Minimizing Stall Time in Single and Parallel Disk Systems

Susanne Albefs

Abstract

We study integrated prefetching and caching problems\iatig
the work of Cacet. al. [3] and Kimbrel and Karlin [13]. Caet. al.
and Kimbrel and Karlin gave approximation algorithms fonii
mizing the total elapsed time in single and parallel diskirsgs.
The total elapsed time is the sum of the processor stall tanels
the length of the request sequence to be served.

We show that an optimum prefetching/caching schedule for a
single disk problem can be computed in polynomial time,ghgr
settling an open question by Kimbrel and Karlin. For the palra
disk problem we give an approximation algorithm for minimg
stall time. Stall time is an important and harder to appr@tin
measure for this problem. All of our algorithms are based on a
new approach which involves formulating the prefetchiaghing
problems as integer programs.

1 Introduction

Prefetching and caching are powerful tools for increadiregper-
formance of file and data base systems. In prefetching, memor
blocks are loaded from slow memory, e.g. a disk, into cache be
fore the actual references to the blocks so as to reduce titiegva
time incurred if the block were to be fetched from disk wheis it
referenced. Caching on the other hand tries to maintain th&t m
frequently accessed blocks in cache so that they do not bave t
fetched from disk. Both prefetching and caching have séglgra
been the subjects of extensive theoretical and experimstuid-

ies [1, 2,5,6, 7,8, 9, 14, 15, 19, 20]. However, only recently
have researchers started looking at these techniquesritegmated
manner and to explore interrelationships between them,[314
13, 16, 17]. In a seminal work Caat. al. [3] introduced a model
that allows an algorithmic study of the problem.

*Max-Planck-Institut fur Informatik, Im Stadtwald, 66133arbriicken,
Germany. E-mailal ber s@mwi - sb. npg. de

t Department of Computer Science and Engineering, Indiatitutes of
Technology, New Delhi 110016, India. E-mail:
naveen@itd.ernet.in

{This work was done while the author was visiting the Max-Blan
Institut fur Informatik, Saarbriicken, Germany. Diparéinto di Informatica
Sistemistica, Universita di Roma “La Sapienza”, via Saldr13, 00198-
Roma, Italia. This work was partly supported by EU ESPRIT d.oerm
Research Project ALCOM-IT under contract n. 20244, anddliatt Min-
istry of Scientific Research Project 40% “Algoritmi, Modeli Calcolo e
Strutture Informative”. E-maill eon@li s. uni romal. it

Naveen Gard

Stefano Leonardi

First consider the case when all blocks reside on one disk. We
are given a request sequence= rq,...,r, and a cache of size
k. Each of then requests; specifies a memory block stored on
disk. We emphasize that we study the offline problem in which
the entire request sequence is given in advance. Servinguase
takes one time-unit. However, a request can be served ottig if
block requested is in cache. Fetching a block not in cachestak
F time units. Thus if we encounter a request to a block that is
not in cache we can start fetching the block from disk; in tase
the processor has to stall féf time-units. A better option is to
initiate a fetcha prefetch, to the block sometime-units before the
actual reference; the processor now has to stall for 6nly: time-
units. A prefetch operation may be initiated at any time fed it
is the only prefetch happening at that time. However, — afl th
is where caching enters the picture — when we initiate a priefe
we also have to make room in cache for the in-coming block by
evicting some block from cache. Thus, not only do we need to
decide when to initiate a prefetch but also what blocks tohfeind
evict. Starting a prefetch too early might force us to eviotks
which are requested fairly soon so that we have to initiateemo
prefetches to avoid stalling for these blocks. On the othadhif a
prefetch is started late, the processor might have to stad fong
time. Our goal is to minimize the total stall time, which i ttotal
time the processoris idle. This is equivalent to minimizihg total
time taken to serve the request sequence since this is pisuti
of the stall times and the length of the sequence.

As an example, consider the requests sequence
a,b,c,g,a,b,g,h and a cache size of 4, with blocksb, c and
d being initially in cache. Assumé& = 5. The minimum stall
time required on this sequence is 3. On the first request e
start prefetchings and evict blockd. Hence we have to stall for
two time-units waiting for blocky. On the request tg, we start
prefetchingh and evict: and hence have to stall for one time-unit
beforeh is in cache.

d h/c
fetch/evict 9/ /
service a b ¢ g a b 9 h
time 1 2 3 4 5 6 7 8 9 10 11

Figure 1: An example for one disk.

In the case of a parallel disk system, first explored by Kirhbre
and Karlin [13], the memory blocks are distributed overdisks
with each block stored on exactly one disk. At any time at most
one block may be fetched from a given disk. However, blocks th
reside on different disks may be prefetched in parallel. Alock
in cache may be evicted to make room for a block being fetched.
Thus, this corresponds to the setting where blocks are aagd-
and do not have to be written back to disk. Again, the goal is to
minimize the total stall time. Since blocks from differerigids can

fetch/evict

as/ci agfas
disk 1
b2/a1
disk 2
02/b1
disk 3
service ar az b as by by by az as by c2
time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: An example for three disks.

be fetched in parallel, an efficient strategy for the pardikk case
involves balancing the loadg. the number of fetches, amongst the
disks.

We give a small illustrating example for three disks. Sugpos
that disk 1 stores blocks, , a2, as, a4, disk 2 stores blocks; , b2
and disk 3 stores blocks,c2. We assume&’ = 5 and a cache
of size 4. Blocksuy, a2, b1, ¢ are initially in cache. In Figure 2
we give a schedule for serving the request sequence
ai, az, b1 ,as, bQ7 b1 s b1 ,a2, a4, bQ7 C2. The total stall time is 4 time
units. The schedule shows that stall time may be used sinailta
ously on several disks. This is the case at times 4 and 5 aswell
at time 11. A disk can only prefetch blocks that are storedton i
However, evictions can be from any disk.

