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Abstract

Motivated by the fact that competitive analysis yields tesgimistic re-
sults when applied to the paging problem, there has beeridavable re-
search interest in refining competitive analysis and in bgieg alternative
models for studying online paging. The goal is to devise nwuhewhich
theoretical results capture phenomena observed in peactic

In this paper we propose a new, simple model for studyingrngagith
locality of reference. The model is closely related to Degrs working set
concept and directly reflects the amount of locality thatuesy sequences
exhibit. We demonstrate that our model is reasonable fromaetipal point
of view.

We use the page fault rate to evaluate the quality of pagigpgrighms,
which is the performance measure used in practice. We dewvight or
nearly tight bounds on the fault rates achieved by populgingegalgorithms
such as LRU, FIFO, deterministic Marking strategies and LIEBhows that
LRU is an optimal online algorithm, whereas FIFO and Markdtigategies
are not optimal in general. We present an experimental stathparing the
page fault rates proven in our analyses to the page faul @iserved in
practice. This is the first such study for an alternativatedfipaging model.
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1 Introduction

Pagingis a fundamental and extensively studied problem. Congid®ro-level
memory system consisting of a small fast memory, that cad hglages, and a
large slow memory. The system must serve a sequence of teqoesiemory
pages. A request can be served if the page to be accesseas mdmory. If a
requested page is not in fast memorpage faultoccurs. The missing page must
then be loaded into fast memory and, simultaneously, a pagt Ine evicted from
fast memory in order to make room for the new page. A pagingriilgn decides
which page to evict on a fault. This decision must usually tzeonline i.e.,
without knowledge of any future requests. The goal is to miné the number of
page faults.

Early work on paging analyzed online algorithms assumirag thquest se-
guences are generated by probability distributions, spe [@0]. In [15] Sleator
and Tarjan introduced competitive analysis and showedtligapaging strategies
LRU and FIFO achieve an optimal competitive ratiokofAn online algorithmA4
is c-competitive if, for all request sequences, the number geaults incurred
by A is at mostc times the number of faults incurred by an optimal offline al-
gorithm. Practitioners criticized these results becangeractice LRU and FIFO
achieve performance ratios that are much smaller thaAn experimental study
presented by Young [18] shows ratios between 1.2 and 3. Is@known that
LRU outperforms FIFO and general deterministic Markingtsgies, such as FWF
(Flush-When-Full), which are algo-competitive [17]. Thus, competitive analysis
does not properly discern between the behavior of diffeadgmrithms. The flaw
of competitive analysis is that it considers arbitrary esjuisequences, whereas in
practice request sequences have some structure, i.eexhdyt locality of refer-
ence

For this reason there has been considerable researchsiniterefining com-
petitive analysis and developing alternative models fadgihg online paging.
Young [18] and Borodin et al. [2] initiated this line of resela. Young [18] de-
fined the notion ofoose competitiveneswhere paging algorithms are evaluated
for varying fast memory sizes, ignoring input sequencesdgha a high compet-
itive ratio for only a few sizes of the fast memory as well agusmnces giving a
low fault rate for most sizes of the fast memory. Borodin e{2jlintroduced the
concept ofaccess graph® model locality of reference. In an access grépleach
node represents a memory page. A request sequence is enhgigth G if a re-
guest to a pageis followed by a request to a page that is adjaceptitothe graph.
Access graphs were also studied in a number of subsequesrtsgdp8, 9, 11]. It
was shown that paging algorithms taking the underlying s&geaph into account
can outperform standard paging algorithms and that the ettiveness of LRU is



never worse than that of FIFO. In [12] Karlin et al. modelechliity of reference by
assuming that request sequences are generatetlbykav chain They analyzed
the page fault rate of paging algorithms and developed awitiign that achieves
an optimal fault rate, for any Markov chain. Torng [17] armdg thetotal access
time of paging algorithms. He assumes that the service of a retuespage in
fast memory costs 1, whereas a fault incurs a penalty, of > 1. In his model
a request sequence exhibits locality of reference if theaaelength of a subse-
guence containing requestsrtodistinct pages is much larger than Koutsoupias
and Papadimitriou [13] proposed tddfuse adversarynodel for studying general
online algorithms. In this model a request sequence is gatiby a probability
distribution D that is chosen from a clags of distributions known to the online
algorithm. Koutsoupias and Papadimitriou also introdugedmparative analysis
which compares the performance of algorithms from giveasda of algorithms.
In this paper we propose a new model for studying paging vatality of

reference.

e The modelis very simple and closely related to Denning’skivgy set model [6].
It directly reflects the amount of locality exhibited by regtisequences. We
restrict the class of request sequences from which an adyemsay choose a
sequence but make no probabilistic assumptions regardéemput.

e We evaluate paging algorithms in terms of their fault rabes performance
measure used by practitioners. We give tight or nearly tigiiinds on the fault
rates achieved by LRU, FIFO, deterministic Marking straaegnd LFD. We
show that LRU is an optimal online algorithm in our model buttFIFO and
Marking strategies are not optimal in general.

e We have performed an experimental study with request segadinom stan-
dard corpora, comparing the fault rates proven in our apalys the fault rates
observed in practice. The gap between the theoretical asehodd fault rates is
considerably smaller than the corresponding gap in comygetinalysis. This
is the first time that the theoretical bounds developed inl@nrative paging
model are compared to the performance observed in practice.

2 The Model

In modeling locality of reference we go back to the workinggamcept by Den-
ning [6, 7] that is also used in standard text books on opeyaystems [5, 16] to
describe the phenomenon of locality. In practice, during plmase of execution,
a process references only a relatively small fraction opitges. The set of pages



that a process is currently using is called Wiarking set Determining the working

set size in a window of size at any point in a request sequence, one obtains, for
variablen, a function whose general behavior is depicted in Figurehk flinction

is increasing and concave. Denning [6] shows that this is@h & mathematical
consequence of the working set model, assuming statiségalarities locally in a
request sequence.

Program Size

Working Set
Size

Window Size

Figure 1: Working set size as a function of the window size.

Inspired by this simple and natural model we devise two wdysadeling
locality of reference. In both models, we assume that anicadjan is character-
ized by a concave functiofi; the application generates request sequences that are
consistent withyf. In the Max-Modela request sequence is consistent vyitifithe
maximum number of distinct pages referenced in a window z# siis at most
f(n), for anyn € IN. In the Average-Modeh request sequence is consistent with
f if the average number of distinct pages referenced in a winalosize n is at
mostf(n), for anyn € IN.

In our model the functiory characterizes the maximum/average working set
size globally in a request sequence, whereas the origingdimgpset model con-
siders working set sizes locally. The Max-Model is closalated to the original
working set model. On the other hand, the Average-Model fteranlarger class
of request sequences. It is interesting if an applicatioengks the working set
completely at certain times in a request sequence.

We performed extensive experiments with traces from stahdarpora, ana-
lyzing maximum/average working set sizes in windows of sizeee Section 7 for
details. In all of the cases, the functions have an overaltaee shape. Even in
very large windows, the number of distinct pages referensegry small. This
demonstrates that the model we propose here is indeed eddsdor studying
paging algorithms.

What properties do relevant functiorishave, apart from being increasing and
concave? Since windows of size 1 contain exactly one p&de,= 1. If windows
of sizen contain at mostn pages, then a window of size+ 1 can contain at most

3



m + 1 pages. Thus, in the Max-Modef, is surjectiveon the integers between 1
and its maximum value, i.e., for all natural numbserdetweenl andsup{f(n) |
n € IN}, there exists an with f(n) = m.

For a given application, a good approximationfois easy to determine. One
only has to scan a sufficiently long request sequence andutentipe maximum/
average number of pages in windows of sizeA function obtained by analyzing
real data might not be concave in all intervals. Howeves, iino problem. Essen-
tially, we can use any concave functigrnthat is an upper bound on the observed
data points, e.g., we can take the upper convex hull of theegdiVe only need that
f(n) is an upper bound on the maximum/average number of pagesdows of
sizen, andf(n) need not even be integral for all Therefore, we will work with
general functiong : N — R, which will allow us to state concavity in a simple
way.

Definition 1. A function f: IN — R is concavé if
i) f(1)=1and
i) Vn e N: f(n+1)—f(n) > f(n+2)— f(n+1) >0.

