
Integrated Prefetching and Caching in Single and
Parallel Disk Systems

Susanne Albers
�

Institute for Computer Science
Freiburg University

Georges-Köhler-Allee 79
79110 Freiburg, Germany

salbers@informatik.uni-freiburg.de

Markus Büttner
Institute for Computer Science

Freiburg University
Georges-Köhler-Allee 79
79110 Freiburg, Germany

buettner@informatik.uni-freiburg.de

ABSTRACTWe study integrated prefething and ahing in single andparallel disk systems. There exist two very popular approx-imation algorithms alled Aggressive and Conservative forminimizing the total elapsed time in the single disk prob-lem. For D parallel disks, approximation algorithms areknown for both the elapsed time and stall time performanemeasures. In partiular, there exists a D-approximation al-gorithm for the stall time measure that uses D�1 additionalmemory loations in ahe.In the �rst part of the paper we investigate approximationalgorithms for the single disk problem. We give a re�nedanalysis of the Aggressive algorithm, showing that the orig-inal analysis was too pessimisti. We prove that our newbound is tight. Additionally we present a new family ofprefething and ahing strategies and give algorithms thatperform better than Aggressive and Conservative.In the seond part of the paper we investigate the problemof minimizing stall time in parallel disk systems. We presenta polynomial time algorithm for omputing a prefething/ahing shedule whose stall time is bounded by that of anoptimal solution. The shedule uses at most 3(D � 1) ex-tra memory loations in ahe. This is the �rst polynomialtime algorithm for omputing shedules with a minimumstall time. Our algorithm is based on the linear program-ming approah of [1℄. However, in order to ahieve minimumstall times, we introdue the new onept of synhronizedshedules in whih fethes on the D disks are performedompletely in parallel.
Categories and Subject DescriptorsF.2 [Analysis of Algorithms and Problem Complex-�Work supported by the Deutshe Forshungsgemeinshaft,projet projet AL 464/3-1, and by the EU, projets APPOLand APPOL II.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’03, June 7–9, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-661-7/03/0006 ...$5.00.

ity℄: Nonnumerial algorithms and problems
General TermsAlgorithms
KeywordsMagneti disk systems, prefething, ahing
1. INTRODUCTIONIn today's omputer systems there is a growing gap be-tween proessor speed and memory aess time. There-fore an e�etive utilization of ahes is inreasingly impor-tant. Prefething and ahing are well-known and exten-sively studied tehniques to improve the performane of mem-ory hierarhies. In prefething missing memory bloks areloaded from slow memory, e.g. a disk, into ahe before theiratual referene. Cahing strategies try to keep atively ref-erened bloks in ahe. The goal of both tools is to redueproessor stall times that are inurred when requested datais not available in ahe. Most of the previous work onprefething and ahing investigated these two tehniquesseparately, see e.g. [3, 4, 7, 8, 15, 18, 19℄ for some seletedpapers, although there is a strong orrelation. Prefethingbloks too early an ause the evition of bloks from ahereferened in the near future. Cahing bloks too long andiminish the e�et of prefething.In reent years, initiated by a paper of Cao et al. [5℄,there have been a number of studies that integrate prefeth-ing and ahing. The goal is to design strategies that oor-dinate prefething and ahing deisions. Both theoretialand experimental studies were presented [5, 6, 9, 10, 11, 12,13, 14, 16, 17℄. It was demonstrated that an integration ofprefething and ahing leads to a substantial improvementin systems performane.Cao et al. [5℄ introdued a model for integrated prefethingand ahing that we will also use in this paper. We are givena request sequene � = r1; : : : ; rn onsisting of n requests.Eah request spei�es a blok in the memory system. We�rst assume that all bloks reside on a single disk. To servea request the requested blok must be in ahe. The ahean simultaneously store k bloks. Serving a request to ablok in ahe takes 1 time unit. If a requested blok is notin ahe, then it must be fethed from disk, whih takes Ftime units. A feth operation may overlap with the servie of

requests to bloks already in ahe. If a feth, i.e. a prefeth,of a blok is initiated at least F requests before the refereneto the blok, then the blok is in ahe at the time of therequest and no proessor stall time is inurred. If the fethis started only i; i < F , requests before the referene, thenthe proessor has to stall for F � i time units until the fethis �nished. When a feth operation is initiated, a blokmust be evited from ahe to make room for the inomingblok. Thus a prefeth operation ritially a�ets the aheon�guration in that we must also drop a blok. The goalis to minimize the total proessor stall time inurred on theentire request sequene. This is equivalent to minimizingthe elapsed time, whih is the sum of the proessor stalltime and the length of the request sequene. We point outhere that the input � is ompletely known in advane.To illustrate the problem, onsider a small example. Let� = b1; b2; b3; b4; b4; b5; b1; b4; b4; b2. Assume that we have aahe of size k = 4 and that initially bloks b1; b2; b3 and b4reside in ahe. Let F = 4. The �rst missing blok is b5. Weould initiate the feth for b5 when starting the servie ofthe request to b2. The feth would be exeuted while servingrequests b2; b3; b4 and b4 and ompleted in time. However,when starting this feth, we an only evit b1, whih is re-quested again after b5. To load b1 we inur 3 units of stalltime as the feth an only overlap with the request to b5. Abetter option is to start the feth for b5 at the request to b3.We generate 1 unit of proessor stall before the request to b5but an evit b2, whih is requested again only at the end of� and an be fethed bak without inurring any stall time.The stall time of this seond solution is 1 time unit and theelapsed time is 11 time units.Integrated prefething and ahing is equally interestingin parallel disk systems. Suppose that we have D disks andthat eah memory blok resides on exatly one of the disks.Bloks from di�erent disks may be fethed in parallel. Whenstarting a feth, we an evit any blok from ahe, whihorresponds to the ase that bloks are read-only and donot have to be written bak to disk. Of ourse we an takeadvantage of the parallelism given by a multiple disk system.If the proessor inurs stall time to wait for the ompletionof a feth, then other fethes exeuted in parallel also makeprogress towards ompletion during that time. Again wewish to minimize the total stall time or elapsed time.As an example onsider two disks, where b1; b2; b3 and b4reside on disk 1 and 1; 2 and 3 reside on disk 2. Againk = 4 and F = 4. Suppose that initially b1; b2; 1 and 2 arein ahe and that � = b1; b2; 1; 2; b3; 3; b4. Disk 1 initiatesa feth for b3 at the request to b2; it evits b1. Disk 2 startsa feth for 3 one request later and evits b2. Disk 1 starts aseond feth at the request to b3 in order to load b4. Thereis 1 unit of stall time before the request to b3. The fethon disk 2 bene�ts from this time unit so that no additionalstall time is generated before the request to 3. The seondfeth on disk 1 inurs 2 units of stall time. The total stalltime of this solution is equal to 3 time units.Previous work: Cao et al. [5℄ introdued two popular al-gorithms, alled Conservative and Aggressive, for integratedprefething and ahing in the single disk problem. Conser-vative performs exatly the same blok replaements as theoptimum o�ine paging algorithm MIN [3℄, while initiating afeth at the earliest point in time that is onsistent with thehoie of bloks to be evited. Cao et al. showed that Con-servative ahieves an approximation ratio of 2 with respet

