
Page Replacement for General Caching ProblemsSusanne Albers� Sanjeev Arora y Sanjeev KhannazAbstractCaching (paging) is a well-studied problem in online al-gorithms, usually studied under the assumption that allpages have a uniform size and a uniform fault cost (uni-form caching). However, recent applications related to theweb involve situations in which pages can be of di�erentsizes and costs. This general caching problem seems moreintricate than the uniform version. In particular, the of-ine case itself is NP-hard. Only a few results exist for thegeneral caching problem [8, 17]. This paper seeks to de-velop good o�ine page replacement policies for the generalcaching problem, with the hope that any insight gained heremay lead to good online algorithms. Our �rst main resultis that by using only a small amount of additional mem-ory, say O(1) times the largest page size, we can obtain anO(1)-approximation to the general caching problem. Notethat the largest page size is typically a very small fractionof the total cache size, say 1%. Our second result is thatwhen no additional memory is allowed, one can obtain anO(log(M + C))-approximation where M and C denote thecache size and the largest page fault cost, respectively. Ourresults use a new rounding technique for linear programswhich may be of independent interest. We also present arandomized online algorithm for the Bit Model [8] whichachieves a competitive ratio of O(ln(1 + 1=c)) while usingM(1 + c) memory.1 IntroductionWhen a sequence of memory objects (\pages") are tobe retrieved from a slow or distant memory, one oftenuses a cache|i.e., a fast memory of some small size, sayM| to retain some \frequently-used" pages. Since theslow memory needs to be accessed only for pages that�Max-Planck-Institut f�ur Informatik, Im Stadtwald, 66123Saarbr�ucken, Germany. Part of this work was done while visitingthe Freie Universit�at Berlin. Email: albers@mpi-sb.mpg.de.yCS Department, Princeton University, Princeton, NJ 08544.Email: arora@cs.princeton.edu. Supported by NSF CAREERaward NSF CCR-9502747, an Alfred Sloan Fellowship, and aPackard Fellowship. Part of this work was done during a visitto MPI Informatik.zDepartment of Fundamental Mathematics Research,Bell Labs, 700 Mountain Avenue, Murray Hill, NJ07974. E-mail: sanjeev@research.bell-labs.com. URL:http://cm.bell-labs.com/who/sanjeev.

are not in the cache at the moment they are requested(i.e., when a page fault occurs), the overall access timefor the sequence may be dramatically reduced even witha fairly small cache. This basic and obvious principleof system design has proved itself in many situations.The reduction in total access time depends upon thepage replacement policy, in other words, the method ofdeciding upon which cached page(s) to ush wheneverspace is needed in the cache for a new page. The onlineversion of this problem is of particular interest, and hasbeen extensively studied (see [9], for instance).When all pages have the same size and cost (thecost refers to the time delay in bringing the page fromthe slow memory), then the optimal o�ine policy isBelady's Rule [2]: always ush the cached page whosenext request is furthest in the future. The popularonline strategy is LRU: ush the cached page thatwas least recently used. The heuristic justi�cation forLRU is that real-life request sequences often exhibitthe property that the \past predicts the future." Thusa page that has not been accessed in the recent pastis unlikely to be accessed in the near future. Thecompetitive ratio of LRU is M [14], where M is thethe cache size, and no deterministic online strategy cando any better. Randomized strategies can achieve muchbetter performance. The randomized marking algorithmby Fiat et al. [5] has a competitive ratio 2 logM againstoblivious adversaries. Algorithms achieving an optimalratio of logM were given in [12, 1]. Fur further work onthe uniform paging problem see, e.g., [3, 6, 10, 11, 15,16]. This paper studies page replacement policies for theGeneral Caching Problem, when the pages either havevarying sizes, or varying costs, or vary in both size andcosts. This problem arises, among other places, in cachedesign for networked �le systems or the world-wide web.For example, HTTP, the current protocol for handlingpage requests on the web, treats a web page |be itan image �le or a text �le| as an indivisible object.Similarly, the transmission time for a web page dependson whether it is on a server in Asia or in America,and also on transient conditions such as server loador network congestion. The current paper will makethe simplifying assumption that the cost of obtaining apage, though arbitrary, is a known quantity.1

2 Irani [8] recently studied special cases of this prob-lem | the Bit Model and the Fault Model (de�ned be-low) | and Young [17] studied deterministic online al-gorithms for the general problem. Irani points out thatBelady's rule is not optimal if page sizes and costs di�er,and gives O(logm)-approximation algorithms for the of-ine case of the Bit and the Fault models, wherem is theratio of the cache size to the size of the smallest page.Building on the insight obtained from the o�ine al-gorithms, Irani designs O(log2m)-competitive random-ized online algorithms for these problems. Young [17]extends this work to design loosely competitive algo-rithms, whereby the memory used by the algorithm,M , is somewhat more than Mo� , the memory used bythe o�ine optimum. Young's deterministic online al-gorithm for the general caching algorithm incurs a costM=(M�Mo�+1) times the cost of the o�ine optimum.Although the online cases of the general cachingproblem are of greatest interest, as a �rst step one maytry to gain insight by designing a good approximationalgorithm for the o�ine case. Our �rst main resulthere is an O(1)-approximation to the general cachingproblem that uses only a small amount of additionalmemory|O(1) times the size of the largest page. (Notethat in practice, the largest page will be a tiny part ofthe cache; less than 1%.) This is to be contrasted withprevious results of this avor which require
(M) ad-ditional memory, but achieve a constant factor compet-itiveness even working in the online setting [17]. Oursecond main result here is a technique for e�cientlytranslating any solution using only a small amount ofadditional memory to one that uses no extra memory.We use this technique to obtain an O(log(M + C))-approximation to the general caching problem when noadditional memory is allowed, here C denotes the largestpage cost. To our knowledge, prior to our work no non-trivial guarantees were known for the general cachingproblem in the o�ine setting.1.1 Problem Statement and ResultsIn what follows, we formally state our problem and givean overview of our results. The setup for a generalcaching problem as follows. We are given a cachecapacityM , a sequence � of page requests, and for eachpage p in this sequence a cost, denoted by cost(p), anda size, denoted by size(p) are associated. The goal isto decide on which pages to retain in the cache at everytime step so as to minimize the cost of servicing thepage faults. We denote by OPT(�) the optimal pagingsolution as well the cost of the optimal solution, and usejust OPT when the sequence � is clear by the context.Finally, let S be the largest page size and C be thelargest page fault cost.

