ompetitive ratio is smallerthan the best known deterministi
 ratio for m 2 f3; : : : ; 7g. The
ompetitivenessis also smaller than the deterministi
 lower bound for m = 3; 4; 5.Re
ently, Albers [4℄ developed a randomized online algorithm that is 1.916-
ompetitive, for all m, and hen
e gave the �rst algorithm that performs betterthan known deterministi
 algorithms for general m. She also showed that aperforman
e guarantee of 1.916
annot be proven for a deterministi
 online al-gorithm based on analysis te
hniques that have been used in the literature sofar. An interesting feature of the new randomized algorithm,
alled Rand , isthat at most two s
hedules have to be maintained at any time. In
ontrast, thealgorithms by Bartal et al. [23℄ and by Seiden [90℄ have to maintain t s
hedules

12 Susanne Alberswhen t jobs have arrived. The Rand algorithm is a
ombination of two determin-isti
 algorithms A1 and A2. Initially, when starting the s
heduling pro
ess,Rand
hooses Ai, i 2 f1; 2g, with probability 12 and then serves the entire job sequen
eusing the
hosen algorithm. Algorithm A1 is a
onservative strategy that triesto maintain s
hedules with a low makespan. On the other hand, A2 is an ag-gressive strategy that aims at generating s
hedules with a high makespan. A
hallenging open problem is to design randomized online algorithms that beatthe deterministi
 lower bound, for all m.We next
onsider some variants of the basi
 s
enario studied so far.Identi
al ma
hines, restri
ted assignment: We have a set ofm identi
al ma
hines,but ea
h job
an only be assigned to one of a subset of admissible ma
hines. Azaret al. [18℄ showed that the Greedy algorithm, whi
h always assigns a new job tothe least loaded ma
hine among the admissible ma
hines, a
hieves a
ompeti-tiveness of dlog2me+1. They also proved that no deterministi
 online algorithm
an be better than dlog2me-
ompetitive.Related ma
hines: Ea
h ma
hine i has a speed si, 1 � i � m. The pro
essingtime of job Jk on ma
hine i is equal to pk=si. Aspnes et al. [13℄ showed that theGreedy algorithm, that always assigns a new job to a ma
hine so that the loadafter the assignment is minimized, is �(logm)-
ompetitive. They also presentedan algorithm that is 8-
ompetitive. The bound was improved to 5.828 in [30℄.Unrelated ma
hines: The pro
essing time of job Jk on ma
hine i is pk;i, 1 �k � n, 1 � i � m. Aspnes et al. [13℄ showed that Greedy is only m-
ompetitive.However, they also gave an algorithm that is O(logm)-
ompetitive.In online load balan
ing we have again a set of m ma
hines and a sequen
eof jobs � = J1; J2; : : : ; Jn that arrive online. Here, ea
h job Jk has a weight w(k)and an unknown duration. For any time t, let li(t) denote the load of ma
hinei, 1 � i � m, at time t, whi
h is the sum of the weights of the jobs presenton ma
hine i at time t. The goal is to minimize the maximum load that o

ursduring the pro
essing of �.For the s
enario with m identi
al ma
hines, Azar and Epstein [16℄ showedthat the Greedy algorithm is (2� 1m)-
ompetitive. The load balan
ing problembe
omes more
ompli
ated with restri
ted assignments, i.e. ea
h job
an only beassigned to a subset of admissible ma
hines. Azar et al. [15℄ proved that Greedya
hieves a
ompetitive ratio of m2=3(1 + o(1)). They also proved that no onlinealgorithm
an be better than
(pm)-
ompetitive. In a subsequent paper, Azaret al. [17℄ gave a mat
hing upper bound. The algorithm works as follows.Robin Hood: Let OPT be the optimum load a
hieved by the o�ine algorithm.Robin Hoodmaintains an estimate L for OPT satisfying L � OPT . At any time t,ma
hine i is
alled ri
h if li(t) � pmL; otherwise ma
hine i is
alled poor . Whena new job Jk arrives, L is updated, i.e. L := maxfL;w(k); 1m (w(k)+Pmi=1 li(t))g:If possible, Jk is assigned to a poor ma
hine. Otherwise it is assigned to the ri
hma
hine that be
ame ri
h most re
ently.Theorem 20. [17℄ Robin Hood is O(pm)-
ompetitive.

Online Algorithms: A Survey 13For related ma
hines an upper bound of 20 and a lower bound of 3 � o(1)on the
ompetitive ratio are known [17℄. Re
ently, Armon [12℄ settled the
om-plexity for unrelated ma
hines. They proved a lower bound of
(m= logm) onthe
ompetitiveness of any deterministi
 online algorithm, almost mat
hing thetrivial upper bound of O(m) of the Greedy algorithm. We refer the reader to[14,92℄ for ex
ellent surveys on online s
heduling and load balan
ing.
7. Large networksWith the advent of the world-wide web, resear
hers have started investigatingalgorithmi
 problems that arise in large networks. Many of these problems areonline and we dis
uss some sele
ted problems.
7.1. Generalized
a
hingWe
onsider the
a
hing of web do
uments. Ca
hes
an be maintained by web
lients or servers. Storing a
tively a

essed do
uments in lo
al
a
hes
an sub-stantially redu
e user response times as well as the network
ongestion be
auserequested do
uments do not have to be transmitted repeatedly over the web.Web
a
hing problems di�er from standard paging problems in that do
umentshave varying sizes and in
ur varying
osts when downloaded into a lo
al
a
he.The loading
ost depends, for instan
e, on the size of the do
uments and on the
urrent
ongestion in the network.In generalized
a
hing we have again a two-level memory system
onsistingof a fast and a slow memory. In the network setting, the fast memory is a lo
al
a
he; the slow memory is the memory of the remaining network, i.e. the universeof all do
uments a

essible in the network. We assume that the fast memory hasa
apa
ity of K. For any do
ument d, let size(d) be the size and
ost(d) be the
ost of d. The total size of the pages in fast memory may never ex
eed K. If arequested do
ument is not in
a
he, the in
urred
ost is
ost(d). The goal is toserve a sequen
e of requests so that the total loading
ost is as small as possible.Various
ost models have been proposed in the literature.1. The Bit Model [65℄: For ea
h do
ument d, we have
ost(d) = size(d). (Thedelay in bringing the do
ument into fast memory depends only upon its size.)2. The Fault Model [65℄: For ea
h do
ument d, we have
ost(d) = 1 while thesizes
an be arbitrary.3. The Cost Model : For ea
h do
ument d, we have size(d) = 1 while the
osts
an be arbitrary.4. The General Model : For ea
h do
ument d, both the
ost and size
an bearbitrary.Note that generalized
a
hing is a problem that arises in networks but thenetwork topology is not dire
tly part of a problem instan
e. It is
aptured onlyimpli
itly in the
ost of downloading a do
ument.