to the elapsed time performane measure, i.e. the elapsedtime of Conservative's shedule is at most twie the elapsedtime of an optimal shedule. This bound is tight. The Ag-gressive algorithm starts prefeth operations as soon as pos-sible. Whenever the algorithm is not in the middle of a feth,it initiates a new feth provided it an evit a blok fromahe that is not requested before the blok to be fethed.Cao et al. proved that the approximation ratio, with respetto elapsed time, is at most minf1 + F=k; 2g and that thisratio is tight for F � k. Kimbrel and Karlin [12℄ analyzedAggressive and Conservative in parallel disk systems andshowed that the approximation ratios are essentially equalto D. They also proposed an algorithm Reverse Aggressive,whih is the Aggressive algorithm on the reverse sequene,and proved that the approximation guarantee is boundedby 1 +DF=k. Again the approximation ratios are with re-spet to the elapsed time measure. Extensive experimentalstudies, in partiular on the performane of the Aggressivealgorithm, were presented in [5, 6, 13, 14℄.It was shown in [1℄ that optimal prefething/ahing shed-ules for a single disk an be omputed in polynomial time.The idea is to formulate the prefething and ahing problemas a linear program and to prove that there exists an opti-mal solution that is integral. The approah was extended toparallel disk systems and gave a D-approximation algorithmfor the stall time performane measure if the algorithm mayuse D � 1 extra memory loations in ahe. Note that ap-proximating stall time is harder than approximating elapsedtime beause in the stall time measure the length of the re-quest sequene is not part of the objetive funtion. In [2℄ itwas shown that the linear program of [1℄ an be translateddiretly into a multiommodity ow problem.Our ontribution: We investigate approximation algo-rithms for single disk systems as well as algorithms for om-puting optimal shedules in parallel disk systems. In Se-tion 2 we study the single disk problem and �rst present are�ned analysis of the Aggressive algorithm, showing thatthe analysis by Cao et al. [5℄ was too pessimisti. We provethat Aggressive ahieves an approximation ratio of minf1+F=(k + b kF � 1); 2g in the elapsed time measure. Com-pared to the bound of Cao et al. there is an additionalb kF � 1 in the denominator of the �rst term. If k=F islarge, whih is true in most pratial appliations, the newbound is muh lower. Kimbrel and Karlin [12℄ mentionedthat in pratie k=F is typially at least 200. We also showthat our analysis is tight. For any F and k, the approx-imation ratio of Aggressive is in general not smaller thanminf1+F=(k+ k�1F�1); 2g. Sine Aggressive is the most pop-ular algorithm for integrated prefething and ahing, it isimportant to know its true approximation guarantee.We also give improved approximation ratios if k=F issmall. More generally, we present a new family of algo-rithms for integrated prefething and ahing. The algo-rithms, alled Delay(d), delay the next feth operation ford time units, for any �xed non-negative integer d. Settingd = 0, Delay(d) is equal to the standard Aggressive strat-egy; for d = j�j we obtain Conservative. Hene our familyof algorithms bridges the gap between the two lassial al-gorithms for prefething and ahing. As mentioned above,fething bloks too early an have a negative inuene onthe ahe on�guration and redue the e�etive size of theahe. Thus it is natural to investigate the e�et of delayingfethes by some time units. We analyze Delay(d) for any

d and show that, surprisingly, the best hoie of d gives anapproximation ratio of p3 � 1:73. Combining this strategywith Aggressive, we obtain an algorithm that ahieves anapproximation ratio of minf1 + F=(k + b kF � 1);p3g andhene performs better than both Conservative and Aggres-sive.In Setion 3 we investigate the problem of minimizing stalltime onD parallel disks. We present a polynomial time algo-rithm that, given a request sequene �, omputes a shedulewhose stall time is bounded by that of an optimal solutionfor �. The solution uses at most 3(D � 1) extra memoryloations in ahe. In pratie D is small, typially 4 or 5.Thus at the expense of slightly inreasing the extra memoryresoures, we are able to improve the best previous approx-imation guarantee from D to 1. In fat our algorithm isthe �rst polynomial time strategy for omputing sheduleswith a minimum stall time. Our algorithm is based on thelinear programming approah of [1℄. However, in order toobtain solutions with a smaller stall time, we introdue thenew onept of synhronized shedules in whih fethes onthe D disks are performed ompletely in parallel. We showthat there exist synhronized shedules that ahieve a min-imum stall time provided that they may use D � 1 extramemory loations in ahe. Using linear programming wethen ompute an optimal synhronized solution that usesD�1 extra ahe loations. Applying tehniques from [1℄ wetransform an optimal frational solution into an integral so-lution. Compared to [1℄, our transformation algorithm mustuse a di�erent sheme for assigning bloks to be evited inthe integral solution.
2. APPROXIMATION ALGORITHMS FOR

A SINGLE DISKThroughout this setion approximation ratios refer to theelapsed time performane measure. The Aggressive algo-rithm works as follow. Whenever the algorithm is not pre-fething a blok, it initiates a prefeth for the next missingblok in the sequene provided it an evit a blok fromahe that is not requested before the blok to be fethed.In this ase it evits the blok whose next referene is fur-thest in the future.Theorem 1. The approximation ratio of Aggressive is atmost minf1 + F=(k + b kF � 1); 2g.Our upper bound proofs in this setion are based on thedominane onept introdued by Cao et al. [5℄. Given a re-quest sequene � = r1; : : : ; rn onsisting of n requests and aprefething algorithm A, let A(A) be the index of the nextrequest at time t when A serves �. Let HA(i) be the set ofbloks not present in A's ahe when the next referene isri. Let hA(i; j), hA(i; j) � i, be the smallest index suh thatexatly j di�erent bloks in HA(i) are referened in the sub-sequene onsisting of request i up to (and inluding) requesthA(i; j). Intuitively, hA(i; j) is the index of the �rst refer-ene to the j-th blok not present in ahe after ri�1. IndexhA(i; j) is also referred to as A's j-th hole. The parameterj varies between 1 and n � k. Given two prefething algo-rithms A and B, A's ursor at time t dominates B's ursorat time t' if A(t) � B(t0). We say that A's holes at time tdominate B's holes at time t0 if hA(A(t); j) � hB(B(t0); j)for all j. Combining these two de�nitions we say that A'sstate at time t dominates B's state at time t' if A's ursor

