Semi-Online Scheduling Revisited

Susanne Albers† Matthias Hellwig‡

Abstract

Makespan minimization on \(m \) identical machines is a fundamental scheduling problem. The goal is to assign a sequence of jobs, each specified by a processing time, to parallel machines so as to minimize the maximum completion time of any job. Deterministic online algorithms achieve a competitive ratio of about 1.92. Due to this relatively high competitiveness and the lack of progress in the area of randomized online strategies, recent research has investigated scenarios where the online constraint is relaxed.

We study semi-online scheduling where at any time an online scheduler knows the sum of the jobs’ processing times. This problem relaxation is well motivated by practical applications. The best known semi-online algorithm achieves a competitive ratio of 1.6 (Cheng, Kellarer, Kotov, 2005). The best known lower bound is equal to 1.565 (Angelelli, Nagy, Speranza, Tuza, 2004).

In this paper we present two contributions for semi-online scheduling. We develop an improved lower bound showing that no deterministic semi-online algorithm can attain a competitive ratio smaller than 1.585. This significantly reduces the gap between the previous lower bound and the upper bound of 1.6. Secondly we present a new semi-online algorithm that is based on an approach different from that of previous strategies. The algorithm is 1.75-competitive and hence does not achieve the best possible competitiveness. However, our algorithm is extremely simple and, unlike previous strategies, does not resort to job classes. The algorithm is more in the spirit of online algorithms not using any extra information. Hence our upper bound highlights the additional power of a small piece of advice when provided to an online algorithm.

Keywords: Competitive analysis, makespan minimization, online computation.

1 Introduction

Makespan minimization on parallel machines is a fundamental and extensively studied scheduling problem with a considerable body of literature published over the last forty years. In the basic problem setting we are given \(m \) identical parallel machines. A sequence of jobs \(\sigma = J_1, \ldots, J_n \) has to be scheduled non-preemptively on these machines. Each job \(J_i \) is specified by an individual processing time \(p_i, 1 \leq i \leq n \). The goal is to minimize the makespan, i.e. the maximum completion time of any job in the schedule.

The performance of offline algorithms and deterministic online algorithms is well understood. In the offline scenario the entire job sequence is known in advance. Computing optimum schedules is NP-hard [17]. Hochbaum and Shmoys devised a famous polynomial time approximation scheme [20]. In the online scenario the jobs arrive one by one. Whenever a new job \(J_i \) arrives, its processing time \(p_i \) is known. However future jobs \(J_k \), with \(k > i \), and their processing times are unknown. Job \(J_i \) has to be scheduled irrevocably on one of the machines before the next job arrives. Following Sleator and Tarjan [26] an

*Work supported by the German Research Foundation.
†Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin. albers@informatik.hu-berlin.de
‡Department of Computer Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin. mhellwig@informatik.hu-berlin.de
online algorithm A is called c-competitive if, for every σ, A’s makespan is at most c-times the optimum makespan. A series of papers, published mostly in the 1990s, narrowed down the competitiveness of deterministic online strategies. More precisely, the best competitive ratio achievable by deterministic online algorithms is in the range $[1.88, 1.9201]$. Much less is known for randomized online algorithms. To date we know of no randomized strategy that provably beats deterministic ones, for all values of m.

Due to the relatively high competitiveness of deterministic online algorithms and the lack of progress in designing randomized strategies, recent research has focused on studying scenarios where the online constraint is relaxed. An online algorithm is provided with some information on the job sequence σ or has some extra ability to process it. More specifically, the following scenarios have been addressed. (1) An online algorithm has some information on the jobs’ processing times or their total sum [3, 4, 5, 11, 22]. (2) An online algorithm knows the optimum makespan [7, 13]. (3) An online strategy may reorder jobs in σ to a limited extent [12].

In this paper we investigate basic online makespan minimization assuming that, additionally, the sum $S = \sum_{i=1}^{n} p_i$ of the jobs’ processing times is known. The resulting setting is referred to as semi-online scheduling. Obviously, information S can help an algorithm to make scheduling decisions. We believe that S is a very mild form of advice. We make no assumptions regarding the processing times of individual jobs and generally do not restrict the family of allowed job sequences. Availability of advice S is also motivated by practical applications. In a parallel server system there usually exist fairly accurate estimates of the workload that arrives over a given time horizon. In a shop floor a scheduler typically accepts orders (tasks) of a targeted volume for a given time period, say a day or a week.

Previous work: We review the most important results relevant to our work and first address online scheduling without any extra information. Graham in 1966 [19] gave the first deterministic online algorithm. He showed that the famous List scheduling algorithm is $(2 - \frac{1}{m})$-competitive. Using new strategies, the competitive ratio was improved to $(2 - \frac{1}{m} - \epsilon_m)$ [16], where ϵ_m tends to 0 as $m \to \infty$, then to 1.986 [8] and 1.945 [21], and finally to 1.923 [1] and 1.9201 [16]. As for lower bounds, Faigle, Kern and Turan [14] showed that no deterministic online algorithm can achieve a competitiveness smaller than $2 - \frac{1}{m}$, for $m = 2$ and $m = 3$. For $m = 4$, Rudin and Chandrasekaran [24] recently gave a lower bound of $\sqrt{3} \approx 1.732$. For general m the lower bound was raised from 1.707 [14] to 1.837 [9] and 1.852 [1], and finally to 1.854 [18] and 1.88 [23].