In the Max-Model we additionally require thdtbe surjective on the integers be-
tween 1 and its maximum value.

Both in the Max- and in the Average-Model, given a conéaumction f, we
will analyze the performance of paging algorithms on retjseguences that are
consistent withf. Practitioners use thiault rate to evaluate the performance of
paging algorithms. We will use this measure, too. For a paglgorithm.A and a
request sequence let A(o) be the number of page faults incurred Ayon o and
let |o| be the length of. The fault rate ofd ono is F4(0) = A(o)/|o|. We are
interested in the worst case performance on all sequenaearth consistent with

I
Definition 2. The fault rate of a paging algorithtd with respect to a concave
function f is

FA(f) :=inf{r | 3n € IN: Vo, o consistent withf, |o| > n: F4(o) < r}.

Throughout the paper, we will assume that the functionsidensd are concave
Moreover, we assume that the functions have maximum valtiasleastk + 1,
since otherwise the fault rate of any reasonable pagingitigois 0.



3 Algorithms

We briefly describe the algorithms analyzed in this paper.

¢ LRU (Least-Recently-UsedOn a fault, evict the page whose most recent
request was earliest.

e FIFO (First-In First-Out). On a fault, evict the page that has been in fast

memory longest.

e Deterministic Marking algorithmsA request sequence is processed in phases.

At the beginning of a phase, all pages are unmarked. Wheagvage is re-
quested, it is marked. On a fault, an arbitrary unmarked gected from
fast memory. A phase ends immediately before a fault wheretheek
marked pages in fast memory.

e LFD (Longest-Forward-Distance)Evict the page whose next request is far-
thest in the future.

The first three strategies are popular online strategieB, bR the other hand,
is an offline algorithm that cannot be applied in practice wieeer, since LFD is
an optimal offline algorithm — on any request sequence iteaxes the minimum
number of page faults [1] — it is interesting to analyze idfaate.

We also consider the very primitive online algoritffWF (Flush-When-Full)
FWEF is a marking algorithm which, at the end of each phaset®uall pages in
fast memory.

4 Results

Both for the Max- and the Average-Model we develop tight aarhetight bounds
on the fault rates achieved by popular paging algorithmé siscLRU, FIFO, de-
terministic Marking strategies and LFD. The results are maized in Table 1.
M denotes the maximum number of distinct pages that can bestgfiin any
sequence consistent with and f ! is the inverse function of, formally defined
in Section 5.

In Section 5, we investigate the Max-Model. We prove a gdrewser bound
of % on the fault rate of deterministic online paging algoritharsd prove
that the fault rate of LRU exactly matches this lower boundcenég, LRU is an
optimal deterministic online algorithm in the Max-Model.

LRU is a special Marking strategy. We show, however, thategandeter-
ministic Marking strategies are not as good as LRU. We prolmvar bound of



Max-Model Average-Model

Online > % > f(ktﬂl)—l
LRU = % _ f(k+kl)71
FIFO > f*lk(;—ll—/lk)—l’ < f*l(kli 5 (R
Marking < % < %@
LFD > max {f—l(+m+l)f2} <2 1r<nn?}<(k{#’:jm)} ~ e L
k+m<M k+m<M
Table 1: Fault rates of all algorithms considered in thiskvor

% on the fault rate of a class of Marking algorithms that inelsidFlush-

When-Full. We further prove that this class is worst possdihong Marking al-
gorithms, i.e., we prove an upper bound on the fault rate yiarking algorithm
matching this lower bound.

For FIFO, we prove a lower bound @‘% and an almost matching
upper bound of}%. The gap between the lower bound for FIFO and the
fault rate of LRU is small. However, in our experiments thiéedence in the fault
rates observed for LRU and FIFO is also small, see Section 7.

We finally study LFD and show that its fault rate depends ortdked number
M of pages that may be requested. We show that LFD has a faglbfatt least
max{%}, where the maximum is taken over all positive integersiith
m + k < M. We prove an upper bound that is about a factor of 2 away frasn th
lower bound.

In Section 6, we study the Average-Model. We prove that edetgrministic
online paging algorithm has a fault rate of at Ieé@t*,cl)—*l.

In the Average-Model, both LRU and FIFO are optimal, i.eeytlachieve a
fault rate equal to the lower bound. On the other hand, ther&arking strategies
that are considerably worse. We identify a class of Markilgg@thms including

FWF and concavefunctions for which the fault rate is approximat%yf%. If k&
is even, the exact fault rate ﬁ%@ If £ is odd, then there is an additivel /k
in the denominator of the first term. We prove that this is tloestvpossible fault
rate for Marking algorithms.

We also develop tight bounds for LFD. The fault rate depegdgeon the total
numberM of pages that may be requestedklis odd, then the exact fault rate is



SR f(kkjll). If k& is even, there is an additivel/(k + 1) in the denominator
of the first term. IfM is approximatelyk, LFD has page fault rate close to 0, as
expected. IfM is large compared th, the fault rate is close té(k%l).

In Section 7, we present the experimental study mentiorreddy a few times
in this text. We first demonstrate that our models for qugimtif locality is in-
deed reasonable from a practical point of view and then coenttee fault rates
developed in our models to the fault rates observed in mecti

For the Max-Model, the results are quite good. The gap betwee theoret-
ical and observed bounds is considerably smaller than thesmonding gap in
competitive analysis, unless the size of the fast memorytiemely small. As the
size of the fast memory increases, the gap decreases argl mwall for large fast
memories.

For the Average-Model, the results are not as good. Hereilwbaste a con-
siderable gap between the theoretical and observed faak.raur explanation
for this phenomenon is as follows. The Average-Model perraitarger class of
request sequences than the Max-Model. This larger classcordgin request se-
guences that cause high fault rates in the mathematicaglsasabut typically do not
occur in practice. We conclude that while the Average-Masl@iteresting from a
mathematical point of view, the Max-Model seems to modeleramcurately the
request sequences that occur in practice.

5 Paging in the Max-Model

We first study the Max-Model. Given a concaveinction f, f(n) is an upper
bound on the maximum number of distinct pages encounteraayin consecutive
requests of a request sequence. In this section we will asshat f(2) = 2,
because (2) < 2 only permits request sequences referencing a single pagéma
such sequences the page fault rate of any reasonable lagasit0. Furthermore,
we consider only the cade > 2. If £ = 1 an adversary can easily cause a fault
rate of 1 for any paging algorithm becaufg) = 2. For the analyses of the fault
rates we need to define the inverse functiorf oket M = sup{|f(n)] | n € IN}.
Definef': {m € N|m < M} — N by

fYm) :== min{n € N | f(n) > m}.

Thus, f~!(m) is the smallest possible size of a window containingdistinct
pages. The following proposition will be crucial in our aysds.

Proposition 1. f~! is a strictly increasing function satisfying

Y m)=fYm—-=1)>f"m—-1)—f(m—2), foral3<m< M.



Proof. We prove the stated inequality. Singe!(2) — f~!(1) = 1, this imme-
diately implies thatf—! is strictly increasing. The functioif is concavé, i.e.,
f(n+1) = f(n) > f(n+2)— f(n+1). Thus, for anyn,n’,k € IN such that
n' >n+k,

n+k—1 n'—1
fin+k)—fm)= > (FG+1)—f@) > > (FG+1) - f())
i=n j=n'—k
= f(n') = f(n' k). 1)

The inequality in the middle holds because, the number afigeén both sums is
the same and, for each indéwn the left, there is an indek> ¢ on the right.

Letn = f~'(m — 2) andn’ = f~(m). Sincef is surjective we havg (n) =
m —2andf(n') = m. Setk = |5 |. Using (1) we obtain

flntk)+f(n' —k) _ fn)+ ()
2 = 2

=m—1. 2)

If n' —niseven,therf(n+k)=f(n'—k)=m—1landf~'(m—1) <n+k.
The desired inequality holds because- £ = n’ — k and

fim) = f M m-1)>n"—(n+k)=n"-k—n
> Y m—-1)— f'(m —2). 3)

If n'—nisodd, them+k+1 = n'—k. Inequality (2) ensures thd{n+k) > m—1.
Otherwise, iff(n + k) <m —1,wehadf(n+k+1) = f(n' — k) >m —1and
f would not be surjective. Thug, ' (m — 1) < n + k and we can again derive (3)
becauser + k < n' — k. O

We first develop a lower bound on the fault rate that can beegeli by any
deterministic online paging algorithm and then show thal)liRoptimal.