at time t dominated B's ursor at time t0 and A's holes attime t dominate B's holes at time t0. Cao et al. [5℄ provedthe following domination lemma.Lemma 1. Suppose that algorithm A (resp. algorithm B)initiates a prefeth at time t (resp. t0) and both algorithmsprefeth the next missing blok and replae the blok whosenext referene is furthest in the future. Suppose that A'sstate at time t dominates B's state at time t0. Then A'sstate at time t+ F dominates B's state at time t0 + F .Proof of Theorem 1. We assume F � k and prove anupper bound of 1 + F=(k + b kF � 1) on Aggressive's ap-proximation ratio. If F > k, then our bound implies a 2-approximation, whih was already shown by Cao et al. [5℄.The global struture of our proof is similar to that of Cao etal. and we desribe the di�erene. Let OPT be an optimalprefething algorithm. We partition the given request se-quene into phases suh that eah phase onsists of exatlyk + b kF � 1 onseutive requests. We prove by indutionon the number of phases that the following invariant holds.During eah phase i there is a time t suh that Aggressive'sstate at time t dominates OPT's state at time t0 � t � iF .This implies that Aggressive needs at most F � (number ofphases) more time units than OPT to serve the entire re-quest sequene, and on the average it spends at most F extratime units in eah phase. Cao et al. divided the request se-quene into di�erent phases whih onsisted potentially ofonly k requests. This resulted in a higher upper bound.To establish the invariant onsider a phase i and assumethat at time t during phase i Aggressive's state dominatesOPT's state at time t0 � t � iF . We show that for alltimes � > 0 suh that Aggressive is in phase i at time t+ � ,A(t+ �) � OPT (t0 + �), where A(t) is Aggressive's ursorposition at time t. We distinguish two ases. (1) Duringphase i, Aggressive never evits a blok from ahe that isrequested again in phase i. (2) During phase i, Aggressivedoes evit bloks that are requested again in the phase. The�rst ase is easy to analyze. While Aggressive serves a sub-sequene of requests without fething bloks, the ursor ad-vanes one request in eah time step and hene OPT's ursorannot pass Aggressive's ursor. During the servie and inpartiular at the end of this subsequene Aggressive's holesdominate OPT's holes beause the k bloks in Aggressive'sahe are all requested before any blok not in ahe andthus the holes our at the latest possible positions. WhileAggressive performs a series of fethes, Aggressive's holesalways dominate OPT's holes beause no further holes areintrodued in the phase. Hene Aggressive's ursor annotfall behind OPT's ursor and repeating these two argumentswe obtain the desired inequality.We next onsider ase (2). Let l; 1 � l � k + bFk � 1, bethe smallest index suh that Aggressive, while proessing thephase, evits the blok referened by the l-th request in thephase. Let t00; t00 � t, be the time when Aggressive initiatesthe prefeth in whih this blok is evited. Obviously l > kbeause when Aggressive fethes a blok during the �rst krequests it an always evit a blok from ahe that is notreferened during the next k requests. Let l = k + j, forsome j � 1. When Aggressive initiates the prefeth at timet00, there an be at most j bloks missing in ahe that arerequested until the l-th request in the phase. If there weremore than j suh bloks, then Aggressive ould evit a blok

whose next request has an index larger than k+ j. Thus thealgorithm has to exeute at most j + b kF � 1 � j + 1 =b kF fethes (inluding the one just initiated) to bring allbloks into ahe that are still requested in the phase. Wedistinguish again two ases depending on whether or notthese fethes are exeuted immediately one after the other.Between time t and t00 Aggressive never fethes a blokthat is not requested during the �rst l � 1 requests of thephase. Otherwise ther would be a time where all bloksrequested up to the l-th request are in ahe and Aggressiveinitiates a feth for a blok that is requested after the blokevited. Thus all bloks fethed between t and t00 were notin ahe at time t and using the same arguments as in ase(1) we obtain that A(t + �) � OPT (t0 + �) for all � with� � t00 � t. At time t00 the l-th request of the phase is atleast k requests away from the urrent request beause wheninitiating a feth Aggressive an always evit a blok fromahe that is not requested during the next k referenes.Now suppose that the at most b kF fethes after time t00 areexeuted immediately one after the other. Aggressive �rstfethes the j0, j0 � j, bloks that are missing up to the l-th request of the phase. By the hoie of l all these blokswere also missing at the beginning of the phase and againAggressive's ursor always dominates OPT's ursor duringthese fethes. After the servie of at most j0F additionalrequests after time t00 these fethes are omplete. During thenext k�j0F � b kF F�j0F = (b kF �j0)F requests Aggressivean omplete all the remaining fethes for bloks in the phaseand hene ompletes these fethes before the l-th request.No stall time is inurred and Aggressive's ursor dominatesOPT's ursor. During the rest of the phase Aggressive doesnot inur stall time either and again its ursor dominatesOPT's ursor.We �nally onsider the ase that the at most b kF fethesafter t00 are not exeuted immediately one after the other.Let l0 be the index of the last request in the phase suh thatat least one of the fethes still has to be exeuted but nofeth is performed during the servie of the request. Lets be the time when Aggressive reahes this request. As inthe previous paragraph we an show that Aggressive's ur-sor dominates OPT's ursor between t00 and s: Aggressive�rst fethes missing bloks that are referened before thel-th request of the phase and hene were missing at the be-ginning of the phase. Aggressive's ursor annot fall behindOPT's ursor. Then Aggressive fethes some bloks thatare requested during the l-th request of the phase or later.This an be done without inurring any stall time beausel0 � k < l. To see the �rst inequality, observe that attime s the next k requests are in ahe beause no feth isperformed; however bloks requested in the phase are stillmissing in ahe and b kF � 1 < k. Again Aggressive's ur-sor annot fall behind OPT's ursor. After time s Aggressivean feth the at most b kF missing bloks of the phase with-out generating any stall time. This is beause l > k impliesb kF � 1 > 0 and hene F � k � 1. Aggressive's ursordominates OPT's ursor for the rest of the phase. We on-lude, as desired, A(t+�) � OPT (t+�), for all � suh thatAggressive is still in the phase at time t+ � .The rest of the proof is idential to that of Cao et al.Let t + t0; t + t1; : : : ; t + tr be the ursor positions whereAggressive initiates fethes after time t but still within theurrent phase. If OPT is exeuting a feth at time t+tq ; 0 �q � r, then let t+t0q be the time when this feth was initiated;