The Caching Models: There are four models ofcaching which have been studied before.1. The Bit Model[8]: In the Bit Model, for eachpage p, we have cost(p) = size(p). (The delay inbringing the page into memory depends only uponits size.)2. The Fault Model[8]: In the Fault Model, for eachpage p, we have cost(p) = 1 while the sizes can bearbitrary.3. The Cost Model: In the Cost Model, for eachpage p, we have size(p) = 1 while the costs canbe arbitrary. This problem variant, also knownas weighted caching, is a special instance of thek-server problem and the o�ine version can beoptimally solved in polynomial time [4].4. The General Model: Finally, in the GeneralModel, for each page p, both the cost and sizecan be arbitrary. A loosely competitive onlinealgorithm with competitive ratioM=(M�Mo�+1)is known [17].Our �rst main result is for the case when weare allowed a small amount of additional memory|say, O(1) times the size of the largest page. Ourapproach is to formulate the caching problems as integerlinear programs and then solve a relaxation to obtaina fractional optimal solution (see Section 2.1). Theintegrality gap of the linear programs is unbounded,but nevertheless we can show the following result. Westate the Theorem in a very general way using twoparameters, � and �. Parameter � allows for varyingthe approximation ratio whereas � allows for varyingthe amount of additional memory.Theorem 1.1. For each of the above problems thereis a polynomial-time algorithm that, given any requestsequence, �nds a solution of cost c1 � OPTLP, whereOPTLP is the cost of the fractional solution (withmemory M). The solution uses M + c2 � S memory,where S is the size of the largest page in the sequence.The values of c1 and c2 are as follows for the variousmodels. Let � and � be real numbers with � > 0 and0 < � � 1.1. c1 = 1=� and c2 = � for the Bit Model,2. c1 = (1 + �)=� and c2 = �(1 + 1=(p1 + � � 1)) forthe Fault Model,3. c1 = (4+ �)=� and c2 = 2�(1+6=�) for the GeneralModel.

3The c1; c2 values in the above theorem expresstrade-o�s between the approximation ratio and the ad-ditional memory needed. For example, in the Bit Model,we can get a solution with cost OPTLP using at most Sadditional memory. In the Fault model, we can get a so-lution with cost 4OPTLP using at most 2S additionalmemory. The approximation ratio can be made arbi-trarily close to 1 by using c2S additional memory for alarge enough c2. In the General Model we obtain a solu-tion of 20OPTLP using 2S additional memory, but wecan achieve approximation ratios arbitrarily close to 4.Our next main result is for the case when noadditional memory is allowed.Theorem 1.2. The caching problem in the GeneralModel has an O(log(M + C))-approximation.Finally in Section 4 we present a randomized onlinealgorithm for the Bit model that achieves a competitiveratio of O(ln(1 + 1=c)) while using M(1 + c) memory.1.2 Ideas and TechniquesWe mention here two central ideas of our paper. Theo-rem 1.1 relies on a method to rounding fractional solu-tions with only a small amount of additional memory.Some ideas from our rounding procedure may be ap-plicable to other sequencing problems. Theorem 1.2 isbased on a transformation of the caching problem intoa variant of the set cover problem. This transformationgives a canonical procedure to convert any caching algo-rithm that uses some extra memory into one that obeysthe memory constraint strictly, with some degradationin performance.1.3 OrganizationThe remainder of the paper is organized as follows. Sec-tion 2 describes our techniques for rounding fractionalsolution to the caching problem and establishes Theo-rem 1.1. Section 3 describes our paradigm for mem-ory reduction and establishes Theorem 1.2. Section 4describes the randomized online algorithm for the Bitmodel. We conclude with some remarks in Section 5.2 Rounding of Fractional Solutions2.1 The LP FormulationLet the request sequence be � = �1; �2; :::; �n. For eachpage p and time t when it is accessed (i.e. �t = p), wede�ne Jp;t = ft+ 1; t+ 2; :::; t0 � 1g where t0 is the �rsttime the page p is accessed after time t; if such a time t0does not exist then the set Jp;t is empty. It is now easyto see that the following integer linear program gives usthe optimal paging strategy:Minimize Pnt=1 cost(�t)(1� x�t ;t�1)