For randomized online algorithms there exists a significant gap between the best known upper and lower bounds. For $m = 2$ machines, Bartal et al. [8] presented an algorithm that achieves an optimal competitive ratio of 4/3. For general m a 1.916-competitive algorithm was devised in [2]. The best known lower bound on the performance of randomized online algorithms is equal to $e/(e - 1) \approx 1.581$.

We next consider semi-online scheduling, where an online algorithm knows the sum S of the jobs’ processing times. The setting was first introduced by Kellerner et al. [22] who concentrated on $m = 2$ machines and gave a deterministic semi-online algorithm that achieves an optimal competitive ratio of 4/3. Again for $m = 2$, two papers by Angelelli et al. [4, 5] refined the results assuming that, additionally, the job processing times are upper bounded by a known value. A setting with $m = 2$ uniform machines was studied in [6].

Semi-online scheduling on a general number m of identical machines was investigated by Angelelli, Nagy, Speranza and Tuza [3] and Cheng, Kellerner and Kotov [11]. The studies must have been done independently since none of the two papers cites the other one. Angelelli et al. [3] gave a deterministic semi-online algorithm that attains a competitiveness of $(1 + \sqrt{6})/2 \approx 1.725$ and showed a lower bound of 1.565, as $m \to \infty$, on the best possible competitive ratio of deterministic strategies. Cheng et al. [11] presented a deterministic 1.6-competitive semi-online algorithm and gave a lower bound of 1.5, for $m \geq 6$, on the competitiveness of deterministic strategies.

Our contribution: In this paper we present two contributions for semi-online
We develop a new lower bound on the competitive ratio that can be achieved by deterministic semi-online algorithms. We show that the competitiveness is at least \(c \geq 1.58504 \), as \(m \to \infty \). This ratio almost matches the upper bound of 1.6 presented by Cheng et al. \cite{Cheng:2011}. Formally, the lower bound \(c \) is the root of the function \(f(x) = 4x^3 - 8x^2 + 2x + 1 \) that is in the range \([1.58504, 1.58505]\). We note that \(c \) is greater than \(e/(e-1) \), which is a ratio often appearing in the analysis of online algorithms. Our lower bound proof consists of an explicit construction of a nemesis job sequence. It does not rely on numerical techniques or computer assisted proofs.

As a second result we present a very simple deterministic semi-online algorithm that is based on an approach different from that of previous strategies. The algorithms by Angelelli et al. \cite{Angelelli:2011} and Cheng et al. \cite{Cheng:2011} both resort to job classes, i.e. incoming jobs are classified according to their processing times. The best known strategy by Cheng et al. \cite{Cheng:2011} uses five job classes. The algorithm consists of sophisticated job packing schemes. Over the course of the algorithm and its analysis two scheduling phases with two associated stages and up to eight (or ten) machine types have to be considered.

Instead in this paper we develop an algorithm that does not resort to job classes. Our strategy is 1.75-competitive and hence does not achieve the best possible competitiveness. However, as mentioned above, the algorithm is very simple and can be stated in a single line (see Section 3). An incoming job is either scheduled on the least loaded machine or on the machine with the \(\lceil m/2 \rceil \)-th highest load. The decision which of the two machines to choose depends on the least loaded machine. The analysis of the algorithm relies on a potential function that keeps track of accumulated load on all the machines when the least loaded machine has a certain load. We remark that our scheduling algorithm is more in the spirit of online scheduling strategies not knowing \(S \), which achieve a competitiveness around 1.92. Hence our upper bound also highlights the additional power of a small piece of advice when provided to an online algorithm.

Finally we show that our analysis is tight, i.e. our algorithm does not achieve a competitive ratio smaller than 1.75. Moreover, we observe that the algorithm can be extended easily to the scenario where an online scheduler knows the value of the optimum makespan.

2 A new lower bound

In this section we present a lower bound on the competitive ratio that can be achieved by deterministic semi-online algorithms. Consider the function \(f(x) = 4x^3 - 8x^2 + 2x + 1 \). This function has three real-valued roots, one of which is in the range \([1.58504, 1.58505]\). The lower bound is equal to this root. The other two roots of \(f \) are in the ranges \([-0.25, -0.24]\) and \([0.65, 0.66]\).

Theorem 1 No deterministic semi-online algorithm can achieve a competitive ratio smaller than \(c \) as \(m \to \infty \), where \(c \) is the root of \(f(x) = 4x^3 - 8x^2 + 2x + 1 \) with \(c \in \[1.58504, 1.58505\] \).

Proof. Let \(A \) be any deterministic semi-online algorithm. In the following \(c \) always denotes the value as specified in the statement of the theorem. The adversary presents a job sequence \(\sigma \) in which the total processing time of the jobs is equal to \(S = m + 16c^2 - 12c - 16 \). We remark that the expression \(16c^2 - 12c - 16 \) is upper bounded by 5.2. The exact structure of \(\sigma \) depends on the behavior of \(A \) but in each case the adversary uses at most four different processing times that we denote by \(p_i \), \(1 \leq i \leq 4 \). A job with a processing time of \(p_i \) is also referred to as a \(p_i \)-job. The following construction of \(\sigma \) works for any \(m > 8 \).

Initially, the adversary presents \(m - 4 \) jobs of processing time \(p_1 = 1 \). If \(A \) assigns two of these jobs to the same machine, then the lower bound proof is simple: The adversary presents four additional jobs with a processing time of \(p_1 = 1 \) as well as \(m \) jobs with a processing time of \(p_2 = (16c^2 - 12c - 16)/m \).
Algorithm A has a makespan of 2 while the adversary has a makespan of $1+p_2$ only. In this case the ratio of A’s makespan to the adversary’s makespan can be arbitrarily close to 2, as $m \to \infty$.

