
Page Migration withLimited Local Memory CapacitySusanne Albers? Hisashi Koga??Abstract. Most previous work on page migration assumes that each pro-cessor, in the given distributed environment, has in�nite local memorycapacity. In this paper we study the migration problem under the realisticassumption that the local memories have limited capacities. We assumethat the memories are direct-mapped, i.e., the processors use a hash func-tion in order to locate pages in their memory. We show that, for a numberof important network topologies, on-line algorithms with a constant com-petitive ratio can be developed in this model. We also study distributedpaging. We examine the migration version of this problem in which thereexists only one copy of each page. We develop e�cient deterministic andrandomized on-line algorithms for this problem.1 IntroductionMany on-line problems of practical signi�cance arise in distributed data man-agement. As a result, there has recently been a lot of research interests in prob-lems such as page migration, page replication and distributed paging, see e.g.[1, 2, 3, 5, 6, 8, 10, 12]. In page migration and replication problems, a set ofmemory pages must be distributed in a network of processors, each of which hasits local memory, so that a sequence of memory accesses can be processed e�-ciently. Speci�cally, the goal is to minimize the communication cost. If a processorp wants to read a memory address from a page b that is not in its local memory,then p must send a request to a processor q holding b and the desired informationis transmitted from q to p. The communication cost incurred thereby is equal tothe distance between q and p. It is also possible to move or copy a page from onelocal memory to another. However, such a transaction incurs a high communica-tion cost proportional to the page size times the distance between the involvedprocessors.In the migration problem it is assumed that there exists only one copy of eachpage in the entire distributed system. This model is particularly useful when wedeal with writable pages because we do not have to consider the problem of keepingmultiple copies of a page consistent. The migration problem is to decide whichlocal memory should contain the single copy of a given page. In the replicationproblem, multiple copies of a page may exist. Hence this model is suitable when wedeal with read-only pages. The decision whether a given page should be migratedor replicated from one local memory to another must typically be made on-line,? International Computer Science Institute, Berkeley; and Max-Planck-Institut f�ur In-formatik, Saarbr�ucken, Germany. Supported in part by an Otto Hahn Medal Awardof the Max Planck Society and by the ESPRIT Basic Research Actions Program ofthe EU under contract No. 7141 (ALCOM II). E-mail: albers@icsi.berkeley.edu?? Department of Information Science, The University of Tokyo, Tokyo 113, Japan. Partof this work was done while the author was visiting the Max-Planck-Institut f�ur In-formatik. E-mail: nwa@is.s.u-tokyo.ac.jp 1



i.e., the memory management algorithm does not know which processors will haveto access a page in the future. Because of this on-line nature, the performanceof migration and replication algorithms is usually evaluated using competitiveanalysis.Page migration and replication are extensively studied problems. However,almost all of the research results are developed under the assumption that thecapacities of the local memories are in�nite: Whenever we want to move or copya page into the local memory of a processor p, there is room for it; no otherpage needs to be dropped from p's memory. Assuming in�nite local capacity, on-line migration and replication algorithms with a constant competitive ratio canbe developed [1, 3, 6, 8, 10, 12]. For example, Black and Sleator [6] presented adeterministic 3-competitive migration algorithm when the network topology is atree or a complete uniform network. In practice, however, the local capacities are ofcourse not unlimited. Basically the only work that considers local memories with�nite capacity is the paper by Bartal et al. [5]. They investigate a combination ofthe migration and replication problem and present an O(m)-competitive on-linealgorithm for complete uniform networks. Here m is total number of pages thatcan be stored in the entire network. Unfortunately, this competitive ratio is toohigh to be meaningful in practice.In this paper we study the