Subject to: xp;t = 1 8 p; t such that �t = pxp;t+1 = xp;t 8 p where t 2 Jp;tPp size(p)xp;t � M 8 txp;t 2 f0; 1g 8 p; txp;0 = 0 8 pReplacing the constraint xp;t 2 f0; 1g by the con-straint 0 � xp;t � 1, we obtain a linear programmingrelaxation that can be solved in polynomial time. Fromhere on, we denote an optimal LP relaxation solutionby OPTLP.The integrality gap, i.e., OPT=OPTLP, can be
(M). For example, in the Bit model, suppose thesequence consists of repeated requests to 10 pages eachof size M=10 + 1. OPT would be able to �t at most9 pages into cache and OPTLP would be able to �tall but 10 units. In this case, note that allowing our(integral) algorithm just 10 extra units of space wouldallow it to lower the cost to OPTLP. Our roundingscheme suggests that things never get much worse: forany instance of the general caching problem, allowingO(S) extra space allows us to get an integral solutionof cost O(OPTLP).The rounding will only change the value of frac-tional variables; it will never modify variables that are0=1. A fractional page is a shorthand for \a page p anda time interval Jp;t during which xp;t is neither 0 nor 1."When we say that a fractional page is rounded up (resp.,rounded down) we mean that xp;t is set to 1 (resp., 0)for the entire interval.2.2 Rounding for the Bit ModelIn this section we describe the rounding algorithmfor the Bit Model. The algorithm uses the fact thatthe LP formulation of page replacement has a simpleinterpretation in the Bit Model. Speci�cally, if weimagine the pages being split into pieces of size � where �is in�nitesimally small, then the LP can be viewed as theo�ine page replacement problem for equal-cost pages ofsize �. It can be solved by using Belady's rule on thesesmall pages. From now on we assume the fractionaloptimum is computed this way, whence the followingLemma is immediate.Lemma 2.1. Suppose pages p and q are requested attimes t and s respectively, and Jq;s � Jp;t. If xp;t > 0in the optimum solution, then xq;s+1 = 1.Proof. During the time interval Jq;s, page p has a higherpriority of being evicted than q since its next request isfurther in the future. Therefore the optimum would

41. Extra := 0;2. For t = 1 to n do3. If page p is accessed at time (t� 1) and 0 < xp;t < 1 then4. If Extra+ size(p)(1� xp;t) � �S then5. Extra := Extra+ size(p) � (1� xp;t);6. xp;t := 1 for all t 2 Jp;t�1; /* Round up p and credit cost savings to Extra */7. else8. Extra := Extra� size(p) � xp;t;9. xp;t := 0 for all t 2 Jp;t�1; /* Round down p and charge cost increase to Extra */Figure 1: The rounding proceduredecrease the portion of p that is in cache before itdecreases the portion of q. 2Our rounding algorithm produces a solution thatmay need up to M + �S memory but incurs cost1�OPTLP, for any 0 < � � 1. Consider a �xed �,0 < � � 1. In a �rst step, the algorithm rounds downall fractional variables xp;t with xp;t < 1 � �, i.e., eachof these variable is set to 0. This increases the cost ofthe solution by at most a factor of 1=� since at the nextaccess of any such page p, OPTLP pays at least a costof � � cost(p). Let OPT�LP be this new solution.Given OPT�LP, we apply a rounding proceduredescribed in Figure 1. The procedure sweeps over thefractional xp;t's from time t = 1 to t = n. At each step,it rounds up a fractional page p if, after the rounding,the rounded up pages occupy extra memory of no morethan � � S. Otherwise, the page is rounded down.We �rst observe that 0 � Extra � � �S always. Thesecond inequality follows from line 4 of the algorithm.Note that a page is only rounded down if Extra +size(p)(1�xp;t) > � �S, which is equivalent to Extra >� � S � size(p)(1 � xp;t). Since 1 � xp;t � � andsize(p) � S, the �rst inequality follows.Theorem 2.1. For any 0 < � � 1, we can con-struct a rounded solution that incurs a cost of at most(1=�)OPTLP, and that uses an additional memory of atmost �S.Proof. Consider the rounded solution obtained by ap-plying the above rounding procedure to OPT�LP. We�rst show that at any time the total extra space usedby the rounded solution is at most the value of Extra.We prove this invariant by induction on time t. Supposeit is true for up to time t�1. There are two possibilitiesto consider at time t.Extra is incremented at time t: Then for somepage p that was accessed at time t � 1, we must haveset the fractional variable xp;t to 1. This requires anextra space of (1� xp;t) � size(p), which is equal to the

amount by which we increment Extra. The invariant ismaintained.Extra is decremented at time t: Then for somepage q that was accessed at time t � 1, the fractionalvariable xq;t is set to 0. This frees up a space equalto xq;t � size(q), and furthermore, this space is availablefor the rest of the time interval Jq;t. Note that at timet there may already by rounded-up pages in memory.However, Lemma 2.1 implies that all those pages willnext be requested during Jq;t. Thus the space freed upby q can be used by all those pages, and the availablespace truly becomes at least Extra+xq;t �size(q). Also,when q is requested next, the rounded-up pages free therequired space again so that q can be loaded into cache.This completes the induction.It remains to analyze the cost of the roundedsolution. Let Eu be the total value by which Extrais ever incremented, i.e, Eu is the sum of the valuessize(p)(1 � xp;t) considering all executions of line 5.Similarly, let Ed be the total value by which Extra isever decremented. Compared to OPT�LP, our roundedsolution saves a cost of Eu and incurs an extra cost ofEd. Since Eu �Ed is equal to the �nal value of Extra,which is non-negative, the total cost of the roundedsolution is bounded byOPT�LP �Eu +Ed � (1=�)OPTLP: 22.3 Rounding for the Fault modelWe partition the pages into blogd Sc+1 classes, for somereal number d > 1, such that class Ci, 0 � i � blogd Sc,contains pages p with Sd�i � size(p) > Sd�(i+1). LetSi be the size of the largest page and si be the size ofthe smallest page in Ci.We �rst modify the optimal LP relaxation solutionso that Lemma 2.1 holds for pages from the same class.For every class Ci we sweep over the fractional variablesxt;p of pages from Ci. Whenever we encounter a variablexp;t+1, 0 < xp;t+1 < 1, such that p was requestedat time t, we check if there are variables xq;s+1, with