Previouswork: Caoet. al. analyzed two algorithmgpnserva-
tive andaggressive for the single disk problem. Theonservative
strategy incurs the same faults as Belady’s optimal pagigg-a
rithm [1] but starts prefetch operations at the earliestjiis point
in time. Theaggressive strategy starts prefetch operations at the
earliest reasonable times.

The elapsed time of the schedule obtainedtnyservative (re-
spectivelyaggressive)is at most 2 (respectivelyiin {2, 1 + F/k})
times the optimum. In addition to combinatorial analysem&. al.
presented extensive experimental studies of the two dfgosi

Kimbrel and Karlin studiedonservativeandaggressivefor the
parallel disk problem. They showed that the approximatadios,
when the measure is the elapsed time,/ar¢ 1 andD(1 + (F +
1)/k) respectively. They also presented an algorithm calked
verse aggressive, which is theaggressive strategy on the reverse
sequence. This algorithm achieves an approximation rétj¢ ¢
DF/k). This gives good approximation ratiosiif and F'/k are
small, which is true in many practical applications. Karéind
Kimbrel left open the question whether an optimum
prefetching/caching schedule can be computed in polyridimie
even for the single disk case. A partial answer to this gorstias
given by Kimbrel [10] who showed a dynamic programming strat
egy that decides whether a request sequence can be serted wit
zero stall time in the single disk setting.

Our contribution: In this paper we present a new approach
to the problem of minimizing stall time in single and parhdésk
systems. We formulate the problems as integer programscdvel s
linear relaxations of these programs.

First, in Sections 2 and 3, we give a polynomial time algonith
for minimizing the stall time for the single disk problemetieby
settling a question left open by Kimbrel and Karlin. In pautar,
we show that any optimum fractional solution of our lineaygnam
can be written as a convex combination of (polynomially mamy

tegral solutions. This is equivalent to saying that theranopti-
mum solution to the linear program that is integral.

All results in the mathematical programming literaturettha
prove that the optimum solution to a certain linear prograrimi
tegral do so by arguing that all vertices of the correspomgioly-
tope are integral. This is done either by arguing that thestamt
matrix is totally unimodular, as is in the case of bipartitatof-
ing and maximums-¢ flow, or by combinatorial arguments as for
the matching and matroid polytopes [18]. However, the gt
corresponding to the P we consider has non-integral vertices. Our
proof of integrality of the optimum solution exploits a @&t prop-
erty of the objective function we work with.

In Section 4 we study the parallel disk problem; the main nov-
elty here being that we minimize the total stall time inste&the
total elapsed time. While minimizing these two measuregigwe
alent, approximating total stall time is harder than appnating
elapsed time, since the length of the sequence is not pauratn
jective function. To minimize total stall time is the realjettive
of an efficient prefetch/caching strategy. We generalieelitrear
program and the proof techniques presented in Sections 2 famd
a single disk to the setting of parallel disks. An optimurrusioh
to the linear program is then transformed into an integrhltam
that achieves an approximation ratio Bfon the total stall time.
The solution constructed uses at mést— 1 additional memory
locations in cache. This is actually very small-is typically 4 or
5 —when compared with the size of the cache.

Note that forD = 1, we obtain our optimum algorithm for
the single disk case. Another pleasing feature of our dlyoris
that, if a sequence can be served with zero stall time, werobta
a schedule that has no stall either and uses at flost 1 extra
memory locations in cache. Finally, we demonstrate thai #xtra
memory locations are allowed, then the integrality gap ofioear
program can be arbitrarily large.

In Section 5 we conclude with some remarks and open prob-
lems.

2 The LP formulation for a single disk

We assume that the request sequence is of length is no loss
of generality to assume that the cache is initially emptgeian
initial cache configuration can be modeled by prefixing thpiest
sequence with requests to the blocks that are in cache. \Wgfide
periods in which a prefetch is performed by consideringirats of
the request sequence of length at mBsthe length of an interval
is the number of requestsin it. An intendabf length less thai’ is
viewed as having a stall time éf— |7| units at the end. With every

such intervall we associate a variabi€ ') which is 1 if a prefetch
is performed in the interval and 0 otherwise. Thus miningzine
total stall time is equivalent to minimiziny_ , z(1)(F — |1]). We
note that the total number of intervals is boundedbyin{ F, n}.

To ensure that two prefetches are not performed simultastgou
we add for each point in the request sequence the constraint that
2 o(l) <1

With each interval and distinct block we associate two non-
negative variableg; ., er,« which denote the extent to which block
a is fetched/evicted in intervdl. Clearly the total amount of fetch
should be exactly equal to the total amount of eviction arisl th
value should not exceed the value of the interv@l). Formally,

VI fra=Y era<a(l).

In a feasible solution prefetches are scheduled so thatk lHo
in cache when it is referenced. This constraint is enforgelddk-
ing at all intervals between two consecutive referenceshmek
and requiring that on these intervals the total fetch of bk
equals its total eviction which is no more than 1. Thus if theck
were in cache at a certain reference it would also be in cadhe a
next one. Thus if, 7 are two consecutive references to a black

then
Z fra= Z era <1

IC[4,5] IC[4,4]

where/ C [i, 5] denotes that interval is properly containedin
the interval[z,]. To ensure that every block is in cache at its first
reference we require that the total fetch of a block on iratsrpe-
fore its first reference should be 1 and the total evict of thelbon
these intervals should be 0. Thusg i the first reference to block
a, ZIC[O,@'] f]ya =1 andZIC[OJ] €la = 0.