14 Susanne AlbersFor the Bit and the Fault models, the LRU strategy is (k+1)-
ompetitive [52℄,where k is the ratio of K to the size of the smallest do
ument ever requested.This bound holds in a relaxed
a
hing s
enario where the requested do
umentdoes not ne
essarily have to be brought into fast memory, whi
h is an optionin web appli
ations. The performan
e ratio of k + 1 is optimal for determin-isti
 algorithms. For the Bit and the Fault Model, Irani presented random-ized O(log2 k)-
ompetitive online algorithms. Ca
hing in the Cost Model is alsoknown as weighted
a
hing, whi
h is a spe
ial instan
e of the k-server problem.Young [98℄ gave a K-
ompetitive online algorithm for the General Model.Landlord: For ea
h d in fast memory, the algorithm maintains a variable
redit(d) that takes values between 0 and
ost(d). If a requested do
ument dis already in fast memory, then
redit(d) is reset to any value between its
ur-rent value and
ost(d). If the requested page is not in fast memory, then thefollowing two steps are exe
uted until there is enough room to load d. (1) Forea
h do
ument d0 in fast memory, de
rease
redit(d0) by � � size(d0), where� = mind02F
redit(d0)=size(d0) and F is the set of do
uments in fast memory.(2) Evi
t any do
ument d0 from fast memory with
redit(d0) = 0. When there isenough room, load d and set
redit(d) to
ost(d).Theorem 21. [98℄ Landlord is K-
ompetitive in the General Model.The above bound is optimal. An interesting problem is to develop randomizedonline algorithms for generalized
a
hing. For the Bit and the Fault Model itwould be ni
e to design algorithms with improved
ompetitive ratios. In theGeneral Model we are interested in o(K)-
ompetitive randomized algorithms.This is a
hallenging problem as it involves �nding o(k)-
ompetitive algorithmsfor the k-server problem.
7.2. Maintaining TCP
onne
tionsWe study two algorithmi
 problems that arise in the
ontext of maintaining openTCP
onne
tions.Cohen et al. [43℄ initiated the theoreti
al study of
onne
tion
a
hing inthe world-wide web. Communi
ation between
lients and servers in the webis performed using HTTP (Hyper Text Transfer Proto
ol), whi
h in turn usesTCP (Transmission Control Proto
ol) to transmit data. The
urrent proto
olHTTP/1.1 works with persistent
onne
tions , i.e. on
e a TCP
onne
tion isestablished it may be kept open and used for transmission until the
onne
tionis expli
itly
losed by one of the endpoints. Of
ourse, ea
h network node
ansimultaneously maintain only a limited number of open TCP
onne
tions. If a
onne
tion is
losed, there is a me
hanism by whi
h one endpoint
an signal the
lose to the other endpoint [59℄.Formally, in
onne
tion
a
hing, we are given a network modeled as an undi-re
ted graph G. The nodes of the graph represent the nodes in the network.The edges represent the possible
onne
tions. Ea
h node has a
a
he in whi
h

Online Algorithms: A Survey 15it
an maintain information on open
onne
tions. A
onne
tion
 = (u; v) isopen if information on
 is stored in the
a
hes of both u and v. For a node v,let k(v) denote the number of open
onne
tions that v
an maintain simultane-ously. Let k be the size of the largest
a
he in the network. For a
onne
tion
 = (u; v), let
ost(
) be the establishment
ost of
 that is in
urred when
is opened. An algorithm for
onne
tion
a
hing is presented with a request se-quen
e � = �(1); �(2); : : : ; �(m), where ea
h request �(t) spe
i�es a
onne
tion
t = (ut; vt), 1 � t � m. If the requested
onne
tion
t is already open, then therequest
an be served at
ost 0; otherwise the
onne
tion has to be opened ata
ost of
ost(
t). The goal is to serve the request sequen
e � so that the total
ost is as small as possible.An important feature of this problem is that lo
al
a
he
on�gurations arenot independent of ea
h other. When one endpoint of an open
onne
tion de
idesto
lose the
onne
tion, then the other endpoint also
annot use that
onne
tionanymore.Cohen et al. [43℄ investigated uniform
onne
tion
a
hing where the
onne
-tion establishment
ost is uniform for all the
onne
tions. They �rst showed thatany
-
ompetitive algorithm for standard paging
an be transformed into a 2
-
ompetitive algorithm for uniform
onne
tion
a
hing. Ea
h lo
al node simplyexe
utes a paging strategy ignoring noti�
ations of
onne
tions that were
losedby other nodes. Using LRU or FIFO, we obtain 2k-
ompetitive algorithms. Co-hen et al. [44℄ also
onsidered deterministi
Marking strategies, whi
h work in thesame way as their randomized
ounterparts ex
ept that on a fault an arbitraryunmarked page may be evi
ted.Theorem 22. [44℄ Deterministi
 Marking strategies
an be implemented in uni-form
onne
tion
a
hing su
h that a
ompetitive ratio of k is a
hieved. For ea
hrequest, at most 1 bit of extra
ommuni
ation is ex
hanged between the two
or-responding network nodes.Obviously, the above performan
e is optimal sin
e the lower bound of k fordeterministi
 standard paging
arries over to uniform
onne
tion
a
hing. Cohenet al. [44℄ also investigated randomized Marking strategies and showed that theyare 4Hk-
ompetitive against oblivious adversaries.In [5℄ Albers investigated generalized
onne
tion
a
hing where the
onne
-tion establishment
ost
an be di�erent for the various
onne
tions. She showedthat the Landlord algorithm known for generalized
a
hing
an be adapted sothat it a
hieves an optimal
ompetitiveness. The implementation is as follows.Landlord: For ea
h
a
hed
onne
tion
, the algorithm maintains a
redit value
redit(
) that takes values between 0 and
ost(
). Whenever a
onne
tion isopened,
redit(
) is set to
ost(
). If a requested
onne
tion (u; v) is not alreadyopen, then ea
h node w 2 fu; vg that
urrently has k(w) open
onne
tionsexe
utes the following steps. Let Æ = min
 open at w
redit(
). Close a
onne
tion
w at w with
redit(
w) = Æ and de
rease the
redit of all the other open
onne
tions at w by Æ.Theorem 23. [5℄ Landlord is k-
ompetitive for generalized
onne
tion
a
hing.