5q 2 Ci and 0 < xq;s+1 < 1, such that q was requestedat time s and Jq;s � Jp;t. If so, we increase the valuexq;s+1 and decrease the value of xp;t+1 until xq;s+1 = 1or xp:t+1 = 0. To maintain the second constraint ofour linear program we also increase the other xq;s, withs 2 Jq;s, and decrease the other xp;t, with t 2 Jp;t.More speci�cally, let � = minf(1 �xq;s+1)size(q); xp;t+1size(p)g. We increase xq;s by�=size(q), for all s 2 Jq;s, and decrease xp;t by�=size(p), for all t 2 Jp;t. Clearly, this modi�cationdoes not need any additional space because Jq;s � Jp;t.The cost of the solution decreases by �=size(q) andincreases by �=size(p) < d� � size(q). The net increaseis at most (d � 1)�=size(q). Note that the optimal LPrelaxation solution incurs a cost of �=size(q) in loadingan amount of � of page q into cache on request �(s0),where s0 is the time of the next request to q after s.We conclude that overall modi�ed solution is feasibleand incurs a cost of at most dOPTLP.Given this modi�ed solution, we apply the roundingalgorithm described in the previous section separatelyfor each class Ci. First we round down all xp;t withxp;t < 1 � �, for a �xed 0 < � � 1. Let OPT�LP bethe resulting solution. Then we execute the roundingprocedure in Figure 1 for each class Ci, where in line 4of the code �S is replaced by �Si.Theorem 2.2. For any � > 0 and 0 < � � 1, we canconstruct a rounded solution that incurs a cost of atmost 1+�� OPTLP and uses an additional memory of atmost �(1 + 1=(p1 + �� 1))S.Proof. Consider the rounded solution obtained by ap-plying the rounding algorithm to OPT�LP for each classCi. As in the previous section we can show that, for eachCi, 0 � Extra � � � Si always and the total extra spaceneeded by the algorithm in rounding pages from classCi is no more than Extra. Thus, the total extra spacerequired is no more than �Pi�0 Si � � � SPi�0 d�i <�dS=(d� 1).We show that the total cost of the rounded solutionis at most dOPT�LP. SinceOPT�LP � (d=�)OPTLP, thetheorem then follows by setting d = p1 + �. Considera �xed class Ci. Let OPT�;iLP be the cost the solutionOPT�LP incurs in serving requests to pages from classCi. Let Eiu be the total value by which Extra isever incremented i.e, Eiu is the sum of the valuessize(p)(1� xp;t) considering all executions of line 5 forclass Ci. Similarly, let Eid be the total value by whichExtra is ever decremented. The total cost incurred bythe rounded solution in serving requests to pages fromCi is at mostOPT�;iLP �Eiu=Si +Eid=si(2.1)

� OPT�;iLP �Eiu=Si + dEid=Si� OPT�;iLP + (d� 1)Eiu=Si� dOPT�;iLP:The second inequality follows because Eiu � Eid. Thethird inequality holds because OPT�;iLP � Eiu=Si. Thedesired bound follows by summing (2.1) for all classes.22.4 Rounding for the General ModelLetOPTLP denote the fractional optimum (using mem-oryM). We show how to round the optimum fractionalsolution so that, for any � > 0 and 0 < � � 1, the re-sulting integral solution uses at most 2�S(1+6=�) extraspace, where S is the size of the largest page, and in-curs a cost of at most 4+�� OPTLP. Thus we can achievean approximation factor arbitrarily close to 4. Fix a0 < � � 1. We �rst modify the fractional solution sothat all fractional xp;t's are at least 1� �; any variablethat is at less than 1 � � is rounded down to 0. Thisincreases the cost of the solution by at most a factor 1=�We note that Lemma 2.1 is false for the general case,and so the rounding relies on a more global view of theoptimum solution, namely an updown sequence.Definition 2.1. For any pair of positive reals c1; c2,with c1 < c2, an (c1; c2)-updown sequence in thefractional solution is a pair of disjoint subsequences(A;B) of fractional pages such that if every page in A isrounded up and every page in B is rounded down, thenfor some �xed c, c1 < c < c2, and every instant t, oneof the following is true.1. The total extra space needed by A is between c1 andc, and the total extra space created by B is at leastc and at most c2.2. The total extra space needed by A is less than c1,and that created by B zero.Lemma 2.2. Let (A;B) be any (c1; c2)-updownsequencein the fractional optimum. Let uA be the cost saved byrounding up A and dB be the cost incurred by roundingdown B. Then dB � (c2=c1)uA:Proof. We use the fact that if the fractional solutionis optimum, then any \perturbations" to it will neverdecrease the cost. Imagine the following perturbation,where � > 0 is in�nitesimally small. For each pagein A, if x is the fraction allocated to any page in A,then reduce x by x�=c1. The additional cost incurred isuA�=c1. For each page in B, if y is its allocation thenincrease y by y�=c2. The cost saved is dB�=c2. By thede�nition of an updown sequence, at every time step