Finally, we require that on each request, the requestedt idoc
neither prefetched nor evicted, i.e., if blogks referenced at time

Z Z fra= Z ere =0.

Ierl
A compact description of the linear program is given in Appen
dix A.

Note that the only integrality constraint we imposed wadn t
variablesr (7). In any integral solution the intervals with{7) = 1
are non-overlapping. Given that these are the intervaldicithe
prefetch is to be performed, it is easy to determine the exack
to fetch/evict in each interval by using the following twdesl, pro-
posed by Caaet. al., that govern optimal prefetching and eviction.

1. Optimal prefetching. Fetch the block that is not in cache and
is next in the stream of block references.

2. Optimal replacement. Evict the block from cache that is ref-
erenced latest in the future.

Our linear programming relaxation for the problem is ob¢alin
by relaxing the integrality constraint ar{ /') to the linear constraint
0 < z(I) < 1. The optimum fractional solution to the linear pro-
gram is an assignment of valueg,/), to the intervals/. While
intervals with positive values can overlap, the sum of vaieany
set of pairwise overlapping intervals cannot exceed 1. iGthat
the prefetches need to be performed in this set of fractioneut-
vals we can use a fractional version of the two rules to detegm
which blocks need to be evicted/fetched and to what extesdahn
interval.

Linterval I is properly contained i’ if I is a subset of’ and both
endpoints off are different from those af’.

3 Minimizing stall time for a single disk

In this section we consider an arbitrary optimum solutiod simow
how to write it as a convex combination of integral solutiolh¢hen
follows that one of these integral solutions has a stall tivhéch is
at most the stall time of the fractional solution and hencamast
the minimum stall time.

3.1 Modifying intervals

LetZ be the set of intervals with (1) > 0, ie. Z = {I]|z(I) > 0}.

An interval I; = [i1, 71] is properly contained in interval I, =
[i2, J2] iff 41 > 42 andji < j2; a pair of intervals such that one is
properly contained in the other is calleshested-pair. Let/; € 7

be properly contained i, € Z and letz = min{z;,,z7,}. We
reduce eachof 7, , 7, by an amount; this causesone afr, , z 1,

to go down to zero and we remove the corresponding interval. W
also add two new intervald; = [i2, 1] andJ> = [i1, 52] with

x5, = xj, = x. The fetch inJ; (respectively.,) is the same as
the fetch inl; (respectivelyl;) while the evict inJ; (respectively
J2) is the same as the evict i (respectively/;). SinceJ; ends
with 7; the blocks that were fetched ih still arrive in cache at
the same time. Further, sinde begins with/; the blocks evicted

in I, are evicted from cache at the same time as before. The same
is true for the blocks fetched/evicted in interval and hence the
new solution also satisfies all the constraints of thHe (Fig 3).
Furthermore, since the total length of intervdis J; is the same
as that off;, I> and the reduction i, , x 1, is the same as the
increase inv 5, , x5, the value of the objective function remains
unchanged.

b
Il I a/ 1 r1
c/d :
Lo s ; 2
: a/d &
Jl ! ; 1 1
: : c/b :
Jo L 1 1
c/d :
I T2 — 21

Figure 3: Eliminating nested intervals. Characters on titervals
specify “block fetched/block evicted”.

Thus any nested-pair of intervals can be replaced by a set of
at most 3 intervals none of which properly contains the otBgr
performing this transformation for every nested-pair wéadban
equivalent fractional solution without nested-pairs. Eifiorth,7
denotes this new set of intervals.

We now order the intervals ifi by increasing starting points;
if two intervals have the same start point then they are ediey
increasing end-points. We could also have ordered thevaiteby
increasing end-points, breaking ties by looking at stgntiaints. It
turns out that sinc& has no nested-pairs these two orderings are
identical. Let< denote this total order ab.

3.2 The optimum fractional solution

As observed in [3] the optimum (integral) solution obeys fible
lowing two rules for fetching/evicting blocks: at any pathe block
fetched is the block not in cache whose next reference igesarl

and the block evicted is that block in cache whose next raterés order< and assign fetches/evicts to them by maintaining the cache

furthest in the future. The optimum fractional solutioncsfisliows configuration and following the two rules discussed ab®esides
these rules albeit in a fractional sense. we also maintain a queue of those blockswhich areonly partially in
Consider intervals in the order and letC denote the cache cache; the value of a block in this queueis the extent to which it is
configuration after we have performed the fetches and evimts not in cache. Before we start evicting a block which is completely
responding to the firstintervals in the sequence. Note that each in cache we append it to the end of the queue with value 0. As
block is in C to an extent between 0 and 1. Further idbe the we evict a block we simultaneously increase its value in theue.
(7 + 1)-stinterval. There exists an optimum fractional solutionf If this value reaches 1, which means that the block is corajylet
which the next two claims are satisfied. evicted, we remove it from the queue. Similarly, before wartst

fetching a block which is completely out of cache we add it t
front of the queue with value 1. As we fetch a block we decréase
value in the queue. When this value goes down to 0, which eapli
that the block is now fully in cache, we remove this block frtra
queue.

Claim 3.1 In I wefetch the block which isnot completelyin C' and
whose next referenceis earliest.

Proof: For contradiction assume that this block, saig not fetched
in I and letb be one of the blocks fetched ih We can now fetch
a instead o in interval I and fetchb in those intervals where is Lemma3.1 If block & is behind block « in the queue then the next
fetched. Since the next referencédf later than the nextreference referenceto b is further than the next referenceto .

of a, b would be fetched before it is referencédl.