In the following we concentrate on the case that A places the $m-4$ p_1-jobs on different machines. At this point A has four empty machines. The adversary presents four jobs of processing time $p_2 = c - 1$. We distinguish three cases.

1. Algorithm A assigns a p_2-job to a machine already containing a p_1-job.

2. Algorithm A assigns the p_2-jobs only to machines not already containing p_1-jobs, and two p_2-jobs are placed on the same machine.

3. Algorithm A assigns all the p_2-jobs to different machines, none of which already contains a p_1-job.

Figures 1 and 2 depict A’s schedules in Cases (1) and (2), respectively. We next analyze the various cases.

Case (1): When the p_2-jobs are scheduled, A has a makespan of $p_1 + p_2 = 1 + c - 1 = c$ because there is a machine containing a p_1-job as well as a p_2-job. The adversary completes the request sequence by presenting four jobs of processing time $p_3 = 2 - c$ and m jobs of processing time $p_4 = (16c^2 - 12c - 16)/m$. The sum of the jobs’ processing times is $S = (m-4) \cdot 1 + 4(c-1) + 4(2-c) + m(16c^2 - 12c - 16)/m = m + 16c^2 - 12c - 16$, as desired. The adversary constructs a schedule in which the p_1-jobs are assigned to different machines. Each p_2-job is paired with a p_3-job, yielding a total processing time of $c - 1 + 2 - c = 1$. Each such job pair is assigned to an empty machine. Finally each of the m machines receives a p_4-job. Thus the adversary’s makespan is $1 + p_4$. The ratio of A’s makespan to the adversary’s makespan is $c/(1 + p_4)$ and this ratio tends to c as $m \to \infty$.

Case (2): As A has combined two p_2-jobs, one machine in A’s schedule has a load of at least $2p_2 = 2(c - 1) > 1$. There are $m-4$ additional machines containing a p_1-job and thus having a load of 1. Hence, when the p_2-jobs are scheduled, there exist at most three machines having a load smaller than 1. The adversary next reveals four jobs with a processing time of $p_3 = c$. Algorithm A must place at least one of them on a machine with a load of 1, incurring a makespan of $1+c$. The adversary completes the request sequence by presenting $m-8$ jobs of processing time $p_4 = (16c^2 - 20c - 8)/(m-8)$. The sum of the jobs’ processing times is $S = (m-4) \cdot 1 + 4(c-1) + 4c + (m-8)(16c^2 - 20c - 8)/(m-8) = m + 16c^2 - 12c - 16$, as claimed. The adversary can construct a schedule with a makespan of c: The $m - 4$ p_1-jobs are placed
on separate machines. Among these machines, four receive an additional \(p_2 \)-job and \(m - 8 \) get an extra \(p_4 \)-job. The four \(p_2 \)-jobs are placed separately on the four remaining empty machines. We have \(p_1 + p_2 = c \) and \(p_1 + p_4 < c \) because \(p_1 < 0.5 \), for \(m > 8 \). Thus no machine has a load greater than \(c \). We conclude that the ratio of \(A \)'s makespan to the adversary’s makespan is at least \((1 + c)/c\) and this expression is greater than \(c \), for our choice of \(c \).

Case (3): Algorithm \(A \) assigns the \(m - 4 \) \(p_1 \)-jobs and the four \(p_2 \)-jobs to different machines so that, after the assignment, each machine contains exactly one job and there is no empty machine in the schedule. The adversary presents two jobs of processing time \(p_3 = 2c(c - 1) - 1 \). Again we distinguish two cases.

(a) Algorithm \(A \) assigns a \(p_3 \)-job to a machine containing a \(p_1 \)-job or assigns both \(p_3 \)-jobs to the same machine containing a \(p_2 \)-job.

(b) Algorithm \(A \) assigns the \(p_3 \)-jobs to two machines containing a \(p_2 \)-job.

Figure 3 depicts \(A \)'s schedule in Case (3a) if a \(p_3 \)-job is assigned to a machine containing a \(p_1 \)-job. Figure 4 shows the schedule in Case (3b).

![Figure 3: Case (3a)](image)

![Figure 4: Case (3b)](image)

Case (3a): When the \(p_3 \)-jobs are scheduled, \(A \) has a makespan of at least \(2c(c - 1) \). This holds true if a \(p_3 \)-job is assigned to a machine containing a \(p_1 \)-job because \(p_1 + p_3 = 2c(c - 1) \). This also holds true if both \(p_2 \)-jobs are placed on the same machine containing a \(p_2 \)-job because \(p_2 + 2p_3 = c - 1 + 2(2c(c - 1) - 1) = 2c(c - 1) + (2c + 1)(c - 1) - 2 > 2c(c - 1) \) because \(c > 1.5 \). The adversary finishes the request sequence by sending \(m - 4 \) jobs of processing time \(p_4 = 6(2c(c - 1) - 1)/(m - 4) \). The total processing time of the jobs is \(S = (m - 4)p_1 + 4p_2 + 2p_3 + (m - 4)p_4 = m - 4 + 4(c - 1) + 2(2c(c - 1) - 1) + 6(2c(c - 1) - 1) = m + 16c^2 - 12c - 16 \). The adversary constructs the following schedule. Each \(p_1 \)-job is assigned to a separate machine and will receive an additional \(p_4 \)-job. The remaining four machines are used to schedule the \(p_2 \)- and the \(p_3 \)-jobs. More specifically, two machines receive two \(p_2 \)-jobs each. The other two machines each receive a \(p_3 \)-job. We have \(2p_2 > p_3 \) because this inequality is equivalent to \(1 > 2(c - 1)^2 \) and is satisfied since \(c < 1.6 \). Moreover, for \(m \geq 35 \), we have \(2p_2 > p_1 + p_4 \) and the adversary’s makespan is upper bounded by \(2p_2 = 2(c - 1) \). In summary, for \(m \geq 35 \) and hence for \(m \to \infty \), the ratio of \(A \)'s makespan to the adversary’s makespan is \(2c(c - 1)/(2(c - 1)) = c \).