6one of the two must happen: (i) The space requirementfor A reduces by between � and c�=c1 > �. The spacerequirement for B increases by between c�=c2 < � and �.(ii) The space requirement for A reduces by some � �but the space requirement for B does not increase.In both cases, the perturbed solution does not needany new space, so it is feasible. Hence we have(additional cost incurred)� (cost saved) � 0;thus implying uA�c1 � dB�c2 � 0:Hence dB=c2 � uA=c1. 2Now we are ready to describe our Rounding Algo-rithm. Our algorithm is based on the following lemmawhose proof appears later.Lemma 2.3. Given any fractional solution and for anyc > 0, we can in polynomial time decompose the setof fractional pages into disjoint (c; 4c+6�S) updownse-quences (A1; B1); (A2; B2); : : :, where S is the size of thelargest page. These sequences also have the followingproperty. Suppose for some time instant t there is aj such that the space provided by rounding down pagesin Bj is less than the space required by rounding up thepages in Aj . Then at that instant t, there are no pages inAj+1; Aj+2; : : : and Bj+1; Bj+2; : : :, and the total spaceneeded by rounding up pages in Aj ; Aj+1; Aj+2; : : : ; isat most 2c+ 2�S.The Rounding Algorithm: We use the algorithm ofLemma 2.3 to �nd the disjoint (c; 4c+ 6�S) updownse-quences (A1; B1); (A2; B2); : : :. We round up all pagesin the Ai's and round down all pages in the Bi's.We claim that we �nish with an integral solutionof cost at most 4 + 6�S=c times the fractional cost westarted with. This is because the cost saved by roundingup all Ai's is a lower bound on the fractional cost, andthe additional cost incurred by rounding down all theBi's is at most 4 + 6�S=c times larger, see Lemma 2.2.Since there was a factor 1=� increase in the cost ofour solution due to rounding down of all variables withvalue less than 1��, the �nal cost is 4+�� OPTLP, where� = 6�S=c.We have to analyze the extra space needed bythe new solution. Consider a time instant t and anindex j. If the space provided by rounding down thepages in Bj is at least as large as the space requiredby rounding up the pages in Aj , then no additionalmemory is required in rounding the pages in Aj and Bj .Lemma 2.3 assures that if the space provided by pages

in Bj is not su�cient, then the total space needed bythe pages in Aj ; Aj+1; Aj+2; : : : ; is also at most 2c+2�S.Substituting c by 6�S=c, we obtain an additional spacerequirement of 2�(1 + 6=�)S.Proof of Lemma 2.3. In order to establish Lemma 2.3,we need to describe a procedure for constructing thesequences (Ai; Bi). We need the following two comple-mentary procedures.Algorithm Round-up(c): Given a set of fractionalpages, the algorithm tries to produce a subsequenceof pages which, if rounded up, require between c and2c + 2�S space. We sweep over the pages from timet = 0 to t = n. Whenever the space needed by the pagesin the current subsequence is less than c, we round upthe page whose next request is farthest in the future.Algorithm Round-down(c): Given a set of fractionalpages, the algorithm tries to produce a subsequence ofpages which, if rounded down, create between c and2c + 2�S space. The algorithm is the same as above,but pages are rounded down.Do for i = 1; 2; : : : until there are no more fractionalpages: Run Round-up(c) and let Ai be the subsequenceproduced by it. Remove all pages in Ai from the set.Then run Round-down(2c + 2�S) and let Bi be thesubsequence produced by it. Remove all pages in Bifrom the set. The next lemma shows a useful propertyof the above two procedures.Lemma 2.4. In a sequence A constructed by Round-up(c), at any time the space needed by the pages roundedup is at most 2c+ 2�S. (A similar statement holds fora sequence B constructed by Round-down(c).)Proof. While A is constructed, we imagine that apointer moves from left to right along the request se-quence. The pointer is equal to the time step whereRound-up(c) is currently located. Consider any time t.While the pointer is still to the left of t, the space neededat time t by pages rounded up is at most c+�S. The ad-ditive term �S is due to the fact that initially, we rounddown all fractional pages that are present to an extentof less than 1 � �; thus for each page rounded up, thespace needed is at most �S. We will show that while thepointer is to the right of t, an additional space of at mostc+�S can be added at time t. Assume, on the contrary,that an additional space of more than c + �S is addedand let t0, t0 > t, be the �rst pointer position when thishappens. At time t0, Round-up(c) rounds up a page pthat also needs space at time t, i.e., p is not requestedbetween t and t0 and, hence, is available for roundingthroughout the interval [t; t0]. After the rounding of p,the extra space needed by the rounded up pages at timet0 is no more than c+ �S. Since at time t an additional

7space of more than c + �S is needed, there must exista page p0 that was rounded up at some t00, t < t00 < t0,such that p0 needs extra space at time t but not at timet0. Thus p0 is requested during [t0; t0]. This is a con-tradiction because Round-up(c) always rounds up thepages whose next request is farthest in the future. Thatis, at time t00 the algorithm would round p instead of p0.2 To �nish the proof of Lemma 2.3, we need toprove the remaining property of the sequences. ByLemma 2.4, for any j, the pages rounded up in Aj needan additional space of at most 2c + 2�S. Suppose jis such that for some time interval [t; t0], pages in Bjprovide less than 2c+2�S space if rounded down. Thenby the de�nition of the algorithm Round-down, which isinvoked with parameter 2c+2�S, the total space neededby the remaining fractional pages throughout [t; t0] is0, i.e., there are no fractional pages in Aj+1; Aj+2; : : :during [t; t0]. Hence 2c + 2�S is an upper bound onthe total space required in [t; t0] when rounding upAj ; Aj+1; : : : ;. 2We summarize the main result of this section.Theorem 2.3. For any � > 0 and 0 < � � 1, we canconstruct a rounded solution that incurs a cost of atmost 4+�� OPTLP and that uses an additional memoryof at most 2�(1 + 6=�)S.3 A Paradigm for Memory ReductionIn this section we design approximation algorithms thatdo not exceed the stated memory. We do this bypruning our earlier solutions. Note that because of theunbounded integrality gap mentioned earlier, we haveto compare the cost of the �nal solution not to OPTLP(as we did before) but to OPT. In the general model,we can convert any solution that uses excess memoryto a solution using no extra memory such that theperformance degrades by at most a factor of O(log(M+C)) (in the General Model). We can improve theguarantee in the special case when the excess memoryused at any time is bounded by a constant number ofmemory units; then the cost increase is O(OPT).3.1 The Basic FrameworkConsider an input sequence � = �1; �2; :::; �n. Let P bea paging solution for � obtained via LP rounding (orin some other manner) that uses some extra pages. Forour purposes, it will be convenient to view the solutionP as a collection of labeled intervals, say fJ1; J2; :::g,where each labeled interval Ji is speci�ed as a 3-tupleof the form Ji = hp; t1; t2i indicating that� page p resides in the memory from time t1 through