Theorem 1. Let.A be any deterministic online paging algorithm. Then

k-1

FA(f)Zm .

Proof. We construct a family of request sequenegs where the lengtm of

a sequence can be made arbitrarily large, such ttaffault rate on any of the
sequences is at least the desired bound. We heetdistinct page®;, . .., pxr1-

A request sequence is constructeglaseseach of which has a length ¢f-! (k+

1) —2 and is composed df— 1 blocks A block is a subsequence of requests, all to



the page that was not jd’s fast memory at the end of the previous block. Thds,
has a cost of in each block and a cost &f— 1 in each phase. In each phase, block
4,1 < j < k-1, starts with request—'(j+1) — 1. Note that the partitioning of the
phases into blocks is well-defined, sinf€) = 2. Thus, the first block of a phase
starts with the first request of the phase. Within a phasekblpl < j < k -1,
hasalengthof f~'(j +2) — 1) = (f~'(j+1) = 1) = f'(i+2) - ' (G+1).
By Proposition 1,f ! is strictly increasing. Thus, the blocks are non-empty and
the constructed sequence is well-defined. Also, within as@hhe block lengths
are non-decreasing.

It remains to show that the request sequence is consistémtfwilo this end
it suffices to show that any subsequence wjittlistinct pages has a length of at
least f~'(j). Forl < j < 2, there is nothing to show becauge!(j) = j
in this case. The most interesting rangejas 3 < j < k. Any subsequence
with j distinct pages must (partially) cover at legstonsecutive blocks. Since
the blocks are homogenous with respect to the requested pagdsequence of
minimal length withj distinct pages only contains the last request of the firstiblo
partially covered and, analogously, only the first requésh® last block partially
covered. Extending the subsequence further into the firstsbiblock, we do not
gain any additional pages but only increase the length ofstisequence. As
stated above, the block lengths in a phase are non-deageddins, a subsequence
with j distinct pages of minimal length fully covers the fijst 2 blocks of a phase
and includes the last request of the previous phase as wiied#rst request of
block j — 1. The length is(f~1(j) — 1) + 1 = f~1(4).

We finally have to considef = k + 1. A subsequence with + 1 distinct
pages must partially include at least+ 1 blocks and has a length of at least
(fYk+1)—2)+2=fYk+1). O

k-1

Theorem 2. The fault rate of LRU iF ru(f) < m .

Proof. Let o be an arbitrary request sequence consistent With\Ve partition

the request sequence into phases such that each phasesexttlyk — 1 faults
made by LRU (except for possibly the last phase) and stattsanfault. In general,
theith phase; > 2, starts with theé (i —1)(k—1)+1)st fault and ends immediately
before the(i(k — 1) 4 1)st fault. The last phase might be incomplete. LRU incurs
a cost of at most — 1 per phase. We show that each phase, except for possibly the
first and the last one, has a length of at lg&ast(k + 1) — 2. Consider an arbitrary
phaseP different from the first and the last phase. We argue thatubsexjuence

of o starting at the last request befaReand ending at the first request after
(including that request) contairis+ 1 distinct pages. This implies thd has a



length of at leasf ~'(k + 1) — 2. Letz be the page referenced by the last request
before P. PhaseP and the first request aftdt includek page faults. If these page
faults are on distinct pages different framthen we are done. If one of the faults
is onz, thenz must have been evicted ihat some fault to a page At that timez

was the least recently requested page in fast memory ané lanbave identified

k + 1 distinct pages in our subsequence. The same argumentsappliee case
that LRU faults twice on requests to some page # x. To concludeg consists

of at most

o=t 1. ol
Y k+1) -2 = fYk+1)-2
phases, wheré denotes the length of the first phase. In each phase LRU has at
mostk — 1 faults. Thus, the fault rate anis bounded by

kE—1 n 2k —2
fTHE+1) =20 o]
where the last term gets arbitrarily small for increaging O

LRU is a special Marking strategy. We show, however, thatkifeyalgorithms
in general are not as good as LRU, i.e., there is a class of iMaidgorithms
including Flush-When-Full that have a higher fault rate tHa following we first
give an upper bound and then provide a matching lower bound.

Theorem 3. The fault rate of any Marking algorithm1 is

k

Proof. A Marking algorithm M partitions a request sequengénto phases con-
sisting of requests té& distinct pages (except for possibly the last one) such that
it incurs a fault on the first request of each phase. Any submaze that starts at
the beginning of the phase and ends immediately after thedigsiest of the next
phase has lengtli~—'(k + 1) because thé pages requested in the phase are all
different from the first page requested in the next phases,Tdlbut the last phase
have a length of at leagt™' (k + 1) — 1 each. The request sequence consists of at
most

i S I
Y+ -1 = fHk+1) -1
phases, each causing at mbdgaults. Thus, the fault rate anis bounded by

L (—|U| +1> <k F
o] \f 1 (k+1) -1 T MR+ -1 o]
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The next theorem implies that the upper bound of Theorem Batere improved
in general.

Theorem 4. There are Marking strategiesf* whose fault rates are

k

Fp-(f) ZW .

Proof. We simultaneously describe the family of request sequengesnd the
behavior of the Marking algorithma/7*. As usual we need a set 6f+ 1 pages
p1,---,Pk+1- Arequest sequence consists of fifesesconstructed by the given
Marking algorithm. Each phase is composed:dilocks where a block is a sub-
sequence of requests to the same page. Within a phase, bluek a length of
16 +1) = f1(4), for1 < j < k. Proposition 1 ensures that the block lengths
are well-defined, i.e., they are non-zero, and non-deargasia phase. The total
length of a phase ig '(k + 1) — 1.

In the first phase, thgth block consists of requestsitg, 1 < j < k. Suppose
that we have already constructéghases such that each phase contains exactly
distinct pages. We show how to construct the- 1)st phase. The first block of
phasei + 1 consists off ~'(2) — f~'(1) = 2 — 1 request to the unique page that
was unmarked at the end of phas&he Marking algorithm\/* has a fault on this
request. We assume th&f* evicts the page that was requested in the last block
of phasei. Note that this is the case for Flush-When-Full. Each of teeth — 1
blocks of the phase references the page that is not in thenfasory of M* at the
beginning of that block. ThusM* has a total of: faults in a phase, which gives
the desired fault rate. The pages requested irkthicks of a phase are distinct.
By construction, the page requested in the second block bhaeis equal to the
page requested in the last block of the previous phase.

It remains to prove that the request sequence is consistigmtfw We show
that any subsequence wiftdistinct pages has a length of at legist' (5), 1 < j <
k + 1. Forj € {1,2}, there is nothing to show becauge'(j) = j for these two
values. For any with 3 < j < k + 1, a subsequence withdistinct pages must
partially cover at leasf consecutive blocks because blocks are homogenous with
respect to the requested page. The block lengths are noeadéwy in a phase.
Thus, if3 < j < k, a subsequence withdistinct pages of minimal length starts
at the beginning of a phase and ends after the first requesbak jp The length
is exactly f~!(5). The final casej = k + 1 needs some extra arguments. A
subsequence with+ 1 distinct pages must contain requests from two consecutive
phases. If the subsequence fully covers some phaben we are done because
a phase has length~!'(k + 1) — 1 and one additional request must be covered.
Otherwise the phase partially covers two consecutive ghaaads + 1. In this

11



case the subsequence must partially cover at feas® blocks because the page
in the kth block of phase is the same as the second block of phagel. Since
the length ofk consecutive blocks is exactly equal to the length of a phthee,
subsequence has length at legst! (k +1) — 1) + 1 = f1(k +1). O

In the following we show that FIFO is not an optimal onlinea@ithm in our
model. We first develop a lower bound on FIFO’s fault rate dmehtpresent a
nearly matching upper bound.