otherwise let t0q = tq. Cao et al. proved indutively thatAggressive's state at time t + tq dominates OPT's state attime t0 + t0q and that Aggressive's state at time t + tr + Falso dominates OPT's state at time t0 + t0r + F . The proofmakes no assumptions on the phase length and only relieson the fat that A(t + �) � OPT (t0 + �), for all � suhthat Aggressive is still in phase i. Thus we also have thatAggressive's state at time t+ tr +F dominates OPT's stateat time t0+t0r+F � t0+tr. We onlude that Aggressive is inphase i+1 at time T = t+tr+F and that its state dominatesOPT's state at time t0+ tr � t� iF + tr � T � (i+1)F .Theorem 2. The approximation ratio of Aggressive is ingeneral not smaller than minf1 + F=(k + k�1F�1); 2g, for anyF > 1.
Proof. We assume F � k. For F > k, a lower bound of 2was already shown by Cao et al. [5℄. Consider any pair F andk suh that F�1 divides k�1 and let l = k�1F�1 . We onstruta request sequene in phases, eah onsisting of k+l requests.In eah phase we request bloks a1; : : : ; ak�l. In phase i; i �1, we request l new bloks bi1; : : : ; bil whih have not beenreferened before in the sequene. These are requested atthe end of the phase. After the requests to a1 we requestthe new bloks bi�11 ; : : : ; bi�1l from the previous phase, andthese bloks will not be requested again during the rest ofthe sequene. Suppose that Aggressive has initially bloksa1; : : : ; ak�l and b01; : : : ; b0l in its ahe. Then the �rst threephases are as follows.� = a1; b01; : : : ; b0l ; a2; : : : ; ak�l; b11; : : : ; b1l ; ==phase 1a1; b11; : : : ; b1l ; a2; : : : ; ak�1; b21; : : : ; b2l ; ==phase 2a1; b21; : : : ; b2l ; a2; : : : ; ak�l; b31; : : : ; b3l ; : : : ==phase 3In the �rst phase Aggressive starts fething the missingbloks b11; : : : ; b1l after the servie of a1. It �rst evits a1 andthen bloks b01; : : : ; b0l�1 sine the latter are not requestedagain. Aggressive needs l �F = k�1F�1 �F = k�1+ l time unitsto omplete the fethes and hene has one unit of stall timebefore the servie of b1l . Aggressive then loads the missingblok a1 by eviting b0l and inurs F � 1 units of stall time.At the beginning of phase 2 Aggressive has bloks a1; : : : ak�land b11; : : : ; b1l in its ahe. The situation is the same as at thebeginning of phase 1 exept that the b1j take the role of theb0j and the b2j take the role of the b1j ; j = 1; : : : ; l. The samepattern repeats during the other phases. Thus Aggressiveneeds k + l + F time units to serve a phase. On the otherhand, an optimal strategy starts fething the missing bloksin any phase i after the servie of bi�11 and an thus evitthe bloks bi�11 ; : : : ; bi�1l to load bi1; : : : ; bil . OPT inurs twounits of stall time in eah phase and needs k + l + 2 timeunits for any phase. The ratio of Aggressive's time to theoptimal time is 1 + (F � 2)=(k + k�1F�1 + 2) and this an bearbitrarily lose to the stated bound.In addition to the Aggressive algorithm Cao et al. [5℄ pro-posed the Conservative strategy. Conservative performs ex-atly the same replaements as the optimum o�ine pagingalgorithm MIN [3℄ while initiating a feth at the earliest op-portunity that is onsistent with the hoie of the blok to beevited. We now present a family of algorithms that ontainsAggressive and Conservative at two ends of its spetrum.Using this family we onstrut an algorithm that performs

better than Aggressive and Conservative. Let d be a non-negative integer. Intuitively the following algorithm delaysa feth for d time units.Algorithm Delay(d): Let ri be the next request to beserved and rj ; j � i, the next referene where the requestedblok is missing in ahe. If all bloks in ahe are requestedbefore rj , serve ri without initiating a feth. Otherwise letd0 = minfd; j� ig and let b be the blok whose next requestis furthest in the future after request ri+d0�1. Initiate a fethfor rj at the earliest point in time after ri�1 suh the evitedblok b is not requested again before rj .Obviously, for d = 0 we obtain the standard Aggressivestrategy. For d = n; n being the length of the request se-quene, we obtain the Conservative algorithm. Before prov-ing the next theorem, we mention a few impliations.Theorem 3. For any non-negative integer d, Delay(d)ahieves an approximation ratio of = maxf d+FF ; d+2Fd+F ; 3(d+F)d+2F g.Corollary 1. Setting d0 = b 12 (p3� 1)F , the approxi-mation ratio 0 of Delay(d0) tends to p3.Algorithm Combination: If 0 < 1+F=(k+b kF �1), ex-eute Delay(d0), otherwise exeute the standard Aggressivestrategy.Corollary 2. The approximation ratio of Combinationis minf1 + F=(k + b kF � 1); 0g, whih tends to minf1 +F=(k + b kF � 1);p3g.Proof of Theorem 3. In the following we all our ap-proximation algorithm DL for short, omitting the given pa-rameter d. We partition the prefething/ahing sheduleby DL and OPT into segments SiDL and SiOPT ; i � 1, suhthat DL's state at the end of SiDL dominates OPT's state atthe end of SiOPT and the length of SiDL is at most timesthe length of SiOPT , where = maxf d+FF ; d+2Fd+F ; 3(d+F)d+2F g.This establishes the theorem. The segments SDL have theproperty that DL is never in the middle of a feth at the endof SiDL. Suppose that S1DL; : : : ; SiDL and S1OPT ; : : : ; SiOPThave been onstruted so far. Let t be the time at the endof SiDL and t0 be the time at the end of SiOPT . We show howto onstrut the next segments Si+1DL and Si+1OPT . If we are atthe beginning of the request sequene and no segments havebeen onstruted so far, we set t = t0 = 0 and show how tobuild up the �rst segments.DL's next segment starts immediately after t and OPT'snext segment starts immediately after t0. We have to deter-mine where the segments end and use s to denote the end ofDL's segment and s0 to identify the end of OPT's segment.If at time t all k bloks in DL's ahe are requested beforethe next missing blok, the segments are easily spei�ed.Suppose that DL serves Æ requests after t without initiatinga feth beause all bloks in ahe are requested before thenext missing blok. Then DL's ursor at time s = t+Æ dom-inates OPT's ursor at time s0 = t0 + Æ and DL's holes attime s also dominate OPT's holes at time s0 beause DL'sholes our at the latest possible positions. We have thedesired domination and the two segments have in fat thesame length.In the following we always assume that at time t thereis a blok in DL's ahe that is referened again only after