time t2,� �t1�1 = �t2+1 = p, and� �t 6= p for t1 � t � t2.We refer to page p as the label of interval Ji, andde�ne the cost of Ji to be cost(p). Let M [t] denotethe memory used by the solution P at time t 2 [1::n];thenM [t] = size(�t)+Php;t1;t2i2P; t1�t�t2 size(p). LetE[t] = maxfM [t] � M; 0g denote the excess memoryused by P at time t. We now formally state the memoryreduction problem:Definition 3.1. (Memory Reduction Problem) Givena solution P and an excess memory sequence fE[t]gnt=1,the memory reduction problem is to �nd a set Y � P oflabeled intervals such thatPhp;t1;t2i2Y; t1�t�t2 size(p) �E[t] for all t 2 [1::n], and Php;t1;t2i2Y cost(p) isminimized.The memory reduction problem above can beviewed as a set covering problem.Definition 3.2. (Multiset Multicover Problem) Aninstance of the multiset multicover problem com-prises of a ground set U , a family of multisets S =fS1; S2; :::; Smg where each Si is a multiset of U , andtwo functions f : U ! N and g : S ! N . The goal isto �nd a subset X � S such that every element u 2 Uis covered at least f(u) times by the sets in X, and thecost PS2X g(S) is minimized.Proposition 3.1. [13] The multiset multicover prob-lem has an O(log jU j)-approximation.Given our paging solution P , we construct an in-stance IP of the multiset multicover problem as follows:� The ground set U corresponds to time steps1; 2; :::; n; de�ne f(t) = E[t] for 1 � t � n.� For each interval J = hp; t1; t2i in P , there is a setSJ that comprises of size(p) copies of each elementt that occurs in the set ft j (t1 � t � t2)^E[t] > 0g;de�ne g(SJ) = cost(p).Lemma 3.1. Let X be a solution to the instance IP ofthe multiset multicover problem. Then removing all la-beled intervals J such that SJ 2 X gives a solution ofidentical cost to the memory reduction problem. Con-versely, let Y be a solution to the memory reductionproblem, then the collection of sets SJ such that J 2 Y ,gives a solution of identical cost to the multiset multi-cover instance IP . Thus the cost of optimal solutionsfor the two instances is identical.

8Lemma 3.2. Let P be a paging solution for a requestsequence � which may violate the memory constraints ateach time step in an arbitrary manner. Then the costof an optimal solution to the memory reduction problemde�ned by P is bounded by OPT(�), the cost of theoptimal paging solution on �.Combining Proposition 3.1 with Lemmas 3.1and 3.2, we can conclude the following theorem.Theorem 3.1. Let P be a paging solution for a requestsequence � which may arbitrarily violate the memoryconstraints. Then in polynomial time we can transformP into a solution P 0 which never violates the memoryconstraint and has cost CP 0 � CP + O(OPT(�) logn)where n is the length of the request sequence.While the above theorem yields a nice tool for relat-ing the cost of memory reduction on an arbitrary solu-tion to the optimal paging cost, unfortunately, the lognfactor depends on the length of the paging sequence. Wenext show how this factor can be improved to an O(1)factor when the total amount of excess memory used atany step is O(1), and to an O(log(M + C)) factor ingeneral.3.2 O(1) Excess Units of MemoryWe now examine the case when at any time step thetotal amount of excess memory used is at most � units,for some constant �. We will show that a simpledynamic programming approach can solve the memoryreduction problem at a total cost of �OPT(�).We �rst describe an optimal procedure to performmemory reduction when the excess memory used atany step is at most 1 unit. We maintain an arrayS[1::n] where S[t] stores the optimal cost of memoryreduction on solution P restricted to time steps tthrough n. Initialize S[n] = 0 and suppose we havealready computed the array entries S[t+1] through S[n].To compute S[t], we proceed as follows. Let It denoteall intervals J = hp; t1; t2i 2 P such that t1 � t � t2. IfE[t] = 0 then S[t] = S[t+ 1], otherwiseS[t] = minhp;t1;t2i2Itfcost(p) + S[t2 + 1]g:Thus S[1] contains the optimal cost of memory reduc-tion on the entire sequence �. This computation canbe performed in time O(n2). Finally, in order to obtainthe actual set of pages evicted in the optimal memoryreduction, we maintain an auxiliary array R[1::n]. IfS[t] = S[t+ 1], then R[t] = ;, otherwise R[t] stores thepage p chosen for eviction at time t; this is the page thatyields the least value in the computation of S[t].