Case (3b): Algorithm \(A \) assigns the two \(p_3 \)-jobs to two machines containing a \(p_2 \)-job and hence the load on these machines is \(p_2 + p_3 = c - 1 + 2c(c - 1) - 1 = (2c + 1)(c - 1) - 1 > 1 \). Thus when the
p_2-jobs are scheduled, there are only two machines in A’s schedule that have a load smaller than 1. The adversary then presents three final jobs with a processing time $p_1 = 2p_3 = 2(2c(c-1) - 1)$. Again, we have a total processing time of $S = (m-4)p_1 + 4p_2 + 2p_3 + 3p_4 = m-4+4(c-1)+8(2c(c-1)-1) = m+16c^2-12c-16$. Algorithm A must schedule one of the p_4-jobs on a machine having a load of at least 1. Hence its makespan is at least $1 + p_4 = 1 + 2p_3$. On the other hand, the adversary can construct a schedule with a makespan of $p_4 = 2p_3$: The $m-4$ p_1-jobs are assigned to different machines. Four of these machines receive an additional p_2-job, which results in a load of $1 + p_2 = c < p_4$. The remaining four machines are used to schedule the p_3- and p_4-jobs. One machine is assigned the two p_3-jobs. The other three machines each receive a p_4-job. Hence the ratio of A’s makespan to the adversary’s makespan is $(1 + p_4)/p_4 = 1 + 1/p_4 = 1 + 1/(2p_3)$. We have $2(c-1)p_3 - 1 = 0$ because $4c^4 - 2(c-1) - 1 = 4c^3 - 8c^2 + 2c + 1$ and c is a root of the function $f(x) = 4x^3 - 8x^2 + 2x + 1$. Hence $2p_3 = 1/(c-1)$ and we conclude that the ratio of A’s makespan to the adversary’s makespan is $1 + 1/(2p_3) = 1 + (c-1) = c$. □

3 A semi-online algorithm without job classes

In this section we present a semi-online algorithm that is based on an approach different from that of previous strategies [3, 11] and does not rely on job classes. The algorithm is called Light Load, or LL for short, because it tries to keep the least loaded machine, and in fact $[m/2]$ machines, lightly loaded. During the scheduling process the algorithm always maintains a list of the m machines sorted in non-increasing order of current load. The load of a machine is the sum of the processing times of the jobs currently assigned to that machine. At any time, given the sorted list M_1, \ldots, M_m of machines, M_j denotes the machine with the j-th highest load, $1 \leq j \leq m$. In particular, M_1 is a machine with the highest load and M_m is a least loaded machine. Let l_j denote the load of M_j, $1 \leq j \leq m$. Moreover, let $j_0 = [m/2]$. Of specific interest is machine M_{j_0} having the $[m/2]$-th highest load.

Algorithm LL processes a job sequence $\sigma = J_1, \ldots, J_n$ as follows. While $l_m \leq 0.25 \frac{S}{m}$, i.e. while the least loaded machine M_m has a load of at most $0.25 \frac{S}{m}$, a new job is assigned to this machine M_m. When $l_m > 0.25 \frac{S}{m}$, LL prefers to schedule an incoming job J_i on machine M_{j_0}. The algorithm checks if such an assignment is possible without exceeding a load of $1.75 \frac{S}{m}$. If indeed $l_{j_0} + p_i \leq 1.75 \frac{S}{m}$, J_i is scheduled on M_{j_0}; otherwise J_i is assigned to the least loaded machine M_m. A summary of the algorithm is given below.

Algorithm Light Load (LL): Job J_i is assigned to M_{j_0} if $l_m > 0.25 \frac{S}{m}$ and $l_{j_0} + p_i \leq 1.75 \frac{S}{m}$, and to M_m otherwise.

We explain the choice of the algorithm’s parameters. The proof that LL is 1.75-competitive crucially depends on the definition $j_0 = [m/2]$. We will show that if $l_m > 0.75 \frac{S}{m}$ hence a new job cannot necessarily be scheduled such that the resulting makespan is upper bounded by $1.75 \frac{S}{m}$, then the job sequence contains $m + 1$ large jobs of processing time greater than $0.5 \frac{S}{m}$. In order to secure the existence of these jobs, we need to show that (a) M_{j_0} has a load of at most $1.25 \frac{S}{m}$ and (b) M_m had a load of at most $0.25 \frac{S}{m}$ over a long time horizon. The load bounds of (a) and (b) only hold if $j_0 = [m/2]$. In this case it is possible to balance load between $[m/2]$ heavily loaded and $[m/2]$ lightly loaded machines. Any other choice of j_0 will lead to a higher competitive ratio. Moreover, LL works with a load bound of $0.25 \frac{S}{m}$ for machine M_m. This ensures that an assignment of a small job of processing time at most $0.5 \frac{S}{m}$ does not exceed the critical load threshold of $0.75 \frac{S}{m}$.