the next blok to be fethed and hene DL an initiate afeth. Assume that DL needs D1; D1 � d + F , time unitsafter t to omplete the next feth. If OPT does not initiatea feth during the next D1 time units after t0, then we aredone. DL's ursor at time s = t + D1 dominates OPT'sursor at time s0 = t0 +D1. This is obvious if DL does notinur stall time to omplete the feth. If DL does inur stalltime, then DL fethes the blok referened right after t+D1.OPT's ursor annot pass DL's ursor beause DL's holesat time t dominate OPT's holes at time t0. Sine OPT'sholes do not hange between t0 and s0 DL's holes at time salso dominate OPT's holes at time s0. Again we have thedesired domination and DL's and OPT's segments have thesame length.We therefore assume in the following that OPT initiatesa feth during the next D1 time units after t0. Suppose thatDL serves exatly d1 requests after t and that OPT servesd01 after t0 before initiating the next feth. If d01 � d1, theanalysis is simple. DL's state at time t+d1 dominates OPT'sstate at time t0+d01 and by the Lemma 1 DL's state at times = t + d1 + F = t + D1 dominates OPT's state at times0 = t0+ d01+F: The ratio of DL's segment length to OPT'ssegment length is at most D1=(d01 + F) � (d + F)=F . Ifd01 > d1 but d01 � d, then let ri be the next request to beserved by DL and rj be the loation of the next hole at timet. Set �d = minfj � i; d01g. Imagine we would modify DL asfollows. After time t DL serves �d requests before initiating afeth for rj . During this feth it evits the blok whose nextreferene is furthest in the future. Sine DL's state at time tdominates OPT's state at time t0, the modi�ed algorithm'sstate at time t+ �d dominates OPT's state at time t+d01. ByLemma 1 the modi�ed algorithm's state at time t + �d + Fdominates OPT's state at time t0 + d01 + F . By de�nitionthe original DL algorithm may delay a feth for d requestsand hene the blok evited during the �rst feth after t isequal to the blok evited by the modi�ed algorithm duringthe �rst feth after t. We obtain that DL's holes at times = t+D1 dominate OPT's holes at time t0+ d01+F , whihare equal to OPT's holes at time s0 = minft0+D1; t0+ d01+Fg. Also, DL's ursor at time s dominates OPT's ursorat time s0 beause if DL inurs stall time to omplete thefeth then OPT's ursor annot pass beause its holes weredominated by DL's holes. In summary we have dominationand the ratio of the segment length is upper bounded byD1=F � (d+ F)=F .In the remainder of this proof we assume d01 > d. If attime t + D1 the k bloks in DL's ahe are all referenedbefore the next missing blok, then the segments are easilydetermined. OPT needs D01 = d01+F time units to ompletethe �rst feth after t0. If DL does not inur stall time toomplete the �rst feth, then its ursor at time s = t +D1dominates OPT's ursor at time t0 +D1. If DL does inurstall time, then OPT's ursor annot passDL's ursor duringthe �rst feth beause DL's holes at time t dominate OPT'sholes at time t0. In this ase DL's ursor at time s dominatesOPT's ursor at time t0 +D1. Thus DL's ursor at time sdominates OPT's ursor at time s0 = minft0 +D1; t0 +D01gand DL's holes at time s dominate OPT's holes at time s0beause DL's holes our at the latest possible positions.The ratio of DL's segment length to OPT's segment lengthis at most D1=F � (d+F)=F beause F � D1 � d+F andD01 � F .It remains to analyze the ase that d01 > d and at time

t+D1 there is a blok in DL's ahe that is referened afterthe next missing blok. Let D2 = d2 + F be the number oftime units after t+D1 DL needs to omplete the next feth.We have d2 � d by the de�nition of DL. We distinguishtwo ases. (1) d1 + d2 � d01 and (2) d1 + d2 = d01 + Æ forsome positive integer Æ. We �rst onsider ase (1). We havethat DL's state at time t + D1 dominates OPT's state attime t + d01. The reason is that DL's ursor at time t +D1dominates OPT's ursor at time t+d01 beause OPT initiatesthe �rst feth after t0 within the nextD1 time units and DL'sholes at time t dominate OPT's holes at time t0, i.e. OPT'sursor annot pass DL's ursor during the �rst feth. SineOPT's holes do not hange between t0 and t0+d01, DL's holesat time t + D1 also dominate OPT's holes at time t + d01.Sine DL's state at time t + D1 dominates OPT's state attime t + d01, DL's state at time t +D1 + d2 also dominatesOPT's state at time t + d01 and by Lemma 1 DL's state attime s = t +D1 + d2 + F = t +D1 +D2 dominates OPT'sstate at time s0 = t0 + d01 + F = t0 + D01. The ratio of thesegment lengths is (D1 +D2)=D01 � (d01 + 2F)=(d01 + F) �(d+ 2F)=(d+ F).We next study ase (2). First observe that DL's ursor attime t+D1+d2 dominates OPT's ursor at time t0+D1+d2.This is obvious if DL does not inur stall time to ompletethe �rst feth. If DL does inur stall time, then DL's ursorat time t+D1 must dominate OPT's ursor at time t0+D01 �t0 +D1 beause DL's holes at time t dominate OPT's holesat time t0 and OPT annot �nish the �rst feth later in thesequene than DL. Sine DL's ursor advanes one step ineah of the following d2 time units after t+D1 we have thestated domination for the ursors. If OPT does not initiate aseond feth before t0+D1+d2, then we are done. As in ase(1) we have thatDL's state at time s = t+D1+D2 dominatesOPT's state at time t0+D01 = t0+D1+d2� Æ. This impliesthat DL's state at time s dominates OPT's state at times0 = t0+D1+d2 beause DL's ursor at time s > t+D1+d2dominates OPT's ursor at time t0+D1+d2 as shown aboveand OPT's holes do not hange between t0+D1+d2�Æ ands0. The ratio of the segment lengths is (D1+D2)=(D1+d2) =(d01 + Æ + 2F)=(d01 + Æ + F) � (d + 2F)=(d + F). If OPTdoes initiate a seond feth before t0 +D1 + d2 but at timet + D1 + D2 all k blok in DL's ahe are all requestedbefore the next missing blok, then DL's state at time s =t+D1+D2 dominates OPT's state at time s0 = t0+D1+d2beause DL's holes our at the latest possible positions.The ratio of DL's segment length to OPT's segment lengthis upper bounded by (D1+D2)=(D1+d2) � (d+2F)=(d+F).We �nally have to onsider the ase that OPT initiates aseond feth before t0 + D1 + d2 but at time t + D1 + D2there is a blok DL's ahe that is requested after the nextmissing blok. DL needs D3 = d3+F time units with d3 � dto omplete the next feth. Suppose that OPT initiates theseond feth at time t0 +D01 + Æ0, with Æ0 � Æ. As above wehave that DL's state at time t+D1 +D2 dominates OPT'sstate at time t0 +D01. This implies that DL's state at timet + D1 + D2 dominates OPT's state at time t0 + D01 + Æ0beause DL's ursor at time t+D1 +D2 dominates OPT'sursor at time t0 +D01 + Æ � t0 +D01 + Æ0 and OPT's holesdo not hange between t0 +D01 and t0 +D01 + Æ0. It followsthat DL's state at time t+D1 +D2 + d3 dominates OPT'sstate at time t0 + D01 + Æ0 and by Lemma 1 DL's state attime s = t + D1 + D2 + d3 + F dominates OPT's state attime s0 = t0 +D01 + Æ0 + F . DL's segment length is at most