Finally, in order to deal with an excess memory ofupto � units, we can simply invoke the above procedure� times. This gives us the following theorem.Theorem 3.2. Let P be a paging solution for a requestsequence � which may violate the memory constraintsat each time step by at most � units of memory. Thenin polynomial time we can transform P into anothersolution P 0 which never violates the memory constraintand has cost CP 0 � CP + �OPT(�).3.3 The General ModelThe logn factor in Theorem 3.1 is a consequence ofthe large universe size (an element for every time step)that results due to the global nature of our construction.In order to get around this obstacle, we create a more\localized" reduction where we transform the memoryreduction problem into several instances of multisetmulticover problem, each with a small universe. Inparticular, we will partition our input sequence intoblocks of length O((MC)O(1)) and create an instance ofthe multiset multicover problem for each such block. Indoing so we explicitly use the structure underlying theLP solution and our rounding scheme, described earlier.Consider an LP solution; it is speci�ed as a sequencefxp;tgnt=1 for each page p in the input sequence. Tobegin with, we make the simplifying assumption thateach variable xp;t satis�es the condition that xp;t 62(1 � 1=M; 1), that is, no fractional variable takes avalue \too close" to 1. We will later show how tohandle the situation when this is not the case. Nowobserve that in our rounding algorithms described inthe previous section, the only time t when a memoryviolation might be introduced is when we round up somepositive fractional variable xp;t (implicitly rounding upxp;t+1; :::; xp;t0�1 where t0 is the �rst time that p isaccessed after time t� 1). Thus we know that the costincurred by the LP solution at time t0 is cost(p)(1 �xp;t) � 1=M . It will be convenient for our purposes toimagine this cost being paid at time t itself. Now totransform our memory reduction problem to a multisetmulticover problem, we only consider all such times tat which our rounding algorithm rounds upwards andcreates a demand for excess memory. Let T denote theset of all such time steps. It is easy to verify that asequence of page evictions makes P satisfy the memoryconstraints for each t 2 [1::n] if and only if it does so foreach t 2 T . Let n0 denote jT j and assume w.l.o.g. thatT = f1; 2; :::; n0g. As before, we de�neM [t] and E[t] fort 2 T , and proceed as follows:1. Partition T into contiguous blocks of length M2C,except possibly the last one.

92. Create a multiset multicover instance for each blockas described earlier in Section 3.1.3. Solve each instance created above and take theintervals corresponding to the union of the chosensets as the �nal solution.Since the universe size is bounded by M2C for eachblock, we get an O(log(M + C)) approximation withineach block. On the other hand, observe that solving themultiset multicover instances independently may leadto a solution that is potentially much more expensivethan a global optimal solution. This is due to the factthat a set may cut across many blocks. In particular,the extra cost incurred due to this partitioning schemecould be as large as the total cost of pages in thememory at the moment when a block ends, summedover all the blocks. However notice that since the totalmemory used at any time by our rounding of the LPis O(M), the extra cost incurred per block due to thepartitioning can be bounded by O(MC). On the otherhand, the LP solution itself incurs a cost of
(MC)in each block. Thus this extra cost incurred can beamortized over the cost of the LP solution (and henceOPT(�)) itself. This gives us an algorithm that willperform the desired memory reduction at a total cost ofO(OPT(�) log(MC)).Finally, we need to show how to handle the casewhen some fractional variables take values in the openinterval (1� 1=M; 1). We start by rounding up all suchvariables, and in addition, round down any variablesthat have value less than 1=2. The rounding up step cre-ates a violation of the memory constraint by at most 1unit of memory at any time t. While the rounding downincreases the cost of our solution by at most a factor oftwo. Next we use the dynamic programming algorithmdescribed in Section 3.2 to create a new solution thatsatis�es the memory constraints exactly and any frac-tional variables remaining satisfy the desired property ofnot taking a value in the interval (1�1=M; 1). The costincurred in this step is O(OPT(�)). We now proceedas described above. Putting it all together,Theorem 3.3. Let P be a paging solution for a requestsequence � which may violate the memory constraints ateach time step in an arbitrary manner. Then in poly-nomial time we can transform P into another solutionP 0 which never violates the memory constraint and hascost CP 0 � CP +O(OPT(�) log(M + C)).Combining the above theorem with the roundingprocedure of Section 2.4, we get:Theorem 3.4. The caching problem in the GeneralModel has an O(log(M + C))-approximation.

4 A Randomized Online Algorithm for the BitModelIn this section we use the intuition derived from ouro�ine algorithms to derive an online algorithm for theBit Model. If OPT denotes the optimum o�ine costusing memory Mo� , then our online algorithm achievescost O(log(1 + 1=c))OPT using excess memory c �M ,as long as c �M > S, where S is the size of the largestpage. This matches the best such result known for theuniform case (Young [15], modifying an analysis of Fiatet al. [5]).Our online algorithm for the Bit Model is a modi-�cation of the Marking algorithm due to Fiat et al. [5],which we review briey. The originalMarking algorithmworks for pages of uniform size and operates in a seriesof phases. At the beginning of each phase, all pages areunmarked. Whenever a page is requested, it is marked.If there is a request to a page not in cache, the algorithmchooses a page uniformly at random for among the un-marked pages in cache and evicts it. A phase ends whenthere is a request to a page not in cache and there areno unmarked pages in cache. At that point all marksare erased and a new phase is started.The online algorithm for the Bit Model makes useof an auxiliary algorithm. This algorithm assumes thatpages consist of in�nitesimally small pages of size � thatcan be loaded an evicted independently. We refer tothese subpages as �-pages.Algorithm Fractional: Given a request sequence tothe original pages, replace each request to a page p by asequence of requests to the corresponding �-pages. Runthe Marking algorithm on that request sequence butwith the following modi�cation: A phase ends when,for the �rst time, there is a request to an �-page notin cache and the size of the page the �-page belongs to,plus the total size of the marked pages in cache exceedsthe cache capacity. At that time evict pages that werenot requested in the phase and use the free space to loadthe �rst missing pages in the next phase.The analysis given by Young [15] for the Markingalgorithm implies that if M�S > Mo� , then Fractionalachieves a competitive ratio of 2 ln M�SM�S�Moff + 1 whenM�SM�S�Moff > e and 2 otherwise. Here M and Mo� de-note the cache size of the online and o�ine algorithms,respectively.The integral algorithm for the Bit model dividesthe pages into blogd Sc+1 classes, for some d > 1, suchthat class Ci, 0 � i � blogd Sc, contains pages p withSd�i � size(p) > Sd�(i+1). Let Si be the size of thelargest page and si be the size of the smallest page inCi. In the following we call a page old if it was requestedin the previous phase but has not been requested in the