16 Susanne AlbersIdeally, we implement Landlord in a distributed fashion su
h that, for ea
hopen
onne
tion
 = (u; v), both endpoints u and v keep their
opies of
redit(
).If one endpoint, say u, redu
es the
redit by Æ, then this
hange has to be
om-muni
ated to v so that v
an update its
redit(
) value a

ordingly. The amountof extra
ommuni
ation for an open
onne
tion
an be large if the repeated Æredu
tions are small. It is possible to redu
e the amount of extra
ommuni
ationat the expense of in
reasing slightly the
ompetitiveness of the algorithm. Forany 0 < � � 1, Landlord
an be modi�ed so that it is (1 + �)k-
ompetitive anduses at most d 1� e � 1 bits of extra
ommuni
ation for ea
h open
onne
tion [5℄.Setting � = 1, we obtain a 2k-
ompetitive algorithm that does not use any extra
ommuni
ation. For � = 1=2, the resulting algorithm is 32k-
ompetitive and usesonly one bit of extra
ommuni
ation.Interestingly no extra
ommuni
ation is ne
essary if we are willing to userandomization. It is possible to implement the Harmoni
 algorithm for the k-server problem in su
h a way that it does not need any extra
ommuni
ationbetween network nodes. The implementation a
hieves a
ompetitiveness of kagainst adaptive online adversaries [5℄.Se
ondly in this se
tion we study a dynami
 TCP a
knowledgement prob-lem. Consider an open TCP
onne
tion between two network nodes that wishto ex
hange data. The data is partitioned into segments or pa
kets that are senta
ross the
onne
tion. A node re
eiving data must a
knowledge the arrival ofea
h in
oming pa
ket so that the sending node is noti�ed that the transmissionwas su

essful; lost pa
kets must be retransmitted. However, data pa
kets donot have to be a
knowledged individually. Instead, most TCP implementationsemploy some delay me
hanism that allows the TCP to a
knowledge multiplein
oming pa
kets with a single a
knowledgement and, possibly, to piggyba
kthe a
knowledgement on an outgoing data segment. Redu
ing the number ofa
knowledgements has several advantages, e.g. the overhead in
urred at the net-work nodes for sending and re
eiving a
knowledgements is redu
ed and, moreimportantly, the network
ongestion is redu
ed. On the other hand, by redu
-ing the number of a
knowledgements, one adds laten
y to a TCP
onne
tion,whi
h is not desirable. The goal is to balan
e the redu
tion in the number ofa
knowledgements with the in
rease in laten
y.Motivated by the fa
t that TCP supports dynami
 a
knowledgement me
h-anisms, Dooly et al. [51℄ formulated the following problem. A network nodere
eives a sequen
e of n data pa
kets. Let ai denote the arrival time of pa
keti, 1 � i � n. At time ai, the arrival times aj , j > i; are not known. We haveto partition the sequen
e � = (a1; : : : ; an) of pa
ket arrival times into m subse-quen
es �1; : : : ; �m, for some m � 1, su
h that ea
h subsequen
e ends with ana
knowledgement. We use �i to denote the set of arrivals in the partition. Letti be the time when the a
knowledgement for �i is sent. We require ti � aj ,for all aj 2 �i. If data pa
kets are not a
knowledged immediately, there are a
-knowledgement delays . Dooley et al. [51℄
onsidered the obje
tive fun
tion thatminimizes the number of a
knowledgements and the sum of the delays in
urred

Online Algorithms: A Survey 17for all of the pa
kets, i.e. we wish to minimize f = m +Pmi=1Paj2�i(ti � aj).They analyzed the following algorithm.Greedy: Send an a
knowledgement when the total delay of the una
knowledgedpa
kets is equal to 1, i.e. equal to the
ost of an a
knowledgement.Theorem 24. [51℄ The Greedy algorithm is 2-
ompetitive and this is the best
ompetitive ratio a deterministi
 online algorithm
an a
hieve.Karlin et al. [70℄ studied randomized algorithms and proved the following result.Theorem 25. [70℄ There exists a randomized online strategy that a
hieves a
ompetitiveness of e=(e� 1) � 1:58 against oblivious adversaries.Noga [82℄ and independently Seiden [89℄ showed that no randomized algorithm
an do better.Dooly et al. [51℄ also studied the minimization of a se
ond obje
tive fun
tionf 0 = m+Pmi=1maxaj2�i(ti � aj) where one
onsiders the sum of the maximumdelays in
urred in subsequen
es �i in addition to the number of a
knowledge-ments sent. They showed that the best
ompetitive ratio of a deterministi
 onlinealgorithm is equal to 2.In [6℄ Albers and Bals investigate a new family of obje
tive fun
tions thatpenalize long a
knowledgement delays of individual data pa
kets more heavily.In appli
ations where a TCP
onne
tion is used for intera
tive data transfer,long delays are not desirable as they are noti
eable to a user. Hen
e [6℄ studiesthe obje
tive fun
tion that minimizes the number of a
knowledgements and themaximum delay in
urred for any of the data pa
kets. Given an input �,
onsider apartitioning �1; : : : ; �m. Let di = maxaj2�i(ti�aj) be the maximum delay of anypa
ket in �i, 1 � i � m. We wish to minimize the fun
tion g = m+max1�i�m di.The following family of algorithms is de�ned for any positive real z.Linear-Delay(z): Initially, set d = z and send the �rst a
knowledgement attime a1 + d. In general, suppose that the i-th a
knowledgement has just beensent and that j pa
kets have been pro
essed so far. Set d = (i + 1)z and sendthe (i+ 1)-st a
knowledgement at time aj+1 + d.Theorem 26. [6℄ For any z with z � 1=2, Linear-Delay(z) is
-
ompetitive,where
 = maxf1+ z; (1+ z)=(2+ z� �2=6)g. Setting z = �2=6� 1 the resultingalgorithm a
hieves a
ompetitive ratio of �2=6 � 1:644.It is well known that �2=6 = P1i=1 1=i2. This performan
e ratio
annot beimproved.Theorem 27. [6℄ No deterministi
 online algorithm
an a
hieve a
ompetitiveratio smaller than �2=6.Additionally, Albers and Bals [6℄ investigate a generalization of the obje
tivefun
tion g where delays are taken to the p-th power and hen
e are penalizedeven more heavily. Again, they present tight upper and lower bounds on thebest possible
ompetitiveness of deterministi
 algorithms. The best
ompetitive