Theorem 2 Algorithm LL achieves a competitive ratio of 1.75.
In the remainder of this section we prove the above theorem. We show that for any job sequence σ

$$LL(\sigma) \leq 1.75 \cdot OPT(\sigma) \tag{1}$$

where $LL(\sigma)$ and $OPT(\sigma)$ denote the makespan of LL and an optimal offline algorithm OPT, respectively. The proof is by induction on the length n of the job sequence σ. For job sequences consisting of a single job J_1, there is nothing to show because LL and OPT both have a makespan equal to the processing time p_1 of J_1. Suppose that (1) holds for job sequences of up to $n-1$ jobs. We will prove that (1) is also satisfied for sequences consisting of n jobs.

Let $\sigma = J_1, \ldots, J_n$ be an arbitrary job sequence of length n. By induction hypothesis LL schedules the first $n-1$ jobs such that a performance ratio of 1.75 is maintained, i.e. LL assigns each job such that its resulting makespan is at most 1.75 times the optimum makespan for the job sequence processed so far. In the following we investigate the assignment of its resulting makespan is at most 1.75 times the optimum makespan for the job sequence processed so far.

In the remainder of this section we prove the above theorem. We show that for any job sequence σ has a load of at most $(0.5 + \epsilon)\frac{S}{m}$. This implies that including J_n, the job sequence σ contains $m+1$ jobs of processing time at least $(0.5 + \epsilon)\frac{S}{m}$ each. Two of these jobs must be scheduled on the same machine in an optimal schedule and hence $OPT(\sigma) \geq (1 + 2\epsilon)\frac{S}{m}$. Using this property we can finish the proof of Theorem 2. If $p_n \leq (1 + 2\epsilon)\frac{S}{m}$, then LL’s resulting makespan is $l_m + p_n \leq (0.75 + \epsilon)\frac{S}{m} + (1 + 2\epsilon)\frac{S}{m} = (1.75 + 3\epsilon)\frac{S}{m} \leq 1.75 \cdot OPT(\sigma)$. If $p_n > (1 + 2\epsilon)\frac{S}{m}$, then the resulting makespan is $l_m + p_n \leq (0.75 + \epsilon)\frac{S}{m} + p_n \leq (0.75 + \epsilon)p_n/(1 + 2\epsilon) + p_n = (1.75 + 3\epsilon)p_n/(1 + 2\epsilon) \leq 1.75 \cdot p_n \leq 1.75 \cdot OPT(\sigma)$.

It remains to prove that immediately before the assignment of J_n each machine in LL’s schedule contains a job of processing time at least $(0.5 + \epsilon)\frac{S}{m}$. To this end we will show that while at most j_0 machines have a load of at least $(0.75 + \epsilon)\frac{S}{m}$ each, the least loaded machine has a load of not more than $0.25\frac{S}{m}$ (Lemma 1). Moreover, after that time, the load of machine M_{j_0} does not grow too large (Lemma 2).

In the following let time t be the point of time immediately after job J_t is scheduled, $1 \leq t \leq n$. At any time a machine in LL’s schedule is called full if its load is at least $(0.75 + \epsilon)\frac{S}{m}$. When J_t arrives, the least loaded machine and hence any machine in LL’s schedule is full. We consider the past scheduling steps of the jobs J_1, \ldots, J_{t-1}. Let t_j, $1 \leq j \leq m$, be the first point of time when exactly j machines are full in LL’s schedule, i.e. the assignment of J_j causes the j-th machine to become full. We have $1 \leq t_1 < \ldots < t_m \leq n-1$. Of particular interest is the time t_{j_0} when exactly j_0 machines are full. The next lemma states that at this time the least loaded machine M_{j_0} has a load of at most $0.25\frac{S}{m}$.

Lemma 1 At time t_{j_0} there holds $l_m \leq 0.25\frac{S}{m}$.

Proof. We will assume $l_m > 0.25\frac{S}{m}$ and derive a contradiction to the fact that the total processing time of jobs in σ is S. For any time t, $1 \leq t \leq n$, let $L(t)$ be the total load on the m machines, i.e. $L(t)$ is the sum of the processing times of the jobs J_1, \ldots, J_t. For the further analysis we need a potential function Φ whose definition is based on a machine set \mathcal{M}. Let $\mathcal{M}(t_{j_0})$ be the set of machines that are full at time t_{j_0}. At times $t > t_{j_0}$ we update this set whenever a machine becomes full. More specifically, for any time $t > t_{j_0}$, set $\mathcal{M}(t)$ is defined as follows. If $t \neq t_j$, for all $j = j_0 + 1, \ldots, m$, then the machine set remains unchanged and $\mathcal{M}(t) = \mathcal{M}(t-1)$. If $t = t_j$, for some j with $j_0 + 1 \leq j \leq m$, then $\mathcal{M}(t_j)$ is obtained from $\mathcal{M}(t_{j-1})$ by deleting the machine having the smallest current load in $\mathcal{M}(t_{j-1})$. In case of ties, the machine $M_j \in \mathcal{M}(t_{j-1})$ with the highest index in the machine ordering M_1, \ldots, M_m at time t_{j-1} is chosen. Since at any time t_j, for $j = j_0 + 1, \ldots, m$, exactly one machine is deleted from the set and $j_0 = \lceil m/2 \rceil \geq m - \lceil m/2 \rceil = m - j_0$, set $\mathcal{M}(t)$ is non-empty at all times t with $t_{j_0} \leq t < t_m$. For any machine M_j and any time t let $l_j(t)$ denote its current load. Define

$$
\Phi(t) = \sum_{M_j \in \mathcal{M}(t)} (l_j(t) - 0.75\frac{S}{m}).
$$

Intuitively, Φ is the total load in excess to $0.75\frac{S}{m}$ on the machines of $\mathcal{M}(t)$. Since every machine of $\mathcal{M}(t_{j_0})$ has a load of at least $(0.75 + \epsilon)\frac{S}{m}$ and machine loads can only increase, Φ is always non-negative.