migration problem under the assumption thatevery local memory has a �xed �nite capacity. More precisely, every local memoryconsists of k block [1]; [2]; : : : ; [k], each of which can hold one page. We assume thatthe local memories are direct-mapped, i.e., each processor uses a hash function inorder to locate pages in its local memory. Speci�cally, all processors use the samehash function h. This implies that whichever local memory a page b belongs to, itis always stored in block [h(b) mod k + 1]. Direct-mapped memories constitute animportant memory class in practice. From a theoretical point of view they werestudied only once before in [9]. We call the migration problem in direct-mappedmemories of limited capacity the direct-mapped constrained migration problem.We will show that for this problem, we can develop simple on-line algorithmswith a constant competitive ratio. Hence this is essentially the �rst work on pagemigration that makes realistic assumptions as far as memory is concerned anddevelops results that are meaningful in practice.In Section 3 we investigate lower bounds on the competitiveness that can beachieved by deterministic on-line algorithms for the direct-mapped constrainedmigration problem. We show that, given any network topology, no deterministicon-line algorithm can be better than 3-competitive. We also prove that there arespeci�c network topologies for which no deterministic on-line algorithm can bebetter than 
(n)-competitive; n denotes the number of processors in the network.In Section 4 we develop upper bounds. First, we present an optimal 3-competitivedeterministic algorithm for networks consisting of two nodes. Next we developan 8-competitive deterministic algorithm for complete uniform networks. Thisalgorithm achieves a competitiveness of 16 on uniform stars. Finally, we give a 5-competitive randomized and memoryless on-line algorithm for complete uniformnetworks against adaptive on-line adversaries.We also study the distributed paging problem. In distributed paging, each time2



a processor p wants to access a page, this page must be brought into p's localmemory, provided the page is not yet present at p. Loosely speaking, the goal isto minimize the number of times at which the requested page is not present inthe corresponding local memory. For the allocation version of this problem, whenmultiple copies of a page may exist, Bartal et al. [5] presented a deterministicO(m)-competitive on-line algorithm; Awerbuch et al. [2] developed a randomizedO(maxflog(m� l); logkg)-competitive algorithm against the oblivious adversary.Again, m is the total number of pages that can be stored in the system, andl is the number of di�erent pages in the system. In this paper we examine themigration version of the distributed paging problem; i.e., only one copy of eachpage may exist. In Section 5 we present an O(k)-competitive deterministic andan O(logk)-competitive randomized on-line algorithm (k is the number of pagesthat each processor can hold). Our randomized algorithm is simpler than that ofAwerbuch et al. for l � m � k.2 Problem de�nitionWe de�ne the direct-mapped constrained migration problem and the distributedpaging problem. We also review the notion of competitiveness.In the direct-mapped constrained migration problem we are given an undirectedgraph G = (V;E). Each node in G corresponds to a processor, and the edgesrepresent the interconnection network. Let jV j = n. Associated with each edgeis a length that is equal to the distance between the connected nodes. Let �uvdenote the length of the shortest path between node u and node v. Each node hasits own local memory. Every local memory is divided into k blocks [1]; [2]; � � � ; [k],each of which can hold exactly one page. All nodes use the same hash functionh(b) to determine the unique block in which page b will reside. At any time, a nodecannot simultaneously hold pages b and c with h(b) mod k = h(c) mod k. On theother hand, there is never a conict between two pages e and f with h(e) mod k 6=h(f) mod k. Thus we can divide the direct-mapped constrained migration probleminto k separate subproblems according to the block number. In the following, weconcentrate on one particular block number i (1 � i � k). Let B be the numberof pages b such that h(b) mod k + 1 = i, and let b1; b2; � � � ; bB be the pages whosehash value is equal to i. We always assume B � n, which is easily realized by aproper choice of h.We say that a node v has a