18 Susanne Albersratio is an alternating sum of Riemann's zeta fun
tion. The ratio is de
reasingin p and tends to 1.5 as p ! 1. An interesting open problem is to developrandomized online algorithms for the obje
tive fun
tions g and its generalization.Some initial lower bounds were given in [6℄.Frederiksen and Larsen [61℄ studied a modi�ed version of the TCP a
knowl-edgement problem, where it is required that there is some minimum delay be-tween sending two a
knowledgements to re
e
t the physi
al properties of thenetwork.
7.3. Routers and swit
hesRouters and swit
hes handle the data traÆ
 in networks and ensure that datapa
kets sent over
onne
tions rea
h their
orre
t destination. Typi
ally, traÆ
is bursty , i.e. the number of pa
kets that rea
h a bu�er or swit
h during a
er-tain time interval ex
eeds the number of pa
kets that
an be pro
essed duringthat interval. This leads to pa
ket loss, whi
h is not desirable as the
orrespond-ing pa
kets have to be resent. To redu
e pa
ket loss, routers and swit
hes areequipped with bu�ers in whi
h pa
kets
an be stored temporarily until they areforwarded. We study two algorithmi
 problems related to the maintenan
e ofsu
h bu�ers.Bar-Noy et al. [19℄ and independently Koga [77℄ address the question howlarge bu�ers should be in order to avoid pa
ket loss. Consider n data streamsthat share a
ommon output
hannel at a router. The data is partitioned intopa
kets of equal size. At time t, N(t; i) pa
kets of stream i arrive, 1 � t � mand 1 � i � n. Asso
iated with ea
h data stream is a FIFO queue of potentiallyin�nite
apa
ity, in whi
h the pa
kets of the stream
an be stored. In ea
h timestep a s
heduling algorithm in the router
an sele
t one of the queues and sendthe pa
ket at the head over the output
hannel. The goal is to minimize themaximum queue length that ever o

urs at any of the queues.Bar-Noy et al. [19℄ and Koga [77℄ gave tight lower and upper bounds on thebest possible
ompetitiveness.Theorem 28. [19,77℄ Any deterministi
 online algorithm has a
ompetitive ratioof
(logn).Koga showed that the popular Round Robin algorithm is not better than n-
ompetitive. A natural greedy algorithm works as follows.Longest Queue First: Always serve the longest queue, ties
an be brokenarbitrarily.Theorem 29. [19,77℄ Longest Queue First is O(logn)-
ompetitive.Thus the greedy algorithm a
hieves an optimal
ompetitive ratio. The LongestQueue First algorithm was proposed and analyzed by Koga. Bar-Noy et al.
on-sidered a slight variant of that algorithm. Koga also showed that randomizationdoes not help in this problem; the
ompetitiveness of any randomized strategy is

Online Algorithms: A Survey 19still
(logn). Additionally, Koga proposed a se
ond obje
tive fun
tion that aimsat balan
ing the pa
ket delays among the n queues. Let the
ow time of a datapa
ket be the length of the time interval when the pa
ket resides in one of thequeues. Koga suggested to sum up, for ea
h queue, the
ow times of the pa
kets.The goal is to minimize the maximum sum. Koga proved that no deterministi
online algorithm is better than
(logn)-
ompetitive. An interesting problem isto develop upper bounds for this se
ond obje
tive fun
tion.The se
ond problem we study
onsiders s
enarios where bu�ers or queueshave bounded
apa
ity. In this
ase pa
ket loss
annot be avoided and the goalis to transmit the pa
kets of highest value. Kesselman et al. [74℄ investigatedthe following problem in the
ontext of managing the output bu�er of a routeror swit
h. At time t, a set N(t) of new data pa
kets arrives. Ea
h pa
ket p hasa value v(p), whi
h is a positive real number. There is a bu�er in whi
h thedata pa
kets
an be stored temporarily. In ea
h time step t an algorithm
antransmit one of the pa
kets that are available in the bu�er or in the set N(t).The goal is to maximize the value of the transmitted pa
kets. Kesselman etal. investigate two types of bu�ers. In a FIFO bu�er the pa
ket transmissiontimes must be
onsistent with the arrival times. More pre
isely, if pa
ket p istransmitted before p0, then p must not have arrived later than p0. Moreover, thebu�er
an simultaneously hold only B pa
kets. An algorithm has to de
ide whi
hpa
kets to drop so as to obey this bu�er
apa
ity. In a bounded-delay bu�er ea
hpa
ket p has an asso
iated sla
k time sl(p). If the pa
ket arrives at time t, thenit must be transmitted or dropped by time t+ sl(p). There is no expli
it boundon the bu�er size and pa
kets may be re-ordered.First
onsider the FIFO model. Kesselman et al. [74℄ analyzed the followingalgorithm.Greedy: If there is a bu�er over
ow, dis
ard the pa
kets with the smallestvalues; ties are broken arbitrarily.Theorem 30. [74℄ Greedy a
hieves a
ompetitive ratio of 2� 1B+1 . This ratio istight for that algorithm.Kesselman et al. also showed that Greedy has a
ompetitiveness of 2� 2�+1 , where� is the ratio of the maximum to minimum pa
ket value. Zhu [99℄ re
ently gavea lower bound.Theorem 31. [99℄ In the FIFO model no deterministi
 online algorithm
ana
hieve a
ompetitive ratio smaller than p2.A
hallenging problem is to
lose the gap between the lower and the upperbounds. For the spe
ial
ase B = 2, Zhu showed tight bounds of (5 +p13)=6 �1:434.Next we examine the bounded-delay model. Again Kesselman et al. [74℄ pro-posed a Greedy strategy.Greedy: In ea
h step, send the pa
ket with the highest value.Theorem 32. The Greedy algorithm a
hieves a
ompetitive ratio of 2 and thisis tight for that algorithm.