We next argue that at all times t with $t_{j_0} \leq t < t_m$, all machines of $\mathcal{M}(t)$ are among the j_0 machines having the highest load in LL’s current schedule. More formally, at any time t, $t_{j_0} \leq t < t_m$, let $H(t)$ denote the set consisting of the j_0 machines M_1, \ldots, M_{j_0} with highest current load. We will show $\mathcal{M}(t) \subseteq H(t)$. We assume w.l.o.g. that whenever machines are sorted according to their load after a scheduling step, only the rank of the machine that received the new job changes. The relative order of all the other machines remains unchanged. In other words, machines having equal load appear in the same order before and after the scheduling step. This property can always be maintained by simply renumbering machines with equal load.

Obviously $\mathcal{M}(t_{j_0}) \subseteq H(t_{j_0})$ is satisfied because at time t_{j_0} there exist exactly j_0 full machines in LL’s schedule and $\mathcal{M}(t_{j_0})$ contains all these machines. So suppose that $\mathcal{M}(t-1) \subseteq H(t-1)$ holds, where $t_{j_0} < t \leq t_m - 1$, and consider the scheduling step at time t. Algorithm LL assigns the incoming job J_t either to machine M_{j_0} with the j_0-th highest load or to machine M_m with the smallest load. If J_t is placed on the current machine M_{j_0}, then the set H does not change and $H(t-1) = H(t)$. If J_t is assigned to the least loaded machine M_m, and the machine does not become full, then again $H(t-1) = H(t)$ because set H only contains full machines. Hence set H can change only if J_t is assigned to M_m causing the machine to become full.

If at time t set H does not change, then $\mathcal{M}(t) \subseteq \mathcal{M}(t-1) \subseteq H(t-1) = H(t)$ and we are done. So assume that H does change. As argued in the last paragraph J_t is placed on the least loaded machine M_m and this machines becomes full. Thus $t = t_j$, for some j with $j_0 < j \leq m - 1$. At this time the former machine M_m joins H while the former machine M_{j_0} leaves the set. Note that M_{j_0} is a least loaded machine in $H(t-1)$. At time t_j, the least loaded machine in $\mathcal{M}(t_j - 1)$ is removed from this set; in case of ties the highest indexed machine is chosen. Since both sets $\mathcal{M}(t_j - 1)$ and $H(t_j - 1)$ lose least loaded machines, property $\mathcal{M}(t_j - 1) \subseteq H(t_j - 1)$ implies $\mathcal{M}(t_j) \subseteq H(t_j)$.

We will show that if $l_m > 0.25\frac{S}{m}$ at time t_{j_0}, then the following inequality holds for $j = j_0, \ldots, m$.

$$
L(t_j) - \Phi(t_j) > 0.25S + j_0 \cdot 0.5\frac{S}{m} + (j - j_0)\frac{S}{m}
$$

(2)

Using (2) for $j = m$ and observing again that the potential is non-negative, we obtain that at time t_m and hence before the arrival of J_n, the total processing time of jobs scheduled so far is at least

$$
L(t_m) > 0.25S + [\frac{m}{2}]0.5\frac{S}{m} + (m - [\frac{m}{2}])\frac{S}{m} \geq 1.25S - (\frac{m}{2} + \frac{1}{2})0.5\frac{S}{m} = S - 0.25\frac{S}{m}.
$$
Since \(J_n \) has a processing time of \(p_n > (0.5 + \epsilon) \frac{S}{m} \), the total processing time of jobs in \(\sigma \) is at least
\[L(t_m) + p_n > S + 0.25 \frac{S}{m} > S. \]
We obtain the desired contradiction.

It remains to show (2), for \(j = j_0, \ldots, m \), assuming that \(l_m > 0.25 \frac{S}{m} \) holds at time \(t_{j_0} \). The proof is by induction on \(j \). First consider \(j_0 \). At time \(t_{j_0} \) exactly \(j_0 \) machines are full and these machines \(M_1, \ldots, M_{j_0} \) each have a load greater than \(0.75 \frac{S}{m} \). By assumption \(l_m > 0.25 \frac{S}{m} \). Hence machines \(M_{j_0+1}, \ldots, M_m \) each have a load greater than \(0.25 \frac{S}{m} \) and the total load on these \(m - j_0 \) machines is greater than \((m-j_0) \cdot 0.25 \frac{S}{m} \). We obtain that at time \(t_{j_0} \) the total load on the \(m \) machines is

\[L(t_{j_0}) = \sum_{j=1}^{j_0} l_j(t_{j_0}) + \sum_{j=j_0+1}^{m} l_j(t_{j_0}) \]

\[= j_0 \cdot 0.75 \frac{S}{m} + \sum_{j=1}^{j_0} (l_j(t_{j_0}) - 0.75 \frac{S}{m}) + (m-j_0)0.25 \frac{S}{m} \]

\[= 0.25S + j_0 \cdot 0.5 \frac{S}{m} + \Phi(t_{j_0}). \]

The last equation holds because machines \(M_1, \ldots, M_{j_0} \) form set \(M(t_{j_0}) \). Inequality (2) then follows for \(j = j_0 \).