Theorem 5. If f=1(4) — f=1(3) > f~1(3) — f~'(2), then

k—1/k

Friro(f) > T 1

Straightforward algebraic manipulations show that thdtfeate of FIFO given
in the last theorem is in fact larger than that of LRU (detaitsitted here). The
condition onf means that there must be some locality in windows of §jzee.,
f(5) < 4. We can relax the constraint such that there must be somiydoeahe
request sequence, i.g ! (m) — f~Hm —1) > f~Y(m — 1) — f~1(m — 2) for
somem > 3, but then our lower bound becomes slightly weaker.

Proof of Theorem 5. Let pg,...,pr bek + 1 distinct pages. We construct a
family of request sequences,. A request sequence consists of an initial request
to p, followed by a sequence gfhases each composed df — 1 blocks The
blocks are not homogeneous; each block consists of onesetusome page;,
0 <i <k -1, followed by one or more requests;ig, depending on the length
of the block. In the sequence of blocks, the paggs..,pr_1 are requested in
cyclic order, i.e., in theth block in the request sequence the first request is made
t0 p(j_1) mod k- The block lengths are as follows. In any phase, the firstkohzs
lengthf~1(3)— f~'(2)+1 and thejth block has alength of =1 (+2)— f ~1(j+1),
forj = 2,...,k — 1. By Proposition 1 and the condition gh the block lengths
are non-decreasing, the first block having a lengttyof(3) — f~1(2) +1 >
3 — 241 = 2. Thus, each block contains at least one requegi; toThe total
length of aphase ig='(k+1) — f~1(2) + 1 = f~'(k + 1) — 1. In the rest of the
proof we will argue that the constructed request sequeriodégd consistent with
f and that in anyt consecutive phases, which we calluper phaseFIFO incurs
(k — 1)(k + 1) faults. This gives a fault rate of

(k—=1)(k+1) E—1/k

kE(f~"(k+1)—-1) fHk+1)—1

as desired.
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We first prove consistency with by arguing that any subsequence wittis-
tinct pages has a length ¢f !(5). Forj € {1,2} there is nothing to show. Con-
sider aj with 3 < j < k. Any subsequence withdistinct pages must span more
than a block because a block contains only two distinct pagesubsequence of
minimal length does not start with a prefix of requestptdecause that page is
contained in the next block anyway. Thus, it starts at thénmigg of a block and
extends at least beyond the first request of(the- 2)nd following block. Since
block lengths are non-decreasing in a phase, a subsequéthcg distinct pages
has a length of at leagt '(5) +1— f~'(2) +1 = f!(4). Finally, a subsequence
with k£ + 1 distinct pages must span more than a phase and hence its Isragt
leastf (k + 1).

We now analyze the number of faults made by FIFO in a superephAs-
sume that the initial fast memory is empty. FIFO first missespp and then
on py,...,pr—1, Which are requested in the nektblocks. Onk consecutive
faults, FIFO never misses twice on the same page. Thus, tiesiequence is
Pk, Do, - - -, PE—1, Which repeats in cyclic order. We show inductively that ®IF
misses on the first request of each block. This clearly haldshie firstk blocks.
Suppose that FIFO misses on the first request of bjogk> k. If pagep; with
i < k — lisrequested, them ,; is evicted, which is referenced in blogkt 1. If
pr_1 IS requested, thepy is evicted, which is referenced in the same block. The
fault onp, causes an eviction afy, requested in the next block. Our proof also
shows that FIFO has two page faults on any block with a reqoest ;. In anyk
consecutive phases,— 1 of these contain such a block. Thus, in any super phase
the total number of page faultsigk — 1) + £k — 1 = (k+ 1)(k — 1). O

We complement our lower bound by giving a nearly matchingeafgound.
<k

“ Y k+1) -1

Proof. On anyk + 1 consecutive faults in a request sequencEIFO never faults
twice on the same page. Partitioninto phases such that each phase contains
exactly £ faults made by FIFO and starts with a fault. Consider a subssme
that spans one full phase and includes the first request ofigkephase. The
subsequence coveks+ 1 faults, i.e..k + 1 distinct pages. Hence, its length is at
leastf ~!(k + 1), and the phase length is orllysmaller O

Theorem 6. The fault rate of FIFO isFriro(f)

We next give bounds on the fault rate of LFD.
Theorem 7. The fault rate of LFD is

m
b > :
LFo(f) > max {f—l(k+m+1)—2}
k4+m<M

13



Proof. Fixanm € IN andN = k + m pagey, - - ., pn_1- We construct a family
of request sequences in phases, where each phase has afefigthv 4 1) — 2.
Each phase is composedf— 1 blocks, thejth block in a phase having a length
of f1(j+2)—f 1(j+1),forj = 1,..., N—1. Inthe overall sequence, the pages
po,---,pN_1 are requested in cyclic order, i.e., tjith block consists of requests
to pagep(;_1) moa v, fOr any positive integej. The page referenced in the last
block of a phase is not requested in the following phase lmitles in LFD’s fast
memory at the end of the phase. Thus, amongNhe 1 pages requested in the
next phase, only: — 1 of these can be in LFD’s fast memory at the beginning of
the phase. Hence, LFD incurs at le@st— 1) — (k. — 1) = N — k faults in a phase.
This gives the desired fault rate. As in the proof of the gaHerer bound, we can
show that any subsequence wijtltistinct pages has a length of at legst' (5),
which yields consistency of the constructed request segueith f. O

We prove an upper bound on LFD’s fault rate that is esseptéafiactor of 2
away from the lower bound. To prove this upper bound we needdtowing
technical proposition.

Proposition 2. For anymy,...,m, € N,

S 4 me) > g () wherem = £ Y,
=1

(=1

Proof. Proposition 1 implies that
f7Hm) + 7 Hm!) > f m 1)+ f 7 (m! 1) 4

for all m, m’ € N with m’ — m > 2. We now manipulate the sul;_, f ! (my)
as follows. At any time we keep a sequencendermsf=!(m1),..., f~ (my),
where the argumentg, are natural numbers. Initiallyp, = my, for =1,...,n.
At any time letm = min{m, | £ =1,... ,n} andm’ = max{m, | £ =1,...,n}.
While m’ —m > 2, replace two termg ! (m) and f ' (m/) by f'(m + 1) and
f~'(m' — 1). By (4), this cannot increase the total sum of the terms. When
process terminates, eagty is either|m | or |7z |+ 1. The proposition then follows
becausef (|m| +1) > f1(|m)). O

. m+1
Theorem 8. The fault rate of LFD ig] <2 _— 5.
u | LFD(f) = 1r§nna£}§(k {fl(k,' n m)}
k4+m<M

Proof. Partition a given request sequence into phases such thatpbase con-
tains exactlyk distinct pages (except for possibly the last phase) and thages

14



are all different from the first page requested in the nexsph&uppose that the
partitioning consists gf phases”,, . .., P,. For any phase, letm; be the number
of new pages, i.e., pages referenced in phabat were not referenced in phase
1 — 1. We assume that LFD initially starts with an empty fast mgmamd set
my1 = k. Consider an offline strategy that performs page swaps utithoict-
ing pages that are referenced in the phase. The number offpale made by
this algorithm in any phasg¢is m;. Since LFD is an optimal offline algorithm,
the total number of page faults made by LFD cannot be largérisshounded by
k+ Y0 omi = k+ (p—1)m, wherem = 13370, m;. Any two consecu-
tive phases — 1 andi containk + m; distinct pages and thus have a length of
|Pi—1] + |P;| > f~(k + m;). The total length ob is

p p

1 1

o] = Y IR = 5Z(|Pi_1|+|Pz~|)+§(IP1|+|Pp|)
=1 1=2

1,
> 5 2; FHE A+ my).
By Proposition 2|o| > (p — 1)f ' (k + |m]). LFD’s fault rate oro is

E+(p—-1)m 2m k

Fieo(@) < == < TG+ ) Tiol

The second term in the sum becomes arbitrarily small foremsing|o|. Thus,
LFD’s fault rate is

m—+ 1
A <2 _mr: L
rol) <2 mas | i
k+m<M

6 Paging in the Average-Model

We now turn to the Average-Model. We need some additionatiost. For any

sequence of page requests;[i] denotes théth request in o as well as the page

requested by, 1 < i < |o|. Forl < i < |o| — ¢+ 1, let o4[i] be the window

(olil,oli+1],...,0[i+£€—1]). Let Ny(7) be the number of distinct pagesdn[i],

and letN, = EQ;“I Ny(i). Let Av(éj)vbe the average number of distinct pages
L

in windows of lengttY, i.e., Av(¢) = o1 - Thus, a sequence consistent with

a given concavefunction f has A(¢) < f(¢),1 < £ <|a]|.