Proof: The proof is by induction on the length of the queue. Sup-
posez is the block at the end of the queue. By the induction hypoth-
esis the next referencedds furthest amongst the next reference to
the other blocks which are partially in cache. So if the blbekng
evicted is only partially in cache then it is bloek As discussed
above, the eviction of could only be interrupted by the eviction of
another block whose next reference is further than the next refer-
ence ofa. However, when we began evictingits next reference
was further than the next referenceofThis change in status could
have happened only after a reference to blbckdence when we
started evicting it was fully in cache and sbwas appended to the
end of the queue. Nowis behinda in the queue and its next ref-
erence is further than the next reference @iroving the induction
claim.O

Claim 3.2 In I we evict the block which is partially or completely
in C whose next referenceis furthest.

Proof: For contradiction assume that this block, saig not evicted
in /. Letb be one of the blocks evicted in We can evict: instead
of b in I and fetch back: in those intervals whereg is fetched.
Since the next reference afis only after the next reference bfa
would be fetched before it is referencéd.

The amount of fetch of a block prescribed by Claim 3.1 might
be less than the value défif the block is brought completely into
cache. In such a case we apply the same rule to fetch anotiodr bl
in /. The same is true for the case of evictions in Claim 3.2. The
above two claims then tell us what blocks to fetch/evict inThis
then gives us a new cache configuration which we use to decide

what blocks to fetch/evict in the interval that followsn the order Claim 3.3 At any point the block evicted is the block at the end of
< the queue.

Define thedistance of interval 7, di st (/) , as the sum of the
values of all intervals which precedein <, ie, dist(/) = Proof: From the above lemma it follows that amongst blocks which
Zj<1 (). We can also view the process of fetching/evicting asa are partially in cache (and hence in the queue) the blockeae il
process in time by associating the time-interval of the queue is the one whose next reference is furthest. fhieus
[di st ([]),dist(/)+=z(]))withinterval/; thusthereisaunique next block evicted is either this block at the end of the quaue
interval inZ associated with each time-instant. We will also asso- block which is fully in cache. In the latter case we will firgtzend
ciate a unique fetch/evict with each time-instant.7 I 7 is the the block at the end of the queue and hence the block evicted is
interval associated with timeanda is the only block fetched and always the one at the end of the quele.
b the only block evicted i then we fetch: and evicth at timet. . . .
If there are many blocks fetched/evictedithen we order them as :f]lem Tei: At any point the block fetched is the block at the front of
follows. For any two blocks, b fetched in/, a precede$ iff the q)
next reference ta is before the next reference ko This defines

a total order on the blocks fetchedinletai, as, . .. a;, ... a, be partially in cache then this block is the one at the front efdueue
the blocks in this order. Block; is now fetched forfz o, time- since this is the block whose reference is earliest from aysithe
units starting at timeli st (1) + > '") f1.a;. Similarly, for any blocks in the queue. Else we fetch a block that is completety®
two blocksa, b evicted in/, a precedes iff the next reference ta cache that is first added to the front of the quemDe.

is after the next reference to This defines another total order on In the remainder of this subsection we consider the
the blocks evicted if; let by, b2, ... b;, ... by be the blocksinthis fetches/evictions of a block between two consecutive references
order. Blockd; is now evicted fok; ., time-units starting at time to a.

. 1—1
di st (J) +Z]=16“j' . . Lemma 3.2 Everyinterruption in the eviction of « is for somein-
From the above two claims and our ordering of the tegral time-units.

fetches/evicts within an interval it follows thatis fetched contin-

Proof: From the above lemma it follows that if the block we fetch is

uously till it is fully in cache. With regard to evictions tls@uation Proof: Once the eviction of is interrupted it is resumed only when
is different. The eviction o could be interrupted — before itis all blocks that were appended to the queue aftare completely
completely out of cache — by the eviction of another blbekhich evicted. Hence the total length of the interruption in theeton of

is also in cache and which is better thaim the sense that its next « is integral.O

reference is further than the next reference.of We say that: is partially fetched/evicted if the total extent to

It will be useful to view the procedure for assigning which « is fetched/evicted between these two consecutive refer-
fetches/evicts to intervals as follows. We process interimthe encesis strictly less than one.

Lemma 3.3 If a is partially fetched/evicted, then the fetch of a be-
ginsan integral time-units after the start of its evict.

Proof: Since the value of a block in the queue is the extent to which
the block is not in cache it follows that at any point the sunthef
values of the blocks in the queue is integral. In particufas is
also true for the time at which we start evictinglet the sum at
this time bep. Sincea is not evicted fully, all blocks that were in
the queue when was appended are not evicted further. We start
fetchinga only after we have fetched back all these blocks. Since
the total value of these blocksjisit takesp time-units to fetch all
these blocks back. The other blocks fetched are completelgfo
cache and so they are fetched for a unit-time each. Thus take to
time between the start of the evict and the start of the sulesdq
fetch toa is integral.0

Lemma3.4 If a isevicted at time ¢, thenthereisatimet’ = t + 1,
for someinteger ¢, at which « is fetched back.

Proof: We first assume that is partially fetched/evicted. By
Lemma 3.3 the difference in the times at which we start ewicti
a and fetching: back is integral. Once we start fetchiagve fetch
it continuously till itis completely in cache. The evictioha could
however be interrupted. But by Lemma 3.2 every interrupisdor
an integral time-unit. These facts together imply the lemma

If a is fetched/evicted completely then it is no more the cage tha
the start of the eviction and the fetch @fare integral time-units
apart. However, it is still true that once we begin fetchingre
fetch it continuously for one time-unit after which it is cptately
in cache and that every interruption in the evictionzof for an
integral time-unit. These two facts again imply the lemma.