Next suppose that (2) holds for index \(j \). We show that it is also satisfied for \(j + 1 \). We first argue that

\[L(t) - \Phi(t) > 0.25S + j_0 \cdot 0.5 \frac{S}{m} + (j-j_0) \frac{S}{m} \] \hspace{1cm} (3)

holds for any \(t = t_j, t_{j+1}, \ldots, t_{j+1} - 1 \). By induction hypothesis the above inequality holds for \(t = t_j \). At times \(t \) with \(t_j < t < t_{j+1} \) the machine set \(M(t) \) does not change and is equal to \(M(t_j) \). At any time \(t \) the incoming job \(J_t \) increases the total load on the \(m \) machines by \(p_t \), i.e. \(L(t) = L(t-1) + p_t \). The potential \(\Phi \) only increases by \(p_t \) if \(J_t \) is assigned to a machine in \(M(t_j) \). Hence the left hand side of (3) does not decrease at times \(t = t_j + 1, \ldots, t_{j+1} - 1 \).

At time \(t_{j+1} \) another machine becomes full. Since there exist already \(j_0 \) full machines and \(j + 1 > j_0 \), an additional full machine can only be created if the incoming job \(J_{t_{j+1}} \) is placed on the currently least loaded machine \(M_m \). An assignment to the current machine \(M_{j_0} \) would not generate an additional full machine. By assumption, at time \(t_{j_0} \) and hence also at the current time \(l_m > 0.25 \frac{S}{m} \). Thus \(LL \) would prefer to schedule \(J_{t_{j+1}} \) on machine \(M_{j_0} \). Since this assignment is not performed, the resulting load would exceed \(1.75 \frac{S}{m} \), i.e. \(l_{j_0}(t_{j+1} - 1) + p_{t_{j+1}} > 1.75 \frac{S}{m} \) and hence

\[p_{t_{j+1}} > \frac{S}{m} - (l_{j_0}(t_{j+1} - 1) - 0.75 \frac{S}{m}). \]

Machine \(M_{j_0} \) is a least loaded machine in \(H(t_{j+1} - 1) \). At time \(t_{j+1} \) the least loaded machine in \(M(t_{j+1} - 1) \) is removed from the set. As argued above \(M(t) \subseteq H(t) \) for any \(t \) with \(t_{j_0} \leq t < t_m \). Hence the least loaded machine in \(M(t_{j+1} - 1) \) has a load of at least \(l_{j_0}(t_{j+1} - 1) \). Thus at time \(t_{j+1} \) the potential decreases by at least

\[\Phi(t_{j+1} - 1) - \Phi(t_{j+1}) \geq l_{j_0}(t_{j+1} - 1) - 0.75 \frac{S}{m} \]

We obtain \(p_{t_{j+1}} + \Phi(t_{j+1} - 1) - \Phi(t_{j+1}) > \frac{S}{m} \) and, as desired,

\[L(t_{j+1}) - \Phi(t_{j+1}) = L(t_{j+1} - 1) - \Phi(t_{j+1} - 1) + p_{t_{j+1}} + \Phi(t_{j+1} - 1) - \Phi(t_{j+1}) \]

\[\geq 0.25S + j_0 \cdot 0.5 \frac{S}{m} + (j + 1 - j_0) \frac{S}{m}. \]

The inductive step is complete. \(\square \)

For the further analysis we need a second lemma.
Lemma 2 At any time \(t \) with \(t_{j_0} \leq t < t_m \) machine \(M_{j_0} \) in LL’s schedule has a load of at most \((1.25 - \epsilon)\frac{S}{m}\).

Proof. Suppose that at some time \(t \), \(t_{j_0} \leq t < t_m \), the machine \(M_{j_0} \) with the \(j_0 \)-th highest load had a load greater than \((1.25 - \epsilon)\frac{S}{m}\). Thus at this time \(t \) and also at time \(t_m \) the \(j_0 \) machines with highest load in LL’s schedule had a total load greater than \(j_0(1.25 - \epsilon)\frac{S}{m} \). At time \(t_m \), all machines of LL are full and the \(m - j_0 \) machines with the smallest load have a total load of at least \((m - j_0)\left(0.75 + \epsilon\right)\frac{S}{m}\). Thus at time \(t_m \) the total load on the \(m \) machines is greater than

\[
j_0(1.25 - \epsilon)\frac{S}{m} + (m - j_0)(0.75 + \epsilon)\frac{S}{m} \geq \left[0.5\right]0.5\frac{S}{m} + 0.75S - \epsilon\frac{S}{m} \geq S - \epsilon\frac{S}{m}.
\]

Including \(J_n \), the total processing time of jobs in \(\sigma \) is greater than \(S - \epsilon\frac{S}{m} + p_n > S \) because \(p_n > (0.5 + \epsilon)\frac{S}{m} \). This contradicts the fact that the total processing time of jobs in \(\sigma \) is equal to \(S \). \(\square \)

We are now ready to identify \(m \) large jobs in LL’s schedule at time \(t_m \). More specifically, we show that at any time \(t_j \), for \(j = 1, \ldots, m \), a job of processing time at least \((0.5 + \epsilon)\frac{S}{m} \) is scheduled.