15



6.1 A Tight Lower Bound for Deterministic Algorithms

In this section we will prove a lower bound éf’“%)’l on the fault rate of any
deterministic paging algorithr with respect to any concavdunction f. We
will build sequences consisting of two parts. Each sequbase prefix on which
A faults on each request. To ensure that the sequences aisteonwvith f, a
suffix consisting of requests to only one page is added.

As a beginning, consider the sequence

U(nam) = <p13p23p3a v 7pkapk+1>n<p1>ma n > k+ 2,m > k+1

consisting of requests th + 1 distinct pages. For convenience, we usually omit
n andm and refer to the sequence @s To determine the minimum lengtt of

the suffix ensuring that(n, m) is consistent with a given concaviinction f, we
shall need the following upper bound on the average numbdistihict pages in
windows of lengtt?, 1 < /¢ < |o]|.

Lemma 1. Forany?' > k + 2, let A(¢) be defined as

L+ A (£-1), 1<l<k+1,
A(l) = (T +Avk) +Ag(l— (K4 1)), k+1<e<Y,
k+1, >0,
- H)—-(1+A i
Alzl—m—kandAgz (k+1) = (1+ Aik) (see Figure 2).

0= (k+1)

If m = ¢n, for some constani > 0, there exists amy € IN such that,

(k+1)n+m

forn > ng,1 < £ < |o, Av(f) < A(0).

k+1-
As

Ay

1 k+1 A

Figure 2: A(¢), an upper bound on A¥).
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Proof. We have

Noiq Ny
AV(L+ 1) — Av(l) = _
VD) =N = s m—t i ntm 41

_ Ney1 — N+ AV(d)

(k+1)n+m—1¢ ©)
and
lo|—¢ |o]—£+1
Negt = Ne= Y Nepa(i) — Y No(i)
i=1 i=1
lo|—2¢

= 3" (Ness(6) = Ne(@)) = Ne(lo| = £+1). ©)
i=1
The rest of the proof is divided into three cases, accordirtye three linear parts
of A(¢). Forl < ¢ < n(k+ 1), weletr(¢) = (k+ 1)n — £ + 1, such that the
window o,[r(¢)] is the rightmost window of length completely contained in the
prefix (p1, p2, p3, - - -, Pks Pry1)"-

Casel < ¢ < k + 1. Obviously, A1) = 1 = A(1). It remains to prove
Av(l+1) —Av(¥) < Aq,forl < ¢ < k. Thus, assume now that< ¢ < k. Then
no window of size/ contains allk + 1 distinct pages.

Forl < i < r(f), Nyp1(i) — Ne(i) = 1. Fori > r(£) + 1, Npq (i) = Ny(i),
sinceoy|i] already contains the page. The boundary case is depicted in Figure 3.

<k
—_—~—

(pl,...,pk+1, ............ ,pl,...|...,pk+1,||p1,|...,p1>

[\ 7\ J

~ ~

(k+1)n m
Figure 3: Wherv[r(¢)] is extended t@ . [r(¢)], p1 is included in the window.
Thus,ZLi'l_Z (Nes1(3) — Ne(i)) = r(£). Sincel < k < m, the rightmost window

of length/ is completely contained in the suffix, 8 (|o| —£+1) = 1. Therefore,
by (6), Ny 1 — Ny =r(£)—1 = (k+1)n—£. Now, by (5) and A¥/) < Av(k) < k,

(k+1)n—L+Ek m—k
A 1) —A < =1-
v(e+1) V(g)_(k-l-l)n—f—I-m (k+1)n—L+m
m—k
l————— = Ay
< (k+1)n+m !
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Casek +1 < ¢ < /. It follows from the previous case that 8v+ 1) < 1+ Ajk.

Thus, it suffices to show A¥ + 1) — Av({) < Ay, fork+1 < ¢ < ¢ — 1.

Observe that for alf, 1 < 7 < r(¥), it holds thatNy(i) = k + 1 = Ny (7)

because¢ > k + 1. Also for alli > r(¢), Ny(i) = Ny, (i) because, is already
included inNy(i). SONy41(i) — Ng(i) = 0, for1 < i < |o| — £. Thus, by (6),
Ngy1 —Ng=0— Ng(|0’| —{+ 1) < —1. Now, by (5),

14 (k+1) k
AV(+ 1) — AV(E) < < .
VD =N S G T S G nam =7

For any fixed andk, Av(¢ + 1) — Av(¢) € O (1), and

A, — k(m — k) B kqn — k? _an—1b
2T (k+Dn+m) @ —(k+1) G+lton@—(Fk+1)) cn

a,b,c € ©(1). Thus,A, € O(1). Therefore, there exists an, € IN such that
AV(( + 1) — AV(E) < Ao, forn > ny.

Casel > /'. Since there are only+ 1 distinct pages, it follows that A¥) < k+1,
forall¢,1 </ <|o|.

0

Now, we are ready to calculate the minimum length of the suiigded forr
to be consistent with a given concévenction f.

Lemma 2. For any concavé function f, there exists am, € IN such that the
sequence (n,m) is consistent witty, as long as» > n and

E+1—f(k+1) k2

Proof. Assume thain > %gﬁl) (k+1)n+ ﬁi)fl Let A(¢) be defined
asinlLemmail,andlgt = f~1(k + 1).

If f(k+1) >k+1,thenf(¥) > ¢, 1< ¢ <k+1,sincef(l) =1 and
fl+1)—f() > f(¢+2)— f(£+1)forall £. Inthis case, AW) < f(¥), for all
l.

Otherwiseft +1— f(k+1) > 0. Henceyn > gn, whereg > 0 is independent
of n, as required in Lemma 1. Thus, & < A(¢), for all £. Moreover,A(1) =
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1 = f(1) andA(f~'(k + 1)) = k + 1. Thus, sincef is concave, it suffices to
prove thatA(k + 1) < f(k + 1). This is done using algebraic manipulations:

k(m — k)
E+1—f(k+1) k2
M o1 PR T

0

Lemma 3. Leto’(n, m) be any request sequence consisting of a prefix bft- 1)
requests to pages frop.,...,pr+1} and a suffix ofn requests to the page, .
Thenforl </ <n(k+1)+m,Avy(l) <AV, (4).

Proof. Both sequences have the same length, so it suffices to shovintad
corresponding windows the sequerd¢eannot have more distinct pages than

Forl <i < (k+1)n—k, o hasNy(i) = min{¢, k+ 1} which is the maximum
possible number of distinct pages for window lengtiklence s’ cannot have more
distinct pages in its corresponding window.

For(k+1)n —k+1 < i < (k+ 1)n, observe that thé + 1 requests
ol(k+1)n—k+1],...,0[(k + 1)n + 1] are all distinct. Thusg,[:] cannot have
more distinct pages in a window starting in this range.

Fori > (k + 1)n + 1, o[¢] andco’[7] are identical and there is nothing to prove
for windows starting atr[4]. O

Theorem 9. For any deterministic online paging algorithm,

JE+1D -1

Fu(f) > p

Proof. Consider a request sequence of len@tht+ 1)n + m with k& + 1 distinct
pages. Since the algorithm is deterministic and can hold lodistinct pages in its
fast memory, we can choose the fifst+ 1)n requests such that incurs a page
fault on every request. The remainingrequests all go to the page. So.A will
have a leastk + 1)n page faults. Letn.: k}%ﬁ“jﬁl) (k+1)n+ f(%z)fl Then,

by Lemma 2 and Lemma 3, there existsrgrand a sequence of request sequences
(o(n, m))n>n0 consistent withf and enforcing k£ +1)n page faults when serviced
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by A. Thus, forn > ny,

nk+1)  nk+1)
Fa(o(n,m)) > o] onk+1)+m
~ k+1—f(k+1) K
=1/ (1+ flk+1)—1 n(k-l—l)(f(k‘i‘l)_l))
 fk+1D -1 fk+1) -1
k+ k[ (n(k + 1)) k+k/n

6.2 LRU and FIFO

When proving upper bounds in the Average-Model we shift tw$ from win-
dows to single requests. Rather than deriving lower bounde@length of a win-
dow containing a certain number of faults or distinct pagesahe Max-Model,
we derive lower bounds on the contribution from single retgiéo Ny, for £ = k
orl=Fk+1.