3.3 The convex decomposition

Claim 3.5 Let t1, t> betwo time-instants such that ¢ = ¢; + 1 for
some positive integer ¢, and let /;, I be the intervals associated
with these time-instants. Then /; and 7, aredisjoint.

Proof: We havet, > ¢; + 1. Therefore the sum of the values of
all intervals between (and includindg) and/; in < is at least 1.
Hencel,, I; cannot overlapt

We decompose the fractional solution into a convex combina-
tion of integral solution as follows. Létbe in the rang¢o, 1) and
let¢; = ¢+ ¢ for every integei, 0 < ¢ < n. LetZ, be the intervals
corresponding to the time-instarits by Claim 3.5 these intervals
are disjoint. In the interval corresponding tpwe schedule the
fetch/evict associated with. By Lemma 3.4 the set of intervals
together with this schedule of fetches and evicts forms tegral
solution to the problem.

Consider the different solutions obtainedtagries from 0 to
1. Note that each solution is obtained not for just one value o
but for a range of values, say for @lin the rang€g«,b]. We as-
sign this solution a weight — « in the decomposition. Clearly,
the total weight of the solutions that an intervabccurs in equals
z(I). Further, since ranges from 0 to 1, the sum of the weights as-
signed to all solutions is 1. Hence, this collection of siolus with
the associated weights is a convex decomposition of thenopti
fractional solution.

4 The multiple disk case

In this setting the blocks are distributed overdifferent disks. At
any point we can fetch at most one block from a disk but fetches
from different disks may proceed simultaneously.

4.1 The linear program

The linear program for this case differs from the one for ihgle-

disk setting in that we now have one copy of interyabr each
disk. Let/¢,d = 1,..., D, denote the copy of intervdl for disk

d; henceforth we view intervalg', 12, . . ., I'” asdistinctintervals.
Let #(I%) be the value of interval* and letea ,, fra , be the
extent to which block: is evicted, fetched in interval®. Since
only blocks that reside on diskcan be fetched in intervdl® we

have thatf;. , = 0if a is not on diskd. As before

VI S fraa = e, <ol

To ensure that prefetches to a disk are not performed simaslta
ously we add for each pointin the request sequence and for each
diskd, 1 < d < D, the constrain}_ ... #(1?) < 1. Asin
the single disk setting we require that the total fetch of@ckk

on intervals between two consecutive referencesadquals the to-

tal eviction ofa on these intervals and is at most 1. Moreover, no
block may be fetched or evicted while it is referenced.

LetZ be the set of intervals in an integral solution to this linear
program,ie those intervals withe(7) = 1. Then the stall time for
this solution is at Ie_as@ZIeI F—|I)/D. Hence the objective
function for this linear program is to minimize
(3=, (1) (F = [1])) /D. We will construct an integral solution
with stall time atmos} ~, «(/)(F—|1]), which is at mosD times
the optimum. In Appendix B we give an alternative linear peog
that models the objective function more accurately. Howewe
show that the approximation ratio achieved using the cpoeging
linear program relaxation cannot be better tihian

4.2 The optimum fractional solution

Let ¢ = {I%x(I%) > 0} be the set of intervals from disk

which have a positive value and Bt= UzZ%. As in the single
disk setting we can modify intervals so ttt contains no nested-
pairs. We order intervals i by increasing starting points with ties
broken first by increasing ending points and then by the numbe
the disk to which the interval belongs; letdenote this order. Note
that for intervals from one disk the orderis exactly the same as
for the single-disk setting.

Once again consider intervals in the ordeand letC' denote
the cache configuration after we have performed fetchesots e
corresponding to the firstintervals in this order. Lef® be the
(¢ + 1)-stinterval.

Claim 4.1 In /¥ we fetch the block from disk d which is not com-
pletely in C' and whose next referenceis earliest.

Claim 4.2 If we evict a block from disk j in interval 7¢ then this
isthat block from disk 5 which is partially or completely in C' and
whose next referenceis furthest.

4.3 Constructing an integral solution

The multi-disk setting therefore differs from that of thagle-disk

in that for an intervall¢ we only know what block to evict from
each disk; we do not know the relative amounts of the evistimn
blocks from different disks.

As in the single-disk setting define the distance of an imtlerv
T4, di st (I%), as the sum of the values of intervalsifi which
precede/* in the order<, ie, di st (/) = ;. _, =(I).
Once again we view this as a process in time by associating the

time-interval[di st (7¢) , di st (I%) + =(I%)] with interval 7¢.
Thus there is a unique interval ifi* associated with each time-
instant. As before we order the blocks fetched frby increasing
order of their next references. Let,as,...a, be the blocks in
this order. Blocka; is now fetched forf;. ,. time-units starting
attimedi st (/%) + E;ll 14,4, Thus at each time-instant we
fetch a unique block from each disk.

At each time-instant we will also evict a unique block from
each disk. LetP? be the set of blocks that reside on digk Let
ai,...,a, € P¢bethe blocks from disH that are evicted in inter-
val I ordered in decreasing order of their next reference. Bigck
is evicted forer ., time-units starting at tim€j<17aepd €14 T

E;ll er,.;. Note that if there was only one disk then the time

at which we start evicting; is exactly the same ati st (/) +

’:11 er,.; Which was how we had defined the starting time of

2m
thié eviction earlier. However, #; is evicted at time then, unlike
the single-disk setting, it is not necessary that in thetivaal solu-
tion a; is evicted in one of the intervals associated with timeanst
t.