page b if b is contained in block [i] of v's memory.A node v is said to be empty if v does not hold a page in block [i]. A requestto page b at a node v occurs if v wants to read or write b. The request can besatis�ed at zero cost if v has b. Otherwise the request incurs a cost equal to thedistance from v to the node u holding b (i.e. the cost is �uv). After a request topage b at a node v, b may be migrated into v's local memory. If v is empty, thecost incurred by this migration is d � �uv. Here d denotes the page size factor. Incase v has another page c, we may swap b and c, incurring a cost of 2d � �uv. (Ofcourse, it is also possible to move c to another node, but we will never make useof this possibility.) A direct-mapped constrained migration algorithm is usuallypresented with an entire sequence of requests that must be served with low total3



cost. The algorithm is on-line if it serves every request without knowledge of anyfuture requests.Next we de�ne the distributed paging problem. Again, we consider a networkconsisting of n nodes, each of which can store up to k pages. We only distinguishbetween local and remote data accesses: A request to page b at node v can besatis�ed at zero cost if v has b. Otherwise the request is satis�ed by fetching binto v's local memory, which may accompany other page con�guration changes.The cost incurred is equal to the number of transferred pages because each pagetransfer requires exactly one remote access. The goal is to reduce the total numberof page transfers. The distributed paging problem is named the migration versionif the number of copies for any page is restricted to 1.We analyze the performance of on-line algorithms using competitive analysis[11]. That is, the cost incurred by an on-line algorithm is compared to the costof an optimal o�-line algorithm. An optimal o�-line algorithm knows the entirerequest sequence in advance and can serve it with minimum cost. Given a requestsequence �, let CA(�) and COPT (�) denote the cost of the on-line algorithmA andthe optimal o�-line algorithmOPT in serving �. A deterministic on-line algorithmA is c-competitive if there exists a constant a such that for every request sequenceCA(�) � c �COPT (�)+a. In case A is a randomized algorithm, the on-line settingis viewed as a request-answer game in which an adversary generates a requestsequence �, see [4]. The expected cost incurred by A is then compared to the costpaid by the adversary. The oblivious adversary constructs � in advance before anyactions of A are made; the adversary may serve � o�-line. The adaptive on-lineadversary constructs � on-line, knowing the responses of A to previous requests;the adversary also has to serve � on-line.3 Lower boundsTheorem 1 shows that the power of on-line algorithms is limited, no matter howsimple the underlying graph structure may be.Theorem1. Let A be a deterministic on-line algorithm for the direct-mappedconstrained migration problem. Then A cannot be better than 3-competitive, evenon a graph consisting of only two nodes.Proof. Consider a 2-node network and let b1 and b2 be two pages whose locationneeds to be managed. Consider request sequences consisting of requests to b1 only.To process such sequences, A can concentrate on the location of b1. However, tochange the location of b1, b2 must also be moved as the result of a swap. Thus,this situation can be regarded as a migration problem with page size factor 2d.Therefore, the lower bound of 3-competitiveness presented by Black and Sleator [6]for the migration problem also holds for the direct-mapped constrained migrationproblem. 2Next we prove the existence of speci�c topologies for which no deterministicon-line algorithm is better than (n � 2)-competitive. The following star H is anexample. Let v1; v2; � � � ; vn be the nodes in H, with v1 being the center node. Theedge lengths are de�ned as �v1vi = 1 for i = 2; : : : ; n� 1 and �v1vn = n� 2.4