Requests that are not faults are calfezk requests. To prove that LRU and
FIFO are optimal, we show that each fault contributes 1 to Ny, and, for each
free request, there is a further contribution of at least 1.

flk+1)—1

—

Proof. Consider an arbitrary sequeneeconsistent withf. When a page is
requested, none of the neéxrequests are faults gn Thus, for each page, each
fault onp is contained irk + 1 windows of lengthk + 1 containing no other faults
onp and, for each free requestjpthere is a window of length + 1 that does not
contain a fault orp and whose first request is a requesptarhus, except for the
first and last requests, each fault contributes- 1 to Ny, 1, and each free request
contributes at least 1:

Ni41 > (k+1)-LRU(0) + (|lo| = LRU(0)) — ¢ =k - LRU(0) + |o| — ¢,

Theorem 10. The fault rate of LRU iF ru(f) <

wherec < 2k(k + 1) is independent ofiz|. Dividing by |o| yields

LR _
Zk U(o) + |o] C:k'FLRU(U)‘Fl—FiV

Av(k +1)

o]

and sincer is consistent witly,

Flk+1)>Av(k+1) > k- Flru(o) +1— |7j|

Solving for F ry (o) yields the desired bound. O
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Turning to FIFO, we cannot guarantee that efrele request to a page is
succeeded by requests that are not faults pn Hence, we need an alternative
way to prove that each free request contributes at leasiNl,1g9. To this end we
will use the following lemma.

Lemma 4. For any request sequeneeand any/, 1 < ¢ < |o|, Ny is increased by
at least 1, if a request is inserted én

Proof. Assume that the new requests inserted iro just aftero[i — 1], and let
o' denote the resulting request sequence. 1IFer j < i — ¢, oy[j] = oy[4], and
fori < j < |o| =€+ 1, o¢j] = oy[j + 1]. Thus, we need only consider the
windows oyfi — £ + 1],...,0¢[jmad andoyfi — £ + 1],...,0y[jmax + 1], where
Jmax = min{i — 1, |o| — £ + 1} (see Figure 4). To prov&;, > N, + 1 it suffices
to prove that

jmax
> (NiG) = Ne(3)) + Ni(jmax+ 1) > 1. @)
j=i—t+1
T
1 —0+1 i—13
[
1

Figure 4: The windows[i — £+ 1],...,0¢[i — 1]

Leti — £+ 1 < j < jmax. Thenoy[j] contains the requestand the requests in
o¢—1[j]. Therefore,N,(j) andN,(j) can differ by at most 1.

If N;(j) < Ne(j), the last page[j + £ — 1] in o4[5] is different from the page
requested by and all pages imy_[j]. In other wordsg'[j + /] is different from
all requests iy [5].

Let I be the set consisting of the indéand each of the indices+ £ such that
Ny(j) < Ne(4), i —€+1 < j < jmax We conclude from the previous paragraph
that, for each paia, b € I, o'[a] # o'[b]. Thus,

Né(jmax‘f‘l) > |I| > 1+ Z (NZ(]) _Né(]))
Rearranging, we obtain (7) and the lemma is proven. O
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flk+1) -1
-

Proof. Let o be an arbitrary request sequence consistent fviltet o’ be the sub-
sequence of consisting only of the requests on which FIFO has a faultwBen
two faults on a page there are faults on at leaktother pages. Thus, no window
of lengthk + 1 in ¢’ contains the same page twice. Therefore,

Theorem 11. The fault rate of FIFO iFrro(f) <

Ny = (k+1)(Jo'| —k) = (k+1) - FIFO(0) — k(k + 1).
By Lemma 4,
Ni+1 > Ni oy + (Jo| = FIFO(0)) = k- FIFO(o) + |o| — k(k +1).

Now, by the same arguments as in the proof of Theorem 10, thieedebound is
obtained. O

6.3 Marking Algorithms

In this section we prove an upper bound on the fault rate ofnaarking algorithm
of approximately% % Furthermore, we prove that there exists a class of marking
algorithms, including FWF, and a concévenction for which the bound is tight.

Theorem 12. For any Marking algorithmM,

Ak . @, if k is even,
3k+2 k
Fp(f) < n £(k)
if k& is odd.

3k+2—1/k  k

Proof. Consider an arbitrary request sequenansistent withyf. As a beginning,
we will prove thatFy (o) < %@ Analogously to the proof of Theorem 10,
we will do this by provingN;, > %M(J) — ¢, for some constant (i.e., ¢ is
independent of the sequence length).

Partitiono into phased?, P, ..., P,, such that each phase contains exaktly
distinct pages (except for possibly the last phase) and teges are all different
from the first page requested in the next phase. Hlpages requested in phase
P, pi,ph,...,pi, are numbered according to first appearance, i.e., the figg p
requested irP; is pj, the first page different fromp; is p%, and so on. Each page
causes at most one fault in the phase. For each pRaset s; denote the index of
the first request iP;, i.e.,o[s;] = pt.

For2 <i <n-2letN} denoter::i:[é]Hl N (4), and note thaiV;, >
S Nj. Note that the first window contributing t; contains exactly£] — 1
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requests from phasi_; and the last window contains exactngrJ requests from
phaseP;, . If the k distinct pages requested M), 2 < i < n — 2, contribute at
Ieast34i2 to Ni, thenN;, > %(n —3) = 3£ (kn — 3k) > 2E(M(0) - 3k).
Assume first thak is even. Fonl < j < % the first request tpj- is preceded
by at leastj — 1 requests and succeeded by at I@E&quests in the phase. There-
fore,p;'- is contained in at Iea@— 1+ 4 windows contributing th,i (see Figure 5).

k .
51 > j

~" ~"

R
1

IV ES
IMES

Figure 5:k even,j < £: pi is contained in at least — 1 + j windows contributing taV:.
g 2+ Pj gtav

Similarly, for % +1 < j < k, the first request t(pj- is succeeded by at least
k — j requests and preceded by at Ie@s‘equests in the phase. Therefop?,is

contained in atleast — 7 + 1 + % windows contributing tdv,i (see Figure 6).
Thus,

N

vV
Do
Y
N
|
—
+
.
N——
+
Il
N—;_PS“M??‘

: 3 % 2 2
2 . Kk (k k 3k
_Zk+229—21—7+§(§+1>—5—7.

This proves that'y (o) < %@ To prove thatFy (o) < %’ﬁ? @ it suffices to
show thatV; > 3582 2 — % +%,2 <i <n - 2. Todo that, note that the first
pagep!t! requested in phask ., is not requested i®;. Thus,pi™" contributest
to V.

Assume now thak is odd. Forl < j < % p; is contained in at least
k> + j windows contributing taV;. For &L < j <k, p! is contained in at least
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Figure 6:k even,j > § +1: pj. is contained in at leagt— j + 1+ % windows contributing
to N}

k — j + 1+ £5! windows contributing taV;. Thus,
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2 2
=Y (k—1)+2) j+k = (kK -2k+1)+-(k -1)+k
J=1 J=1
_3k% 1
T4 4
To prove thatFy (o) < 3k+4§7% @ it suffices to show thav; > % k? =
3k 1k 1 This inequality holds, sincg!™" is contained inf;! windows con-
tributing to V. O

For the lower bound, we make use of a sequence consistihglisfinct pages.
Let UPDOWN;, = <p1,p2, -«-3yPh—1,PhsPh—1,--- ,p3,p2> and letc = UPDOWNZ
be the concatenation afcopies of lbDowN;,. We refer to lPDoOwN;, as a phase
of o and subdivide the phases into “up” and “down” subphased) eatength
h — 1. Define Aj°(¢) to be the average number of distinct pages in windows of
length/ in an infinitely long sequence RDOWNY, i.e., forn — oo. To calculate
Av;°(¢) and prove that it is concavewe shall need the following lemma.