20 Susanne AlbersIf there are only two pa
ket values (
heap and expensive), then Greedy hasa
ompetitiveness of exa
tly 1 + 1=�, where � is the ratio of the expensive tothe
heap value. Zhu [99℄ gave a lower bound of 1:366. This bound even holdsin a restri
ted model where the sla
k time of ea
h pa
ket is equal to 2. For thisspe
ial s
enario, Zhu also showed an upper bound of p2. Finally tight upper andlower bounds of (1 +p5)=2 � 1:618 are known for the
ase that the sla
k timeof ea
h pa
ket is at most 2, see [74,99℄. The major open problem is to determinetight bounds for the general bounded-delay model.
8. Re�nements of
ompetitive analysisCompetitive analysis is a strong worst-
ase performan
e measure. For some on-line problems, su
h as paging, the
ompetitive ratios of online algorithms aremu
h higher than the
orresponding performan
e ratios observed in pra
ti
e.The reason is typi
ally that in a
ompetitive analysis we have to
onsider ar-bitrary request sequen
es whereas in pra
ti
e only restri
ted
lasses of inputso

ur. Therefore, a line of resear
h has analyzed online algorithms on restri
tedrequest sequen
es and proposed other measures for evaluating online algorithms.We
onsider the paging problem in more detail. As dis
ussed in Se
tion 2 thebest
ompetitive ratio of deterministi
 online algorithms is equal to k, where kis the number of pages in fast memory, and both LRU and FIFO a
hieve this
ompetitiveness. From a pra
ti
al point of view this bound is not very meaningfulas fast memories
an often store several hundreds or thousands of pages. In fa
t,the ratio of k is mu
h higher than the algorithms' performan
e in pra
ti
e. In anexperimental study presented by Young [97℄, LRU a
hieved
ompetitive ratiosbetween 1 and 2. Also, in pra
ti
e, the performan
e of LRU is mu
h better thanthat of FIFO. This is not evident in the
ompetitive analysis.In the paging problem standard
ompetitive analysis ignores the fa
t thatrequest sequen
es generated by real programs have a spe
ial stru
ture, i.e. theyexhibit lo
ality of referen
e: Whenever a page is requested, the next request isusually to a page that
omes from a very small set of asso
iated pages. Borodinet al. [32℄ proposed a

ess graphs for modeling lo
ality of referen
e. In an a

essgraph, the nodes represent the memory pages. Whenever a page p is requested,the next request
an only be to a page that is adja
ent to p in the a

ess graph.Formally, let G = (V;E) be an undire
ted graph. V represents the set of mem-ory pages and E is a set of edges. A request sequen
e � = �(1); : : : ; �(m), is
onsistent with G if (�(t); �(t+ 1)) 2 E for all t = 1; : : : ;m� 1. We say that anonline algorithm A is
-
ompetitive on G if there exists a
onstant a su
h thatA(�) �
 � OPT (�) + a for all �
onsistent with G. The
ompetitive ratio of Aon G, denoted by R(A;G), is the in�mum of all
 su
h that A is
-
ompetitiveon G. Let R(G) = minAR(A;G) be the best
ompetitive ratio a
hievable on G.Borodin et al. [32℄ showed that LRU a
hieves the best possible
ompetitiveratio on a

ess graphs that are trees. Trees represent the a

ess graphs for manydata stru
tures. Borodin et al. also analyzed R(LRU;G) on arbitrary graphs. Inparti
ular they showed that there exist graphs for whi
h the
ompetitive ratio

Online Algorithms: A Survey 21of FIFO is mu
h higher than that of LRU. Another important result, due toChrobak and Noga [41℄, is that LRU is never worse than FIFO on a

ess graphs.Theorem 33. [41℄ For any graph G, R(LRU;G) � R(FIFO;G).Borodin et al. [32℄ also presented an optimal online algorithm for any a

essgraph.FAR: The algorithm is a marking strategy. If there is a fault at a request toa page p, then FAR evi
ts an unmarked page from fast memory that has thelargest distan
e to a marked page in the a

ess graph.Irani et al. [66℄ showed that this algorithm a
hieves the best possible
om-petitive ratio, up to a
onstant fa
tor, for all a

ess graphs.Theorem 34. [66℄ For any graph G, R(FAR; G) = O(R(G)).Fiat and Karlin [54℄ presented randomized online paging algorithms for a

essgraphs that a
hieve an optimal
ompetitive ratio. A disadvantage of FAR andthe randomized algorithms by Fiat and Karlin [54℄ is that the a

ess graphhas to be known in advan
e. Fiat and Mendel [57℄ presented deterministi
 andrandomized online algorithms that do not have to know the a

ess graph butstill a
hieve the best possible
ompetitive ratios.So far we have addressed undire
ted a

ess graphs. An initial investigationof dire
ted a

ess graph was presented by Irani et al. [66℄, who
onsidered stru
-tured program graphs. A fundamental open problem is to develop online pagingalgorithms for general dire
ted a

ess graphs.As an alternative to a

ess graphs, Karlin et al. [71℄ modeled lo
ality of ref-eren
e by assuming that request sequen
es are generated by a Markov
hain.They analyzed paging algorithm in terms of their fault rate whi
h is the perfor-man
e measure used in pra
ti
e. In parti
ular, they developed an algorithm thata
hieves an optimal fault rate, for any Markov
hain. Torng [96℄ analyzed thetotal a

ess time of paging algorithms. He assumes that the servi
e of a requestto a page in fast memory
osts 1, whereas a fault in
urs a penalty of p, p > 1. Inhis model a request sequen
e exhibits lo
ality of referen
e if the average lengthof a subsequen
e
ontaining requests to m distin
t pages is mu
h larger than m.Re
ently, Albers et al. [7℄ proposed another framework for modeling lo
alityof referen
e that goes ba
k again to the working set
on
ept by Denning [49,50℄.In pra
ti
e, during any phase of exe
ution, a pro
ess referen
es only a relativelysmall fra
tion of its pages. The set of pages that a pro
ess is
urrently using is
alled the working set . Determining the working set size in a window of size nat any point in a request sequen
e, one obtains, for variable n, a fun
tion whosegeneral behavior is depi
ted in Figure 1. The fun
tion is in
reasing and
on
ave.Inspired by this simple and natural model, [7℄ devises two ways of modelinglo
ality of referen
e. In both models, it is assumed that an appli
ation is
har-a
terized by a
on
ave fun
tion f ; the appli
ation generates request sequen
esthat are
onsistent with f . In the Max-Model a request sequen
e is
onsistentwith f if the maximum number of distin
t pages referen
ed in a window of size nis at most f(n), for any n 2 IN. In the Average-Model a request sequen
e is
on-sistent with f if the average number of distin
t pages referen
ed in a window of