3(d+F) while OPT's segment length is at least (d+2F).
3. MINIMIZING STALL TIME IN PARAL-

LEL DISK SYSTEMSIn this setion we present a polynomial time algorithm forsystems with D parallel disks that, given a request sequene�, omputes a prefething/ahing shedule whose stall timeis at most that of an optimal solution. The shedule usesnot more than 3(D � 1) extra memory loations in ahe.The basi idea is to use the linear programming approahof [1℄ but to model the objetive funtion, whih measuresthe stall time of a shedule, in a di�erent way. For this pur-pose we onsider synhronized shedules that are de�ned asfollows. Consider a prefething/ahing shedule for �. Afeth operation exeuted from time t1 to time t01 intersetsa feth operation performed from t2 to t02 if there is a t witht1 � t � t01 and t2 � t � t02 but t1 6= t2 (and hene t01 6= t02).Clearly, feth operations exeuted on the same disk annotinterset. A prefething/ahing shedule is synhronizedif no two feth operations interset. Intuitively, in a syn-hronized shedule feth operations on di�erent disks areexeuted ompletely in parallel, starting and ending at ex-atly the same time. For a given �, let sOPT (�) be thestall time of an optimal shedule for �. We show that thereexist synhronized shedules that ahieve a minimum stalltime provided that they may use up to D � 1 extra aheloations.Lemma 2. For any �, there exists a synhronized shed-ule that ahieves a stall time of at most sOPT (�) and usesnot more than D � 1 extra memory loations in ahe.Proof. Let S be an optimal prefething/ahing shed-ule using k ahe loations. We show how to modify S sothat the resulting shedule is synhronized and the stall timedoes not inrease. Suppose that (a) up to time t sheduleS is synhronized and uses at most D � 1 extra ahe lo-ations and (b) from time t on the shedule is not synhro-nized but uses no extra ahe loations. Moreover assumethat at time t a feth operation is initiated that intersetsfethes on other disks. (Initially, t is the �rst point in timeat whih a feth operation interseting other fethes starts.)Let t0 be the time when the feth ends. Suppose that thefeth from t to t0 intersets d, 1 � d � D � 1, fethes onother disks. Let t1; : : : ; td be the times when these fethesstart. Furthermore, let a1; : : : ; ad be the bloks fethed andb1; : : : ; bd be the bloks evited during these feth opera-tions. The shedule is now modi�ed as follows. We deletethe feth operations initiated at times t1; : : : ; td and insteadfeth a1; : : : ; ad into the D � 1 available extra ahe loa-tions starting at time t. At time t0, when these fethes end,we evit b1; : : : ; bd from ahe so that the D� 1 extra aheloations are again available. The stall time does not in-rease during this modi�ation beause a possible stall timeinurred at the end of the feth at time t0 was already neededfor the original feth from t to t0. At the end of the fethbloks b1; : : : ; bd are available for evition beause bi wasavailable at time ti � t0, 1 � i � d. From time t0 on theshedule uses only k ahe loations. Repeating this stepfor times t, t > t0, at whih interseting fethes are initi-ated, we obtain a synhronized shedule with stall time atmost sOPT (�).

We now desribe a 0-1 linear program for omputing anoptimal synhronized prefething/ahing shedule that usesk+D� 1 ahe loations. Let n be the number of requestsin the given sequene �. The linear program has to deter-mine the intervals in whih the synhronized fethes are per-formed. As in [1℄ we onsider intervals I = (i; j) of lengthat most F in the request sequene, i = 0; : : : ; n � 1 andj = 1; : : : ; n. The length of an interval is jIj = j � i � 1.Suh an interval represents a feth that starts after requestri and ends before rj . Sine a feth takes F time units,F � jIj units of stall time are inurred at the end of I. Foreah suh interval we introdue a variable x(I) that is 1if (synhronized) fethes are performed in interval I and 0otherwise. The stall time of a synhronized shedule is easyto ompute; it is just the sum of the stall times inurredat the end of feth intervals. Thus we wish to minimizePI x(I)(F � jIj).The rest of the linear program is similar to that givenin [1℄, exept that several onstraints simplify. We say thatin interval (i; j) is properly ontained in an interval (i0; j0),i.e. (i; j) � (i0; j0), if i � i0 and j � j0. We have to ensurethat at any time only one set of synhronized fethes is per-formed. Therefore, for any i with 1 � i � n� 1 we add theonstraint P(i�1;i+1)�I x(I) � 1.The linear program also has to determine the bloks tobe fethed and evited in eah interval. We assume withoutloss of generality that the ahe initially ontains a set Sinitof k+D�1 bloks from disk 1 whih are never requested in�. Let Sd be the set of bloks in � that are stored on disk d,1 � d � D, and let S = S1[: : :[SD[Sinit. For any intervalI and any blok a 2 S we introdue a variable fI;a that is1 if a is fethed in interval I and 0 otherwise. Furthermore,for any I and any blok a 2 S there is a variable eI;a thatis 1 if a is evited in I and 0 otherwise. We have to ensurethat, for any interval I and any disk d, 1 � d � D, only oneblok from disk d is fethed. Of ourse suh a feth an onlybe performed if x(I) = 1. Thus we add8I; dXa2Sd fI;a � x(I):We also have to make sure that in eah interval the numberof bloks fethed is equal to the number of bloks evited,i.e. we have 8IXa2S fI;a =Xa2S eI;a:When a request is served, the requested blok must be inahe. For any a 2 S1 [: : : [SD let i1 < i2 < : : : < ilbe the indies of the requests to a. We add the onstraintsPI�(0;i1) fI;a = 1 and PI�(0;i1) eI;a = 0, whih guaran-tee that a is in ahe at the time of its �rst request. Weadditionally impose, for j = 1; : : : ; l � 1,XI�(ij ;ij+1) fI;a = XI�(ij ;ij+1) eI;a � 1;whih implies that if a is in ahe at the time of its jthreferene then it is also in ahe at the time of its (j + 1)streferene. Finally we have PI�(il;n) eI;a � 1. Of ourse, ablok may not be fethed or evited when it is referened.Thus we have, for j = 1; : : : ; l,XI:(ij�1;ij+1) fI;a = XI:(ij�1;ij+1) eI;a = 0:

With respet to the bloks a 2 Sinit we only requirePI�(0;n) eI;a � 1.We have nminfF+1; ng variables x(I) and O(n2minfF+1; ng) variables fI;a and eI;a. Note that we an assumek � n sine otherwise we ould simply load the requestedbloks into ahe and then serve all requests. Also, we anassume D � n beause otherwise we just ignore the disksthat do not ontain a blok requested in �. Relaxing the0-1 variables to 0 � x(I); fI;a; eI;a � 1, we an omputein polynomial time a solution whose value is bounded bysOPT (�). The idea of the following analysis is to show that afrational solution to the relaxed linear program is a onvexombination of polynomially many integral solutions. Wean then selet one of these integral solutions and ahieve aminimum stall time.Let I = fIjx(I) > 0g. As is [1℄ we an modify the fra-tional solution suh that for any two intervals I = (i; j) andI 0 = (i0; j0) in I with I � I 0 we have i = i0 or j = j0, i.e.intervals share a ommon endpoint if one is properly on-tained in the other. Based on this relation we an de�ne alinear order < on I. The intervals are ordered by inreasingstartpoints and, if intervals have the same startpoint, theyare ordered by inreasing endpoints.In order to be able to apply tehniques from [1℄ it isruial that in eah interval I 2 I all D disks feth anamount of exatly x(I). Clearly, there is at least one diskd withPa2Sd fI;a = x(I) sine otherwise we ould dereasex(I). To establish this property for all I and d, we shed-ule dummy fethes on the idle disks in I. Sine these fethesmust not hange the on�guration of the k+D�1 ahe loa-tions, we introdue D�1 additional ahe positions that ini-tially ontainD�1 bloks b01; : : : ; b0D�1 from disk 1 whih arenever requested in �. We then onsider the intervals in I inthe order of <. Let I be the jth interval onsidered. For anyof the at most D�1 disks d with Æd = x(I)�Pa2Sd fI;a > 0we feth a new blok bjd from disk d to an extent of Æd andevit an amount of Æd of the bloks bl1; : : : ; blD�1 with thesmallest index l that reside in the extra D � 1 ahe loa-tions. Bloks bjd, 1 � d � D and j > 0 are never requestedin �. The dummy bloks keep disks busy that are originallyidle. It is suÆient to use at D� 1 ahe loations beause,as mentioned before, in eah interval there is at least onedisk that fethes to an extent of x(I).We modify the optimal frational solution even further.More spei�ally, it is an easy exerise to show that thereis an optimal frational solution that satis�es the followingproperties on the fethes and evitions. Consider the inter-vals in the order < and let C denote the ahe on�gurationafter we have performed fethes and evitions orrespondingto the �rst j intervals in the order. Let I be the (j + 1)stinterval.� For any d, 1 � d � D, we feth the blok from disk dthat is not ompletely in C and whose next refereneis earliest.� If we evit a blok from disk d in I, then it is the blokfrom disk d whih is partially or ompletely in C andwhose next referene is furthest in the future.Based on these properties it is possible to view the prefeth-ing/ahing shedule as a proess over time. For any I 2 I,de�ne dist(I) = PI0<I x(I 0), i.e. dist(I) is the sum of thex(I 0) where I 0 preedes I in the order <. The time in-terval assoiated with I is [dist(I); dist(I) + x(I)℄. Hene

there is a unique interval I assoiated with eah time. Forany interval I 2 I and any disk d, 1 � d � D, we sortthe bloks fethed from disk d in I by inreasing order oftheir next referene. Let a1; : : : ; al be the bloks in this or-der. Blok ai is fethed for fI;ai time units starting at timedist(I) +Pi�1j=1 fi;aj . Hene at eah time instant we feth aunique blok from eah disk.As in [1℄, for any t in the range [0; 1), we onstrut anintegral feasible solution that uses D � 1 ahe loations inaddition to the k+2(D�1) loations we already use. Let Itbe the set of intervals I in I assoiated with time instanesti = t + i, for all i � 0. Eah interval I in It is part of thesolution for t. If I 2 It is the interval assoiated with timeti, then for any disk d we feth the blok that is loaded fromdisk d at time ti. The algorithm for assigning evitions isslightly di�erent from the one desribed in [1℄. We maintaina set Qt that is initially empty and onsider the intervals inI in the order <. Let I be the urrent interval and a1; : : : ; albe the bloks evited in I. If aj , 1 � j � l, is fethed bakat time ti, for some i � 0, before its next referene, thenadd aj to Qt. If I 2 I and Qt urrently ontains at least Dbloks, then remove D arbitrary bloks from Qt and evitthem during I. If Qt urrently ontains less than D bloks,then remove only these available bloks and evit them inI. Lemma 3. For any t 2 [0; 1), solution It is an integralfeasible solution that uses a total of at most k + 3(D � 1)ahe loations.Proof. The intervals in It are disjoint. Moreover, bythe de�nition of our algorithm for sheduling evitions, eahblok that is assigned to Qt and hene evited in an intervalof It is also fethed bak before its next referene in aninterval of It. Hene It is a feasible solution. The optimalfrational solution used to onstrut It uses 2(D � 1) extramemory loations in ahe. We will show that at most D�1intervals in It do not have an evition assigned. If we loadthe bloks fethed in those intervals intoD�1 extra memoryloations, then It is a feasible solution that uses at most3(D � 1) extra ahe loations.Consider our algorithm for sheduling evitions and sup-pose that we just �nished proessing interval I 2 I. Forany disk d let sd the last point in time suh that disk dfethes a blok that has been evited in intervals I 0 � I butnot yet been fethed bak at time instanes orrespondingto I 0 � I. Suppose that there exists a time before sd suhthat disk d fethes a blok that has not yet been evited inintervals I 0 � I. Let s0d be the earliest point in time withthe property and let ad be the blok fethed at this point intime. Let bd be any blok that has been evited in intervalsI 0 � I and is fethed bak after s0d. Sine bd is fethed afterad the next referene to bd must be after the next refereneto ad. The last evition of bd in intervals I 0 � I must be anevition where bd is disarded to an extent of 1. If bd weredisarded only partially, then our optimal frational solutionwould have evited the rest of bd in the operations where adis evited beause bd's next referene is later. Thus when bdis fethed bak after s0d it is fethed bak to an extent of 1and this feth is performed ontinuously without interrup-tion. This implies that our algorithm added bd to Qt. LetEd be the total amount of evitions of bloks from disk d upto the urrent interval I, i.e. Ed =Pa2SdPI0�I eI0;a. Part