1
Lemmab. For1 </£<2h—3,Av;°(l+1) —Av;°(4) =1 — — gJ .
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Proof. Since the sequence has unbounded length, the average &@mbkdrsall its
UpDOWN;, phases. Furthermore, averaging over a single “up” or aeifagwn”
subphase gives the same result due to the symmetry of therssgjuNe choose to
analyze an “up” subphase.

Let Ny°, 0 < ¢ < 2h — 3, be the sum of the number of distinct requests in all
h — 1 windows of length¥ starting within the considered “up” subphase. In order
to prove the lemma, we show

(h—1)(AVP(£+1) — AViP(0)) = Ng$y — Ng° = h — |£/2] — 1.

Case0 < ¢ < h — 1. Obviously, the firsth — ¢ windows of length¥ get a new
page when lengthened hyposition. Also some windows starting towards the end
of the “up” subphase contributelato N7, — N;°. Precisely, fom odd, the last
|¢/2]| windows get a new page and, fereven, there aré/2 — 1 windows of this
kind. Thus,

5—1, / even h_ﬁ_l’ / even

cr-[g]-

Caseh < £ < 2h —3. Again, we determine the number of windows that contribute
1 to the differenceNy?, — Np°. The first window cannot contribute labecause
it already coverd, distinct pages. Subsequent windows can only contributeeif t
are long enough to reach a new page in the following “down’pbalse. Generally,
the part of the window in the “down” subphase must be longen tine part in the
“up” subphase. So only those windows starting at positigmghere

. . -1
can possibly contributé to the difference. On the other hand, a window that starts
in the “up” subphase and extends further than posifion— 2 (the end of the
“down” subphase) cannot contributd aSo it must also hold that

i+(l—1)<2h-2 & i<2h—0—1.

If £is odd, there ar@h—£—1)— (h— 51 )+1=h-EL =h—[£{] = h—|£] -1
windows contributing d. Note that, for/ even,i must be at least — 42, since
i € N. Thus, therear@h — ¢ — 1) — (h—52)+1=h—-£t—-1=h—|£] -1

contributing windows. O
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Now we are ready to calculate A&YY).

Lemma 6.
(£ -1)?
-~ 7 1<V <2h —
14 4(h—12)’ <¥¢<2h-3, ¢odd,
AR =9, -1 -1 o o
ih=1) 2 <t <2h-3, feven,
h, £>2h — 2,

andAv;° (/) is concavé.

Proof. The equality follows from Lemma 5 and simple calculationsr F< /£ <
2h — 3,

/—1
AVR(0) = AVR(L) + > AVR(i +1) — AV (i)
=1

-1+ (i)
e-1, i (- 1)2’ odd

i=1

2
L/2—
Z (- ) ¢ even.

For ¢ > 2h — 2, each window of lengtl¥ contains allh pages and therefore,
Avp°(¢) = h.

For the concaveproperty, it is obvious that A7 (1) = 1 and A°(£ + 1) —
Avi°(£) =0, for £ > 2h — 2. It remains only to check that

Ve e{2,...,2h —2}: 0 < AVRP(L+ 1) — AviP(4) < AV (f) — Avpe(£—1) < 1.

This is easily done using Lemma 5. FbK 7 < 2h — 3,

1| 1 |e-1
oo o0
— — N — — < N — JR—
AVRR(L+1) — AvR(l) =1 ; 1{2J 1 1{ 2J

= Avp°(0) — Avpe (L —1).

Moreover,
AV (2) — AviP(l) =1
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and

o 1 |2n-3 h—2 1
Avh(2h—2)—Av(2h—3)_1—m{ 5 J_l_ﬁ_ﬁ

> Av°(2h — 1) — Av(2h — 2) = 0.

Lemma 7. Let

(o) = min{/, Avp°(¢) + e}, 1<{¢<2h-3,
“\h, 0> 2h—2,

wheres = -2 Then,UPDOWN? is consistent wittf, and f is concavé.

Proof. To prove that WDOWN}! is consistent withy, we must show that A¢) <
f(£),1 < ¢ < 2(h — 1)n. Obviously, for¢ > 2h — 2, f(¢) = h is a tight upper
bound on Ag/). Forl < ¢ < 2h — 3, we utilize the results of Lemma 6. For
the windows starting in one of the first— 1 phases of BDowN}, the average
number of distinct pages in a window of lendftls Avy°(¢). The sum of the number
of distinct pages in all windows of lengthcontained in the last EDoOwN,, phase
is at mos2(h — 1)h. Thus,

2(h —1)(n — 1)AVS°(£) 4+ 2(h — 1)h

A <
V() < n2(h—1)—f11
2(h —1)(n — 1)AV°(£) + 2(h — 1)h h
< = Av® -
= 2(h —1)(n —1) Vi (£)+n—1
It follows easily from Lemma 6 thaf is concavé. O

Theorem 13. There exists a Marking algorithm1* and a concave function f
such that n "

3k—|—2'%’ if k£ is even,

Fp-(f) 2 Ak F(k)

3k+2—1/k  k

if k£ is odd.

Proof. Consider the sequenee= UPDOWN;}_ |, wheren > 0 is a (large) integer,
and the marking algorithroV* that uses the LIFO (Last In First Out) strategy
when evicting an unmarked page. Note thdt will fault on every request in the
sequence. Thugiy- (o) = 1. The same is true about FWF.

Let f be defined as in Lemma 7 with= k£ + 1. By Lemma 7 ¢ is consistent
with f, and f is concavé. Fork > 3, clearly, there exists an, € IN such that
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f(k) = AV (k) + EEL for n > ng. Thus, fork > 3 andn > ng, we can write

n—1"7

the page fault rate in the following way.

PR (D S ()
Ak f (k)
) Bk +2—1/k 4Bk k odd,
: - 15) k even.

3k + 2445k

6.4 The Optimal Offline Algorithm

In this section we will give an upper bound on the fault ratd.BD of approx-
imately %% Recall that for any concavdunction f, M denotes the
maximum value off. We will also prove that there exists a concafenction for
which the bound is tight.

For the analysis of the upper bound, we will partition theusgtges into phases
P, P,,..., P, defined in the following way. The phadg starts with the first
request in the sequence, and 2ox 1 < n, phaseP; starts with the first fault on a
page that was evicted in phaske ;. Let s; denote the index of the first request in
P,

Similarly to the previous upper bound proofs, we give a lol@ind onNVy, .
Like in the case of LRU and FIFO, no window of lengtht 1 contains two faults
on the same page. Hence, each fault contribstesl to N, ;. Lemma 8 below
can be used to give a lower bound on the contribution fromregeests.

The idea behind the proof of Lemma 8 is the following. For efaeb request
considered, we count the windows containinglo ensure that nothing is counted
twice, we consider only those windows that do not containudt fan the page
requested by. Furthermore, if a window contains two free requests tontained
in two distinct phases, the window is only counted in the fifghe two phases.

Lemma 8. For any free request to some page, let W (r) be the number of
windows of lengttk + 1 containingr but no fault orp and no free request tothat
occurs to the left of. In each phasé’;, 2 < i < n — 2, there are at leaskt — 1

free requestsy, ry, ..., 7, 1 to k — 1 distinct pages such that
k—1 s
3k2— 2, kodd,
> W(rj) > W, whereW = ¢ 17— ¥
7= 3k —1, keven.
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Proof. Letp be the first page requested in ph@3e;. By the definition of a phase,

p is evicted at some point during phaBe Assume that this happens as a result of
the requestr[q], for some index;. By the definition of LFD and the fact thatis
evicted, each of thé — 1 other page®, . ..,pr_1 in fast memory are requested
at some point betweer[q] ando|s; 1] (see Figure 7).

P1 .. Pk—1 p

q Sit+1

Figure 7:0[q]: Cause® to be evicted.o[s;1]: First fault onp aftero[q] — phaseP; 1
begins.

Each of these requests must be free. This can be seen in bwifig way.
Assume thatr[t], ¢ > ¢, is a fault orp;, 1 < j < k — 1. Then,p; must have been
evicted at some point betweetlg| ando[t]. Hence, by the definition of a phase,
t > s;41. In other words, there are no faults on any of the pages. ., p; 1 after
olq] in phaseP;.