The machinery we developed for the single-disk case can now
be applied to each disk in the multi-disk setting. A queuesioai-
ated with each disk. We consider the fetches/evictions of blocks
that reside on this disk as a process in time and update theeque
as in the single-disk case. Using Claims 4.1 and 4.2 we can ex-
tend Lemma 3.1 from which Claims 3.3 and 3.4 follow. It is also
straightforward to extend Lemmas 3.2 and 3.3 which can tieen b
used, exactly as before, to prove Lemma 3.4 for the mulk-glét-
ting.

Extending Claim 3.5 to the multi-disk setting yields

Claim 4.3 Let ¢, t> betwo time-instants such that ¢» = #; + 1 for
some positive integer 1, and let ¢, I¢ be the intervals on disk d
associated with these time-instants. Then 7¢ and I¢ are disjoint.

We now show how to obtain an integral solution. ltdie in
the rangd0, 1) and lett; = i + ¢ for every integeti, 0 < i < n.
To each time-instant; and diskd there corresponds an interval,
our solution contains all these intervals andZetdenote this set
of intervals. In the interval correspondingttoand diskd we fetch
the block from diskd that is fetched at time;. The block that
resides on diskl and is evicted at time; will also be evicted in
this solution, albeit in a different interval.

Evictions are assigned to intervalsBf in the following man-
ner. Consider the intervals b in the order< and let/ be the
current interval. Suppose there is a block that is evicted &md
the same eviction is scheduled at timefor some:. We then add
this block to a sef (S is the set of evictions that need to be as-
signed to intervals of ; and is initially empty). If/ € Z, andS
is not empty then remove a block frofiand assign it to interval
I; no block is evicted in interval in this solution if the sefs is
empty.

By Claim 3.5 any two intervals irf. that are from the same
disk are disjoint. If in our solution we fetch a block in aneéntal 7
then the same block is fetchedrin the fractional solution. If the
fractional solution evicts a block in an intervathen in our solu-
tion the block is evicted in an interval whose starting p@nanly
after the starting point of. Next consider two consecutive refer-
ences to a block. By Lemma 3.4 it follows that if: is evicted in
some interval of this solution then it is also fetched badkugthis
assignment of fetches/evictions to intervalsiefis a feasible so-
lution to the problem provided every interval Bf has an eviction
assigned to it. We next prove that at mést- 1 intervals do not
have an eviction assigned.

Lemma4.1l For anyt¢thereareat most D — 1 intervalsin Z, that
do not have an eviction assigned.

Proof: Our procedure for assigning evictions to interval p€on-
sidersintervals of in the order:. At any step let be the number
of intervals ofZ, encountered and’ the number of evictions en-
countered that are to be assigned to intervals;inWe first prove
thatl' — £ < D — 1.

Let f4,eq be the total amount of fetch, evict of blocks from
disk d till this point. Clearly, Y7 fa = Y7 eq. Further,
F=3"" (fa—t+1]andE =" |ea—t+1]. The claim
thatF < £ 4+ D — 1 follows from

Fo= Y lfa—t+1] < | (fa—t+1)]
= D (ea—t+1)] < DY lea—t+1]+D
_ B+,

Assume that the intervdl is in Z, and there ard> — 1 intervals
preceding in order< that belongtd@; and do not have an eviction
assigned. Since at any poifit- £ < D — 1, the setS is not empty
and hencé will be assigned an evictior]

Since at mosD — 1 intervals do not have an eviction assigned,
we can usé? — 1 extra cache locations to fetch the blocks fetched
in these intervals. Note that a block fetched into one ofahedra
locations can be evicted later and replaced by a differemtkbol
Thus for everyt € [0,1) we have a feasible solution that uses at
mostD — 1 extra blocks in cache.

Consider the different solutions obtainediagries from O to
1. Note that each solution is obtained not for just one value o
but for a range of values. L&t < z; < 22 < ... < 2. < 1
be a set of values such that if we start fetching/evictingalbl
at time ¢ on diskd or if di st (7¢) = ¢ for some/¢ then there
exists a value:; such thatr; = ¢t mod 1. From our definition of
7. and the fetches/evictions assigned to interval&.irit follows
thatif z; < ¢ < z,;41 then we would obtain the same solution for
all values oft in the rangdz;, z;11). We assign this solution a
weightz, 11 — z;. Clearly, the total weight of the solutions that an
interval T occurs is equals(7¢). Further, since ranges from 0
to 1, the sum of the weights assigned to all solutions is 1.cden
this collection of solutions with the associated weighta onvex
decomposition of the optimum fractional solution.

We would like to select the best among thimtegral solutions.
The number of solutions we construct is bounded by the tatad-n
ber of fetches/evictions of blocks over all the intervalshe frac-
tional solution. This number is bounded 8% Dr® min{F, n}).

We can therefore conclude with the following theorem.

Theorem 4.2 There exists a polynomial time algorithm for the
prefetch/caching problem on D parallel disks, that produces a so-
lution with at most D times the optimum stall time using at most
D — 1 extramemory locations.

Observe that fol> = 1, we get a solution with minimum stall
time without using any extra memory locations. In Appendin®
show that if no extra memory locations are used, then thgrialigy
gap of our linear program can be arbitrarily large.

5 Conclusion

In this paper we presented a polynomial time algorithm fdirnoal
prefetching/caching on a single disk. For the parallel gistblem

we developed d&-approximation algorithm that is allowed to use
D — 1 extra memory locations in cache.