10current phase.Algorithm Integral: Given a request sequence, thealgorithm executes a marking strategy similar to Frac-tional . At any point in time the algorithm keeps trackof the moves Fractional would do assuming a cache ofcapacityM� dd�1S. If there is a request to a page p notin cache, the algorithm determines the total amount OFiof old pages from Ci that Fractional does not have incache when all requests to the �-pages of p are served.Let OIi be the total amount of old pages that Integraldoes not have in cache. Integral chooses b(OFi �OIi)=Sicpages uniformly at random from among the unmarked(i.e. old) pages in Ci that are in cache and loads p.We can show that the expected cost incurred byIntegral is at most d times the cost incurred by Frac-tional . Algorithm Integral may need more space thanFractional run on a cache of size M � dd�1S. Thisis because, for each class Ci, Integral might evict lessthan Fractional . However, for each Ci, the di�erenceis no more than Si. Thus, Integral needs at mostPi�0 Si = SPi�0 d�i < dd�1S more space than Frac-tional run on a cache of size M � dd�1S.Theorem 4.1. Let d > 1 and M 0 =M � (1+ dd�1)S IfMo� < M 0, then Integral achieves a competitive ratio of2d ln M 0M 0�Moff + d when M 0M 0�Moff > e and 2d otherwise.5 Concluding RemarksThe hardness results for caching problems are very in-conclusive. The NP-hardness result for the Bit modeluses a reduction from partition, which has pseu-dopolynomial algorithms. Thus a similar algorithm maywell exist for the Bit model. We do not know whetherthe Fault model is NP-hard.We imagine that the requirement for extra memoryin our O(1)-approximation algorithm for General Modelcould be removed. We showed in Section 3 a paradigmfor pruning a solution so as to reduce its memoryrequirement. This relies on a special kind of set coverproblem that may well have an O(1)-approximation. Ifso, we could start with the trivial solution (keep allpages in memory as long as they still have a futurereference; possibly exceeding the cache capacity), andapply the memory reduction technique to get an O(1)-approximation.Finally, the structure exposed by our rounding tech-nique {speci�cally, the updown sequences | may pro-vide insight into how to design a good online algorithm.References[1] D. Achlioptas, M. Chrobak and J. Noga. Com-petitive analysis of randomized paging algorithms.

Proc. Fourth Annual European Symp. on Algorithms(ESA), Springer LNCS, Vol. 1136, 419{430, 1996.[2] L.A. Belady. A study of replacement algorithms forvirtual storage computers. IBM Systems Journal, 5:78-101, 1966.[3] A. Borodin, S. Irani, P. Raghavan and B. Schieber.Competitive paging with locality of reference. Journalon Computer and System Sciences, 50:244{258, 1995.[4] M. Chrobak, H. Karlo�, T. Paye and S. Vishwanathan.New results on the server problem. SIAM Journal onDiscrete Mathematics, 4:172{181, 1991.[5] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch,D.D. Sleator and N.E. Young. Competitive paging al-gorithms. Journal of Algorithms, 12:685-699, 1991.[6] A. Fiat and Z. Rosen. Experimental studies of accessgraph based heuristics: Beating the LRU standard.Proc. 8th Annual ACM-SIAM Symp. on Discrete Al-gorithms, 63{72, 1997.[7] M. R. Garey and D. S. Johnson. Computersand Intractability: A Guide to the Theory of NP-completeness. Freeman, 1979.[8] S. Irani. Page replacement with multi-size pages andapplications to Web caching. Proc. 29th Annual ACMSymp. on Theory of Computing, 701{710, 1997.[9] S. Irani and A.R. Karlin. Online computation. In Ap-proximation Algorithms for NP-hard Problems. D. S.Hochbaum (Editor). PWS, Boston, MA, 1996.[10] S. Irani, A.R. Karlin and S. Phillips. Strongly compet-itive algorithms for paging with locality of reference.SIAM Journal on Computing, 25:477-497, 1996.[11] A. Karlin, S. Phillips and P. Raghavan. Markov paging.Proc. 33rd Annual Symp. on Foundations of ComputerScience, 24{27, 1992.[12] L.A. McGeoch and D.D. Sleator. A strongly competi-tive randomized paging algorithm. Algorithmica, 6:816-825, 1991.[13] S. Rajagopalan and V. Vazirani. Primal-dual RNCapproximation algorithms for (multi)-set (multi)-coverand covering integer programs. Proc. 34th AnnualSymp. on Foundations of Computer Science, 322{331,1993.[14] D.D. Sleator and R.E. Tarjan. Amortized e�ciency oflist update and paging rules. Communication of theACM, 28:202-208, 1985.[15] N. Young. On-line caching as cache size varies. Proc.2nd Annual ACM-SIAM Symp. on Discrete Algo-rithms, 241{250, 1991.[16] N. Young. The k-server dual and loose competitivenessfor paging. Algorithmica, 11:525{541, 1994.[17] N.E. Young. Online �le caching. Proc. 9th AnnualACM-SIAM Symp. on Discrete Algorithms, 82{86,1998.