Theorem2. Let A be a deterministic on-line algorithm for the direct-mappedconstrained migration problem working on the star H. Then A cannot be betterthan (n� 2)-competitive.This theorem certi�es that there is a di�erence between the migration prob-lem (when the local memories are in�nite) and the direct-mapped constrainedmigration problem. Recall that, for the migration problem, Black and Sleator [6]developed a deterministic on-line algorithm that is 3-competitive for trees includ-ing all stars.Proof of Theorem 2:We will construct a request sequence � so that CA(�) is atleast (n� 2) times the cost incurred by some o�-line algorithm OFF. We assumethat initially, both A and OFF have the same page at vn. The request sequence� is constructed as follows. An adversary always generates a request at v1; it asksfor the page that A stores in vn. Therefore, A incurs a cost of �v1vn = n � 2at each request. We partition � into phases. The �rst phase starts with the �rstrequest. It ends after n � 1 distinct pages were requested during the phase andjust before the remaining nth page br is requested. The second phase begins withthe request to br and ends in the same way as the end of the �rst phase. Thesubsequent phases are determined similarly.We show that in any phase, the cost incurred by A is at least (n � 2) timesthe cost incurred by OFF. Let �0 be a subsequence of � that corresponds to aphase, and let l be the length of �0. A incurs n�1 swaps in �0, each of which costs2(n�2)d. Thus the total cost for swaps is 2(n�1)(n�2)d. In addition,A pays a costof (n�2)l to satisfy the requests. Therefore, CA(�0) � 2(n�1)(n�2)d+(n�2)l.The following o�-line algorithm OFF can serve �0 at a cost of 2(n�1)d+ l. At thebeginning of �0, before the �rst request, OFF swaps the page located at vn andthe page br which is requested at the beginning of the next phase. After this swap,OFF does not change the locations of pages throughout the phase. Note that bris never requested in �0. OFF incurs a cost of at most 2(n�1)d for the swap, anda cost of at most l to satisfy the requests in �0 because every page requested in�0 is located at one of the nodes v1; : : : ; vn�1. Thus COFF (�0) � 2(n � 1)d + l:By comparing CA(�0) and COFF (�0) we conclude CA(�0) � (n � 2)COFF (�0):At the beginning of each phase, node vn has the same page both in A's andOFF's con�guration. This implies that we can extend � arbitrarily by repeatingthe above construction. 24 Upper boundsWe develop on-line algorithms for the direct-mapped constrained migration prob-lem. First we present a 3-competitive deterministic algorithm for the case thatthe network consists of only two nodes. This topology is of course very special,but we have an optimal algorithm for this case. Most of this section deals withimportant network topologies such as complete uniform graphs and uniform stars.We give O(1)-competitive algorithms for these networks.First consider a 2-node network consisting of nodes u and v. A direct-mappedconstrained migration algorithm has to manage the location of two pages b1 and5



b2. Note that there are only two possible page con�gurations: u has b1 and v hasb2; or u has b2 and v has b1. Our algorithmTN for 2-node networks is given below.The proof of Theorem 3 is omitted in this extended abstract.AlgorithmTN: The algorithmmaintains one global counter that is initialized to0. Whenever a node requests a page that is not in its local memory, the counter isincremented by 1. When the counter reaches 4d, the page con�guration changes,i.e. the pages are swapped, and the counter is reset to 0.Theorem3. TN is 3-competitive for graphs consisting of two nodes.In the remainder of this section we study on-line algorithms for uniformgraphs.First we present a deterministic algorithm for complete uniform graphs. We as-sume w.l.o.g. that all edges in the network have length 1. As the name suggests,our algorithm is thought of as a concurrent version of algorithm M presented byBlack and Sleator [6] for the migration problem.Algorithm Concurrent-M: Each node v has B counters cbiv (1 � i � B). Allcounters are initialized to 0. Concurrent-M processes a request at node v to pagebi as follows. If v has bi already, then the request is free and nothing happens.If v does not have bi, then the algorithm increments cbiv , and chooses some othernon-zero counter among fcbiw jw 2 V g, if there is one, and decrements it. Whencbiv reaches 2d, one of the following two steps is executed. If v is empty, then bi ismigrated to v and cbiv is reset to 0. Otherwise bi is swapped with the page bj(i 6= j)that v currently holds, and cbiv and cbju are reset to 0. Here u denotes the nodethat stored bi before the swap.In the above swap, we say that bi is swapped actively and that bj is swappedpassively.Theorem4. Concurrent-M is 8-competitive for complete uniform graphs.The next lemma is crucial for the analysis of Concurrent-M. A similar lemma wasshown in [6].Lemma5. For every page b, Pv2V cbv � 2d.Proof. We prove the lemmaby