By Lemma 1 at time \(t_{j_0} \) we have \(l_m \leq 0.25\frac{S}{m} \). Hence at any time with \(t \leq t_{j_0} \) we have \(l_m \leq 0.25\frac{S}{m} \) and LL schedules an incoming job on the least loaded machine. At any time \(t_j \) with \(j = 1, \ldots, j_0 \) a machine becomes full and hence \(l_m + p_{t_j} \geq (0.75 + \epsilon)\frac{S}{m} \). This implies \(p_{t_j} \geq (0.75 + \epsilon)\frac{S}{m} - 0.25\frac{S}{m} = (0.5 + \epsilon)\frac{S}{m} \).

Next consider the times \(t_j \) with \(j_0 < j \leq m \). At those times another full machine can only be created if the incoming job is scheduled on the least loaded machine. Let \(t^* \) be the first point of time at which the least loaded machine in LL’s schedule has a load greater than \(0.25\frac{S}{m} \). As above we can show that at any time \(t_j \) with \(j_0 < t_j \leq t^* \) a job of processing time at least \((0.5 + \epsilon)\frac{S}{m} \) is scheduled. Finally consider times \(t_j \) with \(t^* < t_j \leq t_m \). The least loaded machine in LL’s schedule has a load greater than \(0.25\frac{S}{m} \). Therefore, LL would prefer to place \(J_t \) on the machine with the \(j_0 \)-th highest load. Since \(J_t \) is placed on the least loaded machine instead we have \(l_{j_0}(t_j - 1) + p_{t_j} > 1.75\frac{S}{m} \). By Lemma 2, \(l_{j_0}(t_j - 1) \leq (1.25 - \epsilon)\frac{S}{m} \) and hence \(p_{t_j} > (0.5 + \epsilon)\frac{S}{m} \). This concludes the proof of Theorem 2.

We next provide a matching lower bound on the performance of LL.

Theorem 3 Algorithm LL does not achieve a competitive ratio smaller than 1.75.

Proof. For simplicity we assume that \(m \) is even. Moreover, let \(m \geq 4 \). Choose an \(\epsilon \) with \(0 < \epsilon < 1 \). We prove that LL does not achieve a competitive ratio smaller than 1.75 - \(\epsilon \). Let \(S = m \). Furthermore, let \(k \) be an integer satisfying \(k \geq 1.75/\epsilon \) and set \(p_1 = 1/(4k) \). An adversary first presents \(km \) jobs of processing time \(p_1 \). These jobs have a total processing time of \(m/4 \). Thus, while the \(p_1 \)-jobs arrive, machine \(M_m \) in LL’s schedule has a load of at most \(1/4 = 0.25\frac{S}{m} \) and each \(p_1 \)-job is assigned to this least loaded machine \(M_m \). Hence, when all the \(km \) \(p_1 \)-jobs are scheduled, each of the \(m \) machines has a load of exactly \(kp_1 = 0.25 \).

Next the adversary presents \(m/2 \) jobs of processing time \(p_2 = 0.5 \) and \(m/2 \) jobs of processing time \(p_3 = 1 - 2/m \). While these jobs are scheduled, the least loaded machine \(M_m \) in LL’s schedule has a load of exactly \(0.25\frac{S}{m} \). Thus, again, any of these \(m \) jobs is placed on machine \(M_m \). After the assignment of these jobs, each machine in LL’s schedule has a load of at least 0.75 because \(p_3 = 1 - 2/m \geq 0.5 \). The adversary finally reveals a job of processing time \(p_4 = 1 \) so that LL’s final makespan is 1.75.

The total processing time of all jobs is \(kp_1 + m/2 \cdot p_2 + m/2 \cdot p_3 + 1 = m/4 + m/4 + m/2\left(1 - 2/m\right) + 1 = m = S \), as desired. The adversary can construct a schedule whose makespan is upper bounded by \(1 + p_1 \): The \(m/2 \) jobs of processing time \(p_3 \) and the job of processing time \(p_4 \) are assigned to different machines. The \(m/2 \) jobs of processing time \(p_2 = 0.5 \) are combined to pairs and placed on
machines not yet occupied by the \(p_3 \)- and \(p_4 \)-jobs. If \(m/2 \) is odd, then one \(p_2 \)-job is scheduled alone on a machine. Finally, each job of processing time \(p_1 \) is scheduled on a machine currently having the smallest load.

We conclude that the competitive ratio of \(LL \) is at least \(1.75/(1 + p_1) \) and this ratio is at least \(1.75 - \epsilon \) because \(p_1 < \epsilon/1.75 \).

We finally observe that \(LL \) can be extended easily to the scenario where an online scheduler knows the value \(OPT(\sigma) \) of the optimum makespan. In this case we just have to replace \(\frac{S}{m} \) by \(OPT(\sigma) \) in both the description and the analysis of the algorithm.

Corollary 1 Algorithm \(LL \) achieve a competitive ratio of 1.75 if \(S/m \) is replaced by the value of the optimum makespan.

4 Conclusion and open problems

In this paper we have studied makespan minimization in the setting where an online scheduler knows the sum of the jobs’ processing times. An obvious open problem is to determine the exact competitive ratio that can be achieved in this scenario. However, since the gap between our lower bound of 1.585 and the best known upper bound of 1.6 [11] is small, a further improvement in this range might be hard to obtain. A more fruitful working direction is to analyze the best competitiveness attainable if an online scheduler known the value of the optimum makespan. Azar and Regev [7] showed a lower bound of 4/3. The algorithm by Cheng et al. [11] is also 1.6-competitive in this problem setting.

References