22 Susanne Albers

Window Size

Program Size
Working SetSize

Fig. 1. Working set size as a fun
tion of the window size.
size n is at most f(n), for any n 2 IN. Albers et al. performed extensive experi-ments with tra
es from standard
orpora, analyzing maximum/average workingset sizes in windows of size n. In all of the
ases, the fun
tions have an overall
on
ave shape. The authors use again the page fault rate to evaluate the qualityof paging algorithms, and develop tight or nearly tight bounds on the fault ratesa
hieved by LRU, FIFO, deterministi
 Marking strategies and MIN. It showsthat LRU is an optimal online algorithm, whereas FIFO and Marking strategiesare not optimal in general. Finally [7℄ presents an experimental study
omparingthe page fault rates proven in the analyses to the page fault rates observed inpra
ti
e. The gap between the theoreti
al and observed bounds is
onsiderablysmaller than the
orresponding gap in
ompetitive analysis.Further re�nements of
ompetitive analysis in
lude extra resour
e analyses,see e.g. [68,93℄, statisti
al adversaries [37,84℄, a

omodating fun
tions [35℄ andthe max/max ratio [26℄. With respe
t to arbitrary online problems, Koutsoupiasand Papadimitriou [79℄ proposed the di�use adversary model . An adversary mustgenerate an input a

ording to a probability distribution D that belongs to a
lass � of possible distributions known to the online algorithm. We wish todetermine, for the given
lass � of distributions, the performan
e ratioR(�) = minA maxD2� ED[A(�)℄ED[OPT (�)℄ :Koutsoupias and Papadimitriou show that LRU is optimal against di�use ad-versaries. Se
ondly, Koutsoupias and Papadimitriou [79℄ introdu
ed
omparativeanalysis , whi
h
ompares the performan
e of online algorithms from given
lassesof algorithms.
9. Con
lusionsIn this paper we gave an introdu
tion to
ompetitive online algorithms andpresented a number of important results. An ex
ellent text book on the subje
twas written by Borodin and El-Yaniv [31℄. The book [58℄
ontains many surveyarti
les on various online problems. Of
ourse, there are many appli
ation areasthat we have not addressed here. Bin pa
king is a
lassi
al problem that is still

Online Algorithms: A Survey 23a
tively investigated, see e.g. [42,48℄ and referen
es therein. Online
oloring andonline mat
hing are two
lassi
al online problems related to graph theory. Inthese problems, the verti
es of a graph arrive online and must be
olored resp.mat
hed immediately. We refer the reader to [75,76,73℄ for some basi
 literature.Re
ently, there has been resear
h interest in
ompetitive au
tions, see e.g. [53,62℄, a fresh �eld that deserves further investigations. In summary there is nodoubt that online algorithms
ontinue to be an interesting resear
h area andthat
ompetitive analysis will be a powerful tool to analyze their performan
e.
Referen
es1. D. A
hlioptas, M. Chrobak and J. Noga. Competitive analysis of randomized paging al-gorithms. Theoreti
al Computer S
ien
e 234, (2000) 203{218.2. S. Albers. Improved randomized on-line algorithms for the list update problem. SIAMJournal on Computing. 27, (1998) 670{681.3. S. Albers. Better bounds for online s
heduling. SIAM Journal on Computing 29, (1999)459-473.4. S. Albers. On randomized online s
heduling. Pro
. 34th ACM Symposium on Theory ofComputing, (2002) 134-143.5. S. Albers. Generalized
onne
tion
a
hing. Theory of Computing Systems 35, (2002) 251-267.6. S. Albers and H. Bals. Dynami
 TCP a
knowledgement: Penalizing long delays. Pro
. 14thACM-SIAM Symposium on Theory of Computing, 2003.7. S. Albers, L.M. Favrholdt and O. Giel. On paging with lo
ality of referen
e. Pro
. 34thACM Symposium on Theory of Computing, (2002) 258{268.8. S. Albers and M. Mitzenma
her. Average
ase analyses of list update algorithms, withappli
ations to data
ompression. Algorithmi
a 21, (1998) 312{329.9. S. Albers, B. von Stengel and R. Wer
hner. A
ombined BIT and TIMESTAMP algorithmfor the list update problem. Information Pro
essing Letters 56, (1995) 135{139.10. Christoph Amb�uhl. O�ine list update is NP-hard. Pro
. 8th Annual European Symposiumon Algorithms, Springer LNCS 1879, (2001) 42{51.11. C. Amb�uhl, B. G�artner and B. von Stengel. Towards new lower bounds for the list updateproblem. Theoreti
al Computer S
ien
e 268, (2001) 3{16.12. A. Armon, Y. Azar, L. Epstein and O. Regev. Temporary tasks assignment resolved. Pro
.13th Annual Symposium on Dis
rete Algorithms, (2002) 116{124.13. J. Aspnes, Y. Azar A. Fiat, S. Plotkin and O. Waarts. On-line load balan
ing with appli-
ations to ma
hine s
heduling and virtual
ir
uit routing. Journal of the ACM 44, (1997)486{504.14. Y. Azar. On-line load balan
ing. In A. Fiat and G. Woeginger, Online Algorithms: TheState of the Art, Springer LNCS 1442, (1998) 178{195.15. Y. Azar, A. Broder and A. Karlin. On-line load balan
ing. Theoreti
al Computer S
ien
e130, (1994) 73{84.16. Y. Azar and L. Epstein. On-line load balan
ing of temporary tasks on identi
al ma
hinesPro
. 5th Israeli Symposium on Foundations of Computer S
ien
e, (1997) 119{125.17. Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs and O. Waarts. Online load balan
ingof temporary tasks. Journal of Algorithms 22, (1997) 93{110.18. Y. Azar, J. Naor and R. Rom. The
ompetitiveness of on-line assignments. Journal ofAlgorithms 18, (1995) 221{237.19. A. Bar-Noy, A. Freund, S. Landa, and J.(S.) Naor. Competitive on-line swit
hing poli
ies.Pro
. 13th ACM-SIAM Symposium on Dis
rete Algorithms, (2002) 525{534.20. Y. Bartal, B. Bollob�as and M. Mendel. A Ramsey-type theorem for metri
 spa
es andits appli
ations for metri
al task systems and related problems. Pro
. 42nd IEEE AnnualSymposium on Foundations of Computer S
ien
e, (2001) 396{405.21. Y. Bartal, A. Blum, C. Bur
h and A. Tomkins. A polylog(n)-
ompetitive algorithm formetri
al task systems. Pro
. 29th Annual ACM Symposium on Theory of Computing,(1997) 711{719.