We can remove the additional memory locations at the expense
of increasing the stall time. The intergral solution consted in
Section 4.3 works on a cache of sizeConsider one of thé& — 1
prefetch operations that do not have an eviction assignethis
operation we now evict the bloekin cache whose next reference
is furthest in the future. I is evicted in some other intervdl
before the next reference tg then we cancel the eviction there;
otherwise we introduce an intervalright before the reference to
a and fetcha. In any of the two cases, the block to be evicted in
I is determined in the same way as before. We repeat this [goces
until the end of the request sequence is reached. In the same w
we process the othdp — 2 prefetch operations that do not have
an eviction assigned. We obtain a schedule in which eveffgiote
operation has an eviction assigned. The extra stall timmedoted
is at mos{(D — 1)L n. The total elapsed time is bounded {y+
(D —1)£)n + Ds, wheren is the length of the request sequence
ands is the stall time before the application of the proceduree Th
approximation of the elapsed time so obtained improves thesr
factor(1+ D L) of the algorithm by Kimbrel and Karlin i > 1.

An interesting open problem is to find a combinatorial, polyn
mial time algorithm for minimizing stall time on a single HisA
challenging open problem is to find a constant approximatigo-
rithm for the parallel disk problem or decide if the probleande
solved in polynomial time.

References

[1] L.A. Belady. A study of replacement algorithms for viaiu
storage computeré8M Systems Journab:78-101, 1966.

[2] A. Borodin, S. Irani, P. Raghavan and B. Schieber. Compet

itive paging with locality of referencelournal on Computer

and System Sciencgs0:244—-258, 1995.

P. Cao, E.W. Felten, A.R. Karlin and K. Li. A study of in-

tegrated prefetching and caching strategiesPinc. ACM

(3]

[11] T. Kimbrel, A. Tomkins, R.H. Patterson, B. Bershad, BoC
E.W. Felten, G.A. Gibson, A.R. Karlin and K. Li. A trace-
driven comparison of algorithms for parallel prefetchimgla
caching. InProceedings of the ACM SIGOPS/USENIX As-
sociation Symposium on Operating System Design and Im-
plementation (OSD/)October 1996.

D. Kotz and C.S. Ellis. Practical prefetching techreéguor

mulitprocessor file systemdournal of Distributed and Paral-

lel Databased:33-51, 1993.

[13] T. Kimbrel and A.R. Karlin. Near-optimal parallel peg€h-
ing anch caching. IProc. 37th IEEE Annual Symposium on
Foundations of Computer Scienpages 540-549, 1996.

[14] P. Krishnan and J.S. Vitter. Optimal prediction for fetehing
in the worst case. IProc. 5th ACM-SIAM Symposium on
Discrete Algorithmspages 392—-401, 1994.

[15] K.-K. Lee and P. Varman. Prefetching and I/O paralfelis
multiple disk systems. IRroc. 1995 International Conference
on Parallel Processingages 111160-163, 1995.

[16] M. Palmerand S.B. Zdonik. Fido: A cache that learns totfe
In Proc. 17th International Conference on Very Large Data
Basespages 255-264,1991.

[17] R.H. Patterson, G.A. Gibson, E. Ginting, D. Stodolskyda
J. Zelenka. Informed prefetching and cachingPiroc. 15th
Symposium on Operating Systems Principleages 79-95,
1995.

[18] A. Schrijver.Linear and Integer Programming. Wiley, Chich-
ester, 1986.

[19] D.D. Sleator and R.E. Tarjan. Amortized efficiency st lip-
date and paging rule€&ommunication of the ACM?28:202—
208, 1985.

[20] J. Vitter and P. Krishnan. Optimal prefetching via detan-
pression. InProc. 32nd Annual Symposium on Foundations
of Computer Sciencgages 121-130, 1991.

[12]

Appendix A

International Conference on Measurement and Modeling of We give the linear program for minimizing stall time for a gie

Computer Systems (SIGMETRICS)ages 188-196, 1995.

K.M. Curewith, P. Krishnan and J.S. Vitter. Practica¢fatch-

ing via data compression. Proc. 1993 ACM SIGMOD Inter-

national Conference on Management of Datayes 257-266,

1993.

C.S. Ellis and D. Kotz. Prefetching in file systems for MIM

multiprocessors. IProc. 1989 International Conference on

Parallel Processingages 1306—314, 1989.

[6] A. Fiat, R.M. Karp, L.A. McGeoch, D.D. Sleator and N.E.
Young. Competitive paging algorithmslournal of Algo-
rithms 12:685-699, 1991.

[7] A.Fiatand A.R. Karlin. Randomized and multiprocessagp
ing with locality of reference. InProc. 27th Annual ACM
Symposium on Theory of Computingages 626—634, 1995.

[8] A. Fiat and Z. Rosen. Experimental studies of accesshgrap
based heuristics. Beating the LRU standard.Aroc. 8th
ACM-SIAM Symposium on Discrete Algorithmpages 63—
72,1997.

[9] A.R. Karlin, S. Phillips and P. Raghavan. Markov paging.

Proc. 33rd Annual Symposium on Foundations of Computer

Sciencepages 208-217,1992.

Tracy Kimbrel. Parallel prefetching and caching (PhBdgis).

Technical report 97-07-03, Department of Computer Science

and Engineering, University of Washington, 1997.

[4]

(5]

[10]

disk and need one more definition. In the request sequenies

ai,...,an, bethe requests to bloek
minimize Yo e (F —I])
subjectto
Zx([) < 1 vr
Iorel
Y fra=Y era < () VI
N fra= Y ena <1 Va,i
IC[a;,a;41] IC[aq,ai41]
Y fra =1 Va
IC[0,a1]
Z era = 0 Va
IC[0,a1]
Z fra= Z era = 0 Va,1
Iia;el Iia;el
o) e {0,1} VI

fractional solution
a3/b1

a1/03

disk 1

a3/a1

a2/03

b /by

by /ds

disk 2

b3/a2

ba /ds

b1 by by by a1 az ¢c3 dis c1 c2 dy d» ¢1 a3 bs ¢c2 c¢c1 a1 dy doy by a2 by

integral solution

b
disk 1 aa/b

a2/03

b3/a2

by /da

disk 2

Figure 4: Fractional and integral solutions for the seqeene = o10>.