of this amount is fethed bak ontinuously until time s0d.Bloks fethed bak later are, as mentioned before, fethedto an extent of 1 and added to Qt. Hene, when the algo-rithm �nishes proessing I, bEd � t + 1 bloks from diskd have been assigned to Qt and summing over all disks atotal of PDd=1(bEd � t + 1) bloks have been assigned toQt. Let X(I) = PI0�I x(I 0). When the algorithm �nishesproessing I, it has tried to assign D(bX(I) � t + 1) evi-tions beause It ontains bX(I) � t + 1 intervals I 0 withI 0 � I in eah of whih we shedule D fethes and evitions.Moreover, X(I) = PDd=1 Ed beause in our frational solu-tion in eah interval I 0 the amount of fethes and evitionsis exatly x(I 0). HeneD(bX(I)� t+ 1)� DXd=1(bEd � t+ 1)
� D(X(I)� t+ 1)� DXd=1(Ed � t+ 1) +D � 1= D � 1:We onlude that at most D � 1 feth operations on thevarious disks to not get an evition assigned.When onstruting the solutions It as t varies from 0 to1, we obtain a given solution not for just one value of t butfor a range of values. Let 0 = x1 < x2 < : : : < xl = 1 bethe set of values suh that for all t in the range [xi; xi+1) weobtain the same solution It, 1 � i < l. Hene Ix1 ; : : : ; Ixl�1are the di�erent solutions we obtain. Sine eah Ixj , 1 �j � l � 1, is a synhronized shedule its stall time s(Ixj) isequal to the sum of the stall times inurred by the intervalsin Ixj . Giving Ixj a weight of xj+1 � xj , we obtain thatPl�1j=1(xj+1 � xj)s(Ixj) is equal to the value of the optimalfrational solution. It follows that one of the Ixj ahievesa stall time that is bounded by the value of the optimalfrational solution and hene bounded by the minimum stalltime for �. Finding suh an Ixj is easy and in fat we donot even have to ompute expliitely all the Ix1 ; : : : ;Ixl�1 .All we have to do is to ompute a t0 suh that the totalstall time of intervals in It0 is minimum among all It. Forvarying t, the intervals in It only hange if an interval I 2 Istarts at some time ti. Thus we only have to hek jIj =O(nminfF+1; ng) values of t. One we have determined anoptimal t0, we apply our algorithm to shedule the evitions.This establishes our main result.Theorem 4. There exists a polynomial time algorithmfor integrated prefething and ahing on D parallel disksthat, given a request sequene �, omputes a shedule whosestall time is at most that of an optimal solution for �. Theshedule uses at most 3(D � 1) extra memory loations inahe.

4. CONCLUSIONSIn this paper we presented improved prefething/ahingalgorithms for single and parallel disk systems. In the sin-gle disk setting an interesting problem is to develop fastalgorithms that ahieve an even smaller approximation ra-tio with respet to the elapsed time performane measure.A hallenging open problem is to determine the omplexityof the parallel disk ase: Is it NP-hard to onstrut optimalshedules or does there exist a polynomial time algorithm?

5. REFERENCES[1℄ S. Albers, N. Garg and S. Leonardi. Minimizing talltime in single and parallel disk systems. Journal of theACM, 47:969{986, 2000.[2℄ S. Albers and C. Witt. Minimizing stall time in singleand parallel disk systems using multiommodity net-work ows. Pro. 4th International Workshop on Ap-proximation Algorithms for Combinatorial OptimizationProblems APPROX), Springer LNCS 2129, 12{23, 2001.[3℄ L.A. Belady. A study of replaement algorithms for vir-tual storage omputers. IBM Systems Journal, 5:78{101, 1966.[4℄ A. Borodin, S. Irani, P. Raghavan and B. Shieber.Competitive paging with loality of referene. Journalon Computer and System Sienes, 50:244{258, 1995.[5℄ P. Cao, E.W. Felten, A.R. Karlin and K. Li. A studyof integrated prefething and ahing strategies. Pro.ACM International Conferene on Measurement andModeling of Computer Systems (SIGMETRICS), 188{196, 1995.[6℄ P. Cao, E.W. Felten, A.R. Karlin and K. Li. Imple-mentation and performane of integrated appliation-ontrolled ahing, prefething and disk sheduling.ACM Transation on Computer Systems (TOCS),14:311{343, 1996.[7℄ A. Fiat and M. Mendel. Truly online paging with loal-ity of referene. Pro. 38th IEEE Symposium on Foun-dations of Computer Siene, 1997.[8℄ D.R. Fuhs and D.E. Knuth. Optimal prepaging andfont ahing. ACM Transations on Programming Lan-guages and Systems, 7:62{79, 1985.[9℄ A. Gaysinsky, A. Itai, and H. Shahnai. Strongly om-petitive algorithms for ahing with pipelined prefeth-ing. Pro. 9th Annual European Symposium on Algo-rithms (ESA01), Springer LNCS 2161, 49{61, 2001.[10℄ D.A. Huthinson, P. Sanders, and J.S. Vitter. Dualitybetween prefething and queued writing with paralleldisks. Pro. 9th Annual European Symposium on Algo-rithms (ESA01), Springer LNCS 2161, 62{73, 2001.[11℄ M. Kallahalla and P.J. Varman. Optimal prefethingand ahing for parallel I/O systems. Pro. 13th ACMSymposium on Parallel Algorithms and Arhitetures,2001.[12℄ T. Kimbrel and A.R. Karlin. Near-optimal parallel pre-fething and ahing. SIAM Journal on Computing ,29:1051 { 1082, 2000. Preliminary version in FOCS96.[13℄ T. Kimbrel, P. Cao, E.W. Felten, A.R. Karlin and K. Li.Integrated parallel prefething and ahing. Pro. ACMInternational Conferene on Measurement and Model-ing of Computer Systems (SIGMETRICS), 1996.[14℄ T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad,P. Cao, E.W. Felten, G.A. Gibson, A.R. Karlin andK. Li. A trae-driven omparison of algorithms for par-allel prefething and ahing. Pro. of the ACMSIGOPS/USENIX Assoiation Symposium on Operat-ing System Design and Implementation, 1996.[15℄ P. Krishnan and J.S. Vitter. Optimal predition forprefething in the worst ase. SIAM Journal on Com-puting , 27:1617-1636, 1998.[16℄ M. Palmer and S.B. Zdonik. Fido: A ahe that learnsto feth. Pro. 17th International Conferene on VeryLarge Data Bases, 255{264, 1991.

[17℄ R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolskyand J. Zelenka. Informed prefething and ahing. Pro.15th Symposium on Operating Systems Priniples, 79{95, 1995.[18℄ D.D. Sleator and R.E. Tarjan. Amortized eÆieny oflist update and paging rules. Communiation of theACM, 28:202{208, 1985.[19℄ J. Vitter and P. Krishnan. Optimal prefething via dataompression. Journal of the ACM , 43:771-793, 1996.