24 Susanne Albers22. Y. Bartal, M. Chrobak, J. Noga and P. Raghavan. More on random walks, ele
tri
alnetworks and the Harmoni
 k-server algorithm. Information Pro
essing Letters 84, (2002)271{276.23. Y. Bartal, A. Fiat, H. Karlo� and R. Vohra. New algorithms for an an
ient s
hedulingproblem. Journal of Computer and System S
ien
es 51, (1995) 359{366.24. Y. Bartal and E.F. Grove. The Harmoni
 online k-server algorithm is
ompetitive. Journalof the ACM 47, (2000) 1{15.25. L.A. Belady. A study of repla
ement algorithms for virtual storage
omputers. IBM Sys-tems Journal 5, (1966) 78{101.26. S. Ben-David and A. Borodin. A new measure for the study of on-line algorithms. Algo-rithmi
a 11, (1994) 73{91.27. S. Ben-David, A. Borodin, R.M. Karp, G. Tardos and A. Wigderson. On the power ofrandomization in on-line algorithms. Algorithmi
a 11, (1994) 2{14.28. J.L. Bentley, D.S. Sleator, R.E. Tarjan and V.K. Wei. A lo
ally adaptive data
ompressions
heme. Communi
ation of the ACM 29, (1986) 320{330.29. P. Berman, M. Charikar and M. Karpinski. On-line load balan
ing for related ma
hines.Journal of Algorithms 35, (2000) 108{121.30. A. Blum, S. Chawla and A. Kalai. Stati
 optimality and dynami
 sear
h-optimality in listsand trees. Pro
. 13th Annual ACM-SIAM Symposium on Dis
rete Algorithms, (2002) 1{8.31. A. Borodin and R. El-Yaniv. Online
omputation and
ompetitive analysis. CambridgeUniversity Press, 1998.32. A. Borodin, S. Irani, P. Raghavan and B. S
hieber. Competitive paging with lo
ality ofreferen
e. Journal on Computer and System S
ien
es 50, (1995) 244{258.33. A. Borodin, N. Linial and M. Saks. An optimal online algorithm for metri
al task systems.Journal of the ACM 39, (1992) 745{763.34. M. Burrows and D.J. Wheeler. A blo
k-sorting lossless data
ompression algorithm. DECSRC Resear
h Report 124, 1994.35. J. Boyar, K.S. Larsen and M.N. Nielsen. The a

ommodating fun
tion: A generalizationof the
ompetitive ratio. SIAM Journal on Computing 31, (2001), 233{258.36. B. Chen, A. van Vliet and G.J. Woeginger. A lower bound for randomized on-line s
hedul-ing algorithms. Information Pro
essing Letters 51, (1994) 219{222.37. A. Chou, J. Coopersto
k, R. El Yaniv, M. Klugerman and T. Leighton. The statisti
aladversary allows optimal money-making trading strategies. Pro
. 6th Annual ACM-SIAMSymposium on Dis
rete Algorithms, (1995) 467{476.38. M. Chrobak, H. Karlo�, T. Paye and S. Vishwanathan. New results on the server problem.SIAM Journal on Dis
rete Mathemati
s 4, (1991) 172{181.39. M. Chrobak and L.L. Larmore. An optimal online algorithm for k servers on trees. SIAMJournal on Computing 20, (1991) 144{148.40. M. Chrobak and L.L. Larmore. Harmoni
 is 3-
ompetitive for two servers. Theoreti
alComputer S
ien
e 98, (1992) 339{346.41. M. Chrobak and J. Noga. LRU is better than FIFO. Algorithmi
a 23, (1999) 180{185.42. E.G. Co�man Jr., M.R. Garey and D.S. Johnson. Approximation algorithms for bin pa
k-ing: A survey. Approximation Algorithms for NP-Hard Problems, D. Ho
hbaum (editor),PWS Publishing, (1997), 46{93.43. E. Cohen, H. Kaplan and U. Zwi
k. Conne
tion
a
hing. Pro
. of the 31st Annual ACMSymposium on Theory of Computing, (1999) 612-621.44. E. Cohen, H. Kaplan and U. Zwi
k. Conne
tion
a
hing under various models of
ommu-niation. Pro
. 12th Annual ACM Symposium on Parallel Algorithms and Ar
hite
tures,(2000) 54{63.45. R. Cole. On the dynami
 �nger
onje
ture for splay trees. Part 2: The proof. SIAM Journalon Computing 30, (2000) 44{85.46. R. Cole, B. Mishra, J. S
hmidt, A. Siegel. On the dynami
 �nger
onje
ture for splay trees.Part I: Splay sorting logn-blo
k sequen
es. SIAM Journal on Computing 30, (2000) 1{43.47. D. Coppersmith, P. Doyle, P. Raghavan and M. Snir. Random walks on weighted graphs,and appli
ations to on-line algorithms. Journal of the ACM 40, (1993) 421{453.48. J. Csirik and G.J. Woeginger. On-line pa
king and
overing problems. In A. Fiat and G.Woeginger,Online Algorithms: The State of the Art, Springer LNCS 1442, (1998) 147{177.49. P.J. Denning. The working set model of program behavior. Communi
ations of the ACM11, (1968) 323{333.50. P.J. Denning. Working sets past and present. IEEE Transa
tions on Software Engineering6, (1980) 64{84.