Forl <j <k —1, letr; be the first request tp; aftero[q]. By the definition
of LFD, none of the firsk requests after; is a fault onp;. Thus, when calculating
W (r;), only requests to the left of; can be problematic. Left'j be the largest
index smaller tham such thab[h'j] is a request tg;. Furthermore, let; be the
index ofr; and letd; = h}; — h'j (see Figure 8). They (r;) = min{k + 1,d;}.

> S
,
3

’

Figure 8:0[h!]: Lastrequest tg; befores|q]. o[hf]: First request tg; aftero|q].

Now, letd; = ¢ — A andd; = hl; — ¢ and note that

k-1 k-1 k-1 k-1 k-1
dj =Y (dy+df) =D di+> dy > 2> 5.
j=1 j=1 j=1 j=1 j=1
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Let R be the set of requests such thatD(j) < £+ 1, and letm = |R|. Then,

k—1
Y W) > (k—=1-m)(k+1)+ > D(j)
j=1 r;€R

>E—1-m(k+1)+2) j =k —1+m® - km.
j=1

This lower bound orﬁf;ll W (r;) is minimized whenm = % if k& is even, and
whenm = % if k£ is odd. Inserting these values wof in the lower bound, the
inequality of the lemma is obtained. O

Theorem 14. The fault rate of LFD is
AM —k)  flk+1)

. AM—k—3 k+l  odd
<
Lro(f) < A(M — k) flk+1)
- , keven
AM —k-3-4  k+1

Proof. Consider any request sequenceonsistent withf. Since no window of
lengthk + 1 contains more than one fault on the same page, each faulttzaes
k + 1to Ni.1. Lemma 8 provides a lower bound on the contribution from tke f
requests of each phase.

Within a phase there is at most one fault on each page, aridghges that are
in fast memory at the beginnning of a phase do not cause aWéthin the phase.
Thus, each phase contains at mbst— k faults. LetF; be the number of faults
in phaser;, let W be defined as in Lemma 8, and NEH be the contribution to
Ni.1 from the requests i®;. Then

Ni., kA DEAW  (k+ 1) (M —k) + W
F, F; - M-k '
Solving for F; yields

M —k .
i N; ., and
S k+1)(M -k +w Tk
n n—2 M—k n—2
LFD(o) = F, = F, < N
(o) z:zl Z; +C_(k+1)(M—k)+Wi2:; k1O




wherec and¢d’ are constants, i.e., independent®f Thus,

M-k c
Grnar—mew NVEFD+
M-k c
SGrna—maw TR

o]

Firp(o) <

Now, the theorem follows by using thdt? — 3 = 3(k — 1)(k + 1):

Fieo(o) < M k e+ 1)+ &
o <
S (M =)+ 3k — 1) (k+ 1) o]
CAM k) fktl ¢
= O —F=3 kil +|U|,kodd,and
M —k c
Fi < E+1)+ —
LFD(")—(k+1)(M—k)+§(k—1)(k+1)—if( ) o]
_ ’
= AM — k) I f(k+1)+c—,keven
AM-k-3-75 k+1 o

Theorem 15. There exists a concavéunction f such that

AM—k)  f(k+1)
Firolf) > 4M;k—3 k+1
(M — k) fk+1)

. , keven
AM -k =3 — 55 k+1

k odd

Proof. Consider the functiorf given in Lemma 7. Fot > 3, Av3;(¢) < ¢. Hence,
for k > 2 andn sufficiently large, inserting = M yields,
k-1 M
flk+1) = k+1—4(M_1) +—
AWM -1 (k+1) (k-1)(k+1) M

AM-1) 4M-1) T
_ (AM —k-3+e)(k+1)
= 101 =1) , k odd, and
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k2 M

k+1) =k+1-—
f4l) = k41— g Yoo
CAM -1+ k-DE+D L M
4(M — 1) A4(M —1) n—1
(4M —k =3 — 7 +e)(k +1)
= 107 — 1) , k even,
wheree = 4(kM+*11) M. The sequence RDOWN?, is consistent withf and f is

concavé. It is easy to verify that, in each “up” and each “down” subgdal FD
faults on the first request and the lddt— k& — 1 requests . Thus,

M-k f(k+1)

FLFD(UPDOWNTK/[) = M1 . f(k-l— 1)
M~k 4M-1)  fk+1)
M—1 iM—-k—-3+¢ k+l’ k odd
“Ym-k A(M -1 k41
M 1 ( )1 : fg{; +1)7 k even
L — 4M—k—3_k—+1+6 +
(AM -k fk+1)
AM —Fk—3+¢ k+1 kodd
- A(M — 1
( k)l -f(k+ ), k even.
\4M_k_3_k—+1+6 k“l‘]_
0

7 Experiments

In this section we present some results of our experimetudy/sn which we com-
pared the worst case fault rates developed in the previati®se to the fault rates
observed on real processor traces. We analyzed memorgmetetraces from the
New Mexico State University Trace Base [14] that contaiasdard benchmarks.
We selected traces from VAX and SPARC platforms. More spedi§i, we chose
the ATUM VAX traces and a bundle of SPARC traces that wereectdld while
running the SPEC92 benchmark suite. The sets consist ofextioh of 9 respec-
tively 13 memory reference traces from single processeg réfuest sequences
contain both data read/write requests and instructiorhéstc The SPARC traces
were truncated after 10 million references, whereas the Yfa¥es vary in length,
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Figure 9: Maximum and average size of the working set in wivglof size up tal00,000
requests. Each diagram’s caption gives the architectneename of the trace, and the
number of distinct pages requested in the entire sequence.

but are all about00,000 requests. We worked with a page sizebdf bytes for
the VAX architecture and a page size20fi8 bytes for the SPARC architecture.
We first analyzed the maximum and average working set sizéndows of up
to 100,000 requests. Figure 9 presents the results for four specifiestawo VAX
traces and two SPARC traces. As illustrated by the figuréhéhavior of the work-
ing set size proposed by Denning for a single window of ingireasize can also be
observedylobally, taking the maximum/average working set size alewindows
of a request sequence; the curves have an overall concasgityehOnly in the
Max-Model, some minor adjustments are necessary to obteameavé function.
We also observe that, for all window sizes, the working set & very small. In
the second part of the experiments, we evaluated the fdaak of LRU, FIFO, and
LFD on the various traces and compared the values to thespameing bounds
we developed for both the Max- and the Average-Model. Wegoeréd the com-
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Figure 10: Measured fault rates and upper bounds on therfaek for FIFO and LRU.
The fast memory sizé varies in the range of up to the total number of distinct pages
requested in the entire sequence.
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Figure 11: Measured fault rates and upper bounds on the rfatel$ for LFD. The fast

memory sizek varies in the range of up to the total number of distinct pages requested
in the entire sequence.
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parison for cache sizes ranging from 1 to the maximum work#tgize. Figur@?
presents the results for the VAX Pascal and the SPARC Comnases. The left
part of the figure shows the results for LRU and FIFO. The tweelocurves repre-
sent the empirical fault rates of LRU and FIFO, while the twioves in the middle
show the corresponding theoretical upper bounds in the Mastel. The upper
curve depicts the bound in the Average-Model. The right pARigure?? shows
the bounds for LFD in the same relative order.

Since the fault rate as defined in Definition 2 is a worst-casasure, we can-
not expect that the theoretical bounds on the fault ratesibe empirical values
completely. Nevertheless, the gap is not large andsiderablysmaller than in
the case of competitiveness. On real world traces, the ‘iétapcompetitiveness”
of LRU and FIFO is typically no larger then 4. This was obsdrire[3, 18] and
also showed in our experiments. On the other hand, the caipettios from
theory arek. Thus, the gap between the theoretical and empirical cativeetss
is k/4. In our paging model, the gaps are considerably smaller.tf®oSPARC
COMPRESS trace the gap is, expressed as a function lindawisually between
k/50 to k/30. For some of the traces we examined, the values were evew belo
k/1000. We also remark that the results for the Max-Model are bétien for the
Average-Model. We conclude that while the Average-Modéhisresting from a
mathematical point of view, the Max-Model more accuratelgdals request se-
guences that occur in practice.
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