Appendix B

An alternativel P formulation for minimizing stall time in the multi-
disk setting would be as follows. We have stall-variablemdicat-
ing the extent of the stall just before th¢h requestis served. Thus
the objective would now be to minimizg_""_ s;. Once again we
have a variable (7¢) associated with the copy of intervAbn disk

d wherel[is of length at most. We also have fetch and evict
variables associated with every 3-tuple, (page, intenizk), as
before. All constraints from the earlieiP still apply. However, we
now need additional constraints to ensure that for evegniat /
that is chosen the sum of the stall times before the requesitssi
interval is at least” — |7|. It will be convenient to have a variable
s;,4,1 indicating the stall time before theth request when a block
was fetched from disk in interval I. Then for every diski and
interval = [p, q] we have

q
> siar > o(IY(F = 1)),
1=p
Let s; 4 be the stall before théth request due to a block that was
being fetched from disk. Then

Sid = E 8i,d,I-

Ierl

Now the stall time before théth request is the maximum of the
times spent waiting for blocks that were fetched from défer
disks and hence; = maxq s; 4. Since the objective is to mini-
mize the sum of the stall times, we need the set of inequalities

i > sia 1<d<D.

In this linear program we relax again the integrality comisir
onz(I) to the linear constraimt < «(I) < 1. Using this relax-
ation, we cannot achieve an approximation ratio on the gta#
that is better tha. Consider a cache of size + 1, with blocks
ai,c1,...,cp beinginitially in cache. Block:; is stored on disk
1 and blocke;, for 1 < ¢ < D, is stored on disk. The request
sequence to be served(ig)™, b1, c1,...,cp where block, is
stored on disk 1. Heréu1)™ represents requests ta; .

An optimum fractional solution for serving this sequence-pr
fetchesh; during theF' requests ta:; and evicts every block;,

1< i< Dtoanextentoi/D. Starting with the request tg, the
D disks simultaneously fetch the missing portions:gf. .., cp.
Before the request to, a stall of 7 — 1 time units has to be in-
troduced. However, since each disk only prefetches a bloant
extent of1/D, sp41 = sp41,q for all d and thus the objective
function value isf; (F — 1).

An optimum integral solution, when prefetchibg evicts block
c¢p. On the request tb;, disk D starts prefetching o while the
other disks are idle. Before request, a stall time of ' — D
time units has to be inserted. This gives a performance oitio
(F = D)J(5(F = 1)) = D(1 - 2=L

— £=7), which can be arbitrarily
close toD.

Consider the intergral solution constructed in Section ¥\@
show that if no extra memory blocks are allowed, the intéyrghp
of our linear program can be arbitrarily large. This holdsrefor
problems on two disks. We give a request sequersigch that (a)
there exists a fractional solution with zero stall time abpthere
exists no integral solution with zero stall time.

The request sequeneeis composed of three subsequences
01,02 andos. We first give zero stall time solutions fer, =
o102 andoas = o205 and then show that there is no integral solu-
tion for ¢ = o1 0205 that has zero stall time.

Consider a system with two disks. We need 12 blacks;, c;
andd;, 1 < ¢ < 3, wherea; andc; are stored on disk 1 arid and
d; are stored on disk 2, < ¢ < 3. Let

o1 =0b1,b2,ba,ba,a1,a2,c3,d3,c1,¢2,d1,d2,c1,a3,b3,c2,c1,a1
g9 = d17d27b17a2,b2

03 = c1,d2,c2,a3,b3,a1,a2,b1,b2,¢3,a1,ds,c1,a2,b1,

b2,a1702,d1,d2.

We assume a cache of size 10, where initially all but blackand
bs are stored in cache. The stall timefs= 8.

Figure 4 shows zero stall time schedulesfor the sequence
o102, The intervals above the request sequence represent an opti
mum fractional solution, where each intendahas an associated
valuez (1) = 1/2. The intervals below the request sequence repre-
sent the integral solution in which fetches on disk 1 are detep

fractional solution
Cg/dl

Cl/a3

disk 1 csfct

02/a3

ds/d>

dy [ba

disk 2

ds/as dz/bs

di do by ax by ¢1 doy c2 as bs ar azx by by c3 a1 ds c1 az by by ar c2 dy ds

integral solution

d
disk 1 2/

Cl/a3

d3/01

dy [ba

disk 2

Figure 5: Fractional and integral solutions for the seqeen¢ = 0205.

as early as possible. An earlier completion time on disk 1lccou
only be achieved if, in the first prefetch operations, diskitte b
and disk 2 evict$,. However, this leads to a schedule with non-
zero stall time because disk 2 cannot simultaneously mtetet
andb.. Note that at the end of the schedules, blogkandd; are
notin cache.

Figure 5 shows solutions for the request sequenge= o203
given an initial cache in which blocks andds are missing. The
integral solution given below the request sequence is tieion
tegral solution with zero stall time. In an integral solatialisk
1 must evictd; in the first prefetch operation. It is impossible to

evictc, because; cannot be fetched back in time. Given that disk
1 evictsd;, disk 2 must evict; in its first prefetch operation; oth-
erwised; cannot be fetched back in time. This requires that the
prefetch on disk 1 starts on requést

For the sequence = o, 0203, the fractional solutions in Fig-
ure 4 and 5 can be combined and give an optimum fractional so-
lution for &. However, there is no integral solution with zero stall
time. To server, o2, disk 1 must prefetch, while serving request
do in 0. TO server, o3, disk 1 must prefetchs while serving that
particular request.