Online Algorithms: A Survey 2551. D.R. Dooly, S.A. Goldman and S.D. S
ott. On-line analysis of the TCP a
knowledgmentdelay problem. Journal of the ACM 48, (2001) 243{273.52. A. Feldmann, A. Karlin, S. Irani and S. Phillips. Private
ommuni
ation
ited in [65℄.53. A. Fiat, A. Goldberg, J. Hartline and A. Karlin. Competitive generalized au
tions. Pro
.34th ACM Symposium on Theory of Computing, (2002) 72{81.54. A. Fiat and A. Karlin. Randomized and multipointer paging with lo
ality of referen
e.Pro
. 27th Annual ACM Symposium on Theory of Computing, (1995) 626{634.55. A. Fiat, R.M. Karp, L.A. M
Geo
h, D.D. Sleator and N.E. Young. Competitive pagingalgorithms. Journal of Algorithms 12, (1991) 685{699.56. A. Fiat and M. Mendel. Truly online paging with lo
ality of referen
e. Pro
. 38th AnnualSymposium on Foundations of Computer S
ien
e, (1997) 326{335.57. A. Fiat and M. Mendel. Better algorithms for unfair metri
al task systems and appli
a-tions. Pro
. 32nd Annual ACM Symposium on Theory of Computing, (2000) 725{734.58. A. Fiat and G. Woeginger, Online Algorithms: The State of the Art, Springer LNCS 1442,1998.59. R. Fielding, J. Getty, J. Mogul, H. Frystyk and T. Berners-Lee. Hypertext transfer proto
ol{ HTTP/1.1. http://www.
is.ohio-state.edu/htbin/rf
/rf
2068.html60. R. Fleis
her and M. Wahl. Online s
heduling revisited. Journal of S
heduling 3, (2000)343{353.61. J.S. Frederiksen and K.S. Larsen. Pa
ket bundling. Pro
. 8th S
andinavian Workshop onAlgorithm Theory. Springer LNCS 2368, (2002) 328{337.62. A.V. Goldberg, J.D. Hartline and A. Wright. Competitive au
tions and digital goods.Pro
. 12th ACM-SIAM Symposium on Dis
rete Algorithms, (2001) 735{744.63. R.L. Graham. Bounds for
ertain multipro
essor anomalies. Bell System Te
hni
al Journal45, (1966) 1563{1581.64. S. Irani. Two results on the list update problem. Information Pro
essing Letters 38, (1991)301{306.65. S. Irani. Page repla
ement with multi-size pages and appli
ations to Web
a
hing. Algo-rithmi
a 33, (2002) 384{409.66. S. Irani, A.R. Karlin and S. Phillips. Strongly
ompetitive algorithms for paging withlo
ality of referen
e. SIAM Journal on Computing 25, (1996) 477{497.67. S. Irani and D.S. Seiden. Randomized algorithms for metri
al task systems. Theoreti
alComputer S
ien
e 194, (1998) 163{182.68. B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
lairvoyan
e. Journal of theACM 47, (2000) 617{643.69. D.R. Karger, S.J. Phillips and E. Torng. Journal of Algorithms 20, (1996) 400{430.70. A.R. Karlin, C. Kenyon and D. Randall. Dynami
 TCP a
knowledgement and other storiesabout e=(e� 1). Pro
. 31st ACM Symposium on Theory of Computing, (2001) 502{509.71. A. Karlin, S. Phillips und P. Raghavan. Markov paging. SIAM Journal on Computing 30,(2000) 906{922.72. R. Karp and P. Raghavan. From a personal
ommuni
ation
ited in [86℄.73. R. Karp, U. Vazirani and V. Vazirani. An optimal algorithm for online bipartite mat
hing.Pro
. 22nd ACM Symposium on Theory of Computing, (1990) 352{358.74. A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. S
hieber and M. Sviridenko.Bu�er over
ow management in QoS swit
hes. Pro
. 33rd Annual ACM Symposium onTheory of Computing, (2001) 520{529.75. S. Khuller, S.G. Mit
hell and V.V. Vazirani. On-line weighted bipartite mat
hing.Pro
. 18th International Colloquium on Automata, Languages and Programming(ICALP), Springer LNCS 510, (1991) 728{738.76. H. Kierstead. Coloring graphs on-line. In A. Fiat and G. Woeginger, Online Algorithms:The State of the Art, Springer LNCS 1442, (1998) 281{305.77. H. Koga. Balan
ed s
heduling toward loss-free Pa
ket queuing and delay fairness. Pro
.12th International Symposium on Algorithms and Computation (ISAAC), Springer LNCS2223, (2001) 61{73.78. E. Koutsoupias and C.H. Papadimitriou. On the k-server
onje
ture. Journal of the ACM42, (1995) 971{983.79. E. Koutsoupias and C.H. Papadimitriou. Beyond
ompetitive analysis. SIAM Journal onComputing 30, (2000) 300{317.80. M.S. Manasse, L.A. M
Geo
h and D.D. Sleator. Competitive algorithms for on-line prob-lems. Pro
. 20th Annual ACM Symposium on Theory of Computing, (1988) 322{333.81. L.A. M
Geo
h and D.D. Sleator. A strongly
ompetitive randomized paging algorithm.Algorithmi
a 6, (1991), 816{825.

26 Susanne Albers: Online Algorithms: A Survey82. J. Noga. Private
ommuni
ation, 2001.83. E. Peseri
o. The lazy adversary
onje
ture fails. Pro
. 14th Annual Symposium on ParallelAlgorithms and Ar
hite
tures, (2002) 143{144.84. P. Raghavan. A statisti
al adversary for on-line algorithms.On-Line Algorithms, DIMACSSeries in Dis
rete Mathemati
s and Theoreti
al Computer S
ien
e, (1991) 79{83.85. P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms. IBM Jour-nal of Resear
h and Development 38, (1994) 683{708.86. N. Reingold, J. Westbrook and D.D. Sleator. Randomized
ompetitive algorithms for thelist update problem. Algorithmi
a 11, (1994) 15{32.87. J.F. Rudin III. Improved bounds for the on-line s
heduling problem. Ph.D. Thesis. TheUniversity of Texas at Dallas, May 2001.88. S.S. Seiden. Online randomized multipro
essor s
heduling. Algorithmi
a, 28, (2000) 173{216.89. S.S. Seiden. A guessing game and randomized online algorithms. Pro
. 32nd ACM Sym-posium on Theory of Computing, (2000) 592{601.90. S.S. Seiden. A general de
omposition theorem for the k-server problem. Pro
. 9th AnnualSymposium on Algorithms, Springer LNCS 2161, (2001) 86{97.91. J. Sgall. A lower bound for randomized on-line multipro
essor s
heduling. InformationPro
essing Letters 63, (1997) 51{55.92. J. Sgall. On-line s
heduling. In A. Fiat and G. Woeginger, Online Algorithms: The Stateof the Art, Springer LNCS 1442, (1998) 196{231.93. D.D. Sleator and R.E. Tarjan. Amortized eÆ
ien
y of list update and paging rules. Com-muni
ations of the ACM 28, (1985) 202{208.94. D.D. Sleator and R.E. Tarjan. Self-adjusting binary sear
h trees. Journal of the ACM 32,(1985) 652{686.95. R.E. Tarjan. Sequential a

ess in splay trees takes linear time. Combinatori
a, 5 (1985)367{378.96. E. Torng. A uni�ed analysis of paging and
a
hing. Algorithmi
a 20, (1998) 175{200.97. N. Young. The k-server dual and loose
ompetitiveness for paging. Algorithmi
a 11, (1994)525{541.98. N.E. Young. Online �le
a
hing. Pro
. 9th Annual ACM-SIAM Symposium on Dis
reteAlgorithms, (1998) 82{86.99. A. Zhu. Analysis of queueing poli
ies in QoS swit
hes. Pro
. 14th ACM-SIAM Symposiumon Theory of Computing, 2003.