induction. InitiallyPv2V cbv = 0. The sumPv2V cbvonly increases when one counter is incremented and all other counter values are 0.Since the description of the algorithm implies that a counter value cannot exceed2d, the sumPv2V cbv cannot be larger than 2d. 2This lemma leads to an important fact: Just before a page b is swapped activelyto node v, cbv = 2d and all other counters associated with b are 0. After the swap,all counters associated with b are 0.Proof of Theorem 4: We analyze the algorithm for the case B = n. The anal-ysis is easily extended to B � n. Let CCM (�) be the cost paid by Concurrent-M.We shall show that, for any (on-line and o�-line) algorithm A and any requestsequence �, CCM(�) � 8CA(�). Our proof uses the standard technique of com-paring simultaneous runs of Concurrent-M and A on � by merging the actionsgenerated by Concurrent-M and A into a single sequence of events. This sequencecontains three types of events: (Type I) Concurrent-M swaps pages, (Type II)6



A swaps pages, and (Type III) both A and Concurrent-M satisfy a request. Weshall give a non-negative potential function � (initially 0) such that the followinginequality holds for all kinds of events.�CCM +�� � 8�CA; (1)where � indicates the change of the values as the result of the event. If thepotential function satis�es the above property for all events, summing up (1) forall events results in CCM(�)+�end��start � 8CA(�); where �start denotes theinitial value of � and �end denotes the value of � after Concurrent-M and A �nishprocessing �. Since �start = 0 and �end � 0 from the de�nition of the potentialfunction, we have CCM(�) � 8CA(�), and the proof is complete. It remains tospecify the potential function and verify (1) for all events.The potential function � is de�ned as follows. Let sb be the node that haspage b in Concurrent-M and tb be the node that has b in A.� =Xb �b; �b = 8>>>><>>>>: 5Xv2V cbv if sb = tb:4d� cbt + 3Xv2Vv 6=t cbv if sb 6= tbIn the following we prove (1) for all kinds of events. In the subsequent proof weomit the speci�cation of the page in the counter variables when it is obvious.(Type I): Concurrent-M swaps pages.Suppose that page b1 is swapped actively from s to s0 and page b2 is swappedpassively from s0 to s. As the result of this swap, cb1s0 is reset from 2d to 0 andcb2s is reset from some non-negative value l to 0. Let t be the location of b1 andlet u be the location of b2 in A. Then �CCM = 2d and �CA = 0. So we mustshow that �� � �2d. Trivially,�� = ��b1 +��b2: First consider ��b1. Thereare three cases depending on whether s; s0 coincide with t. Lemma 5 and the factobtained from the lemma make the calculation of ��b1 very simple.s0 = t : ��b1 = 5X 0� (4d� 2d+X 0) = �2ds = t : ��b1 = (4d� 0� 3X 0)� 5 � 2d = �6ds; s0 6= t : ��b1 = (4d� 0� 3X 0)� (4d� 0� 3 � 2d) = �6dNext we calculate ��b2. For clearness, we express the counter value of cs beforethe swap simply by cs(=l) and that after the swap by c0s(=0).s = u : ��b2 = 5Xv2V cv � (4d� cu + 3Xv2Vv 6=u cv) = 2Xv2Vv 6=s cv + 5c0s + cs � 4d= 2Xv2Vv 6=s cv + cs � 4d � 2Xv2V cv � 4d � 0:s0 = u : ��b2 = (4d� cu + 3Xv2Vv 6=u cv) � 5Xv2V cv � (4d+ 3Xv2Vv 6=s0 cv)� 5Xv2Vv 6=s0 cv7



� 4d+ 3c0s � 5cs � 2 Xv2Vv 6=s;s0 cv � 4ds; s0 6= u : ��b2 = (4d� cu + 3Xv2Vv 6=u cv) � (4d� cu + 3Xv2Vv 6=u cv)= 3(c0s � cs) = �3l � 0:Adding ��b1 and ��b2 we can calculate ��. For example, if s = t and s0 = u,then �� = ��b1 +��b2 � �6d+ 4d = �2d. The sum ��b1 +��b2 can only begreater than �2d if s0 = t and s0 = u. However, this case is impossible because anode cannot have both b1 and b2 at the same time, and hence t and u cannot beidentical. Thus, in all cases �� � �2d and (1) holds for (Type I).(Type II): A swaps pages.Suppose that page b1 is swapped from t to t0 and that page b2 is swapped from t0to t. Then �CCM = 0 and �CA = 2d. We must show that �� � 16d. Again wecalculate ��b1 and ��b2 separately and then compute ��. Let s be the locationof b1 and w be the location of b2 in Concurrent-M. First consider ��b1.t0 = s : ��b1 = 5Xv2V cv � (4d� ct + 3Xv2Vv 6=t cv) � 6Xv2V cv � 4d � 12d� 4d = 8dt = s : ��b1 = (4d� ct0 + 3Xv2Vv 6=t0 cv)� 5Xv2V cv = 4d� 6ct0 � 2Xv2Vv 6=t0 cv � 4dt; t0 6= s : ��b1 = (4d� ct0 + 3Xv2Vv 6=t0 cv)� (4d� ct + 3Xv2Vv 6=t cv) = 4(ct � ct0) � 8dWe conclude��b1 � 8d. Next consider��b2. Since there is no distinction betweenb1 and b2, the same analysis as above gives ��b2 � 8d. Thus, the total change inpotential is �� = ��b1 +��b2 � 16d, and (1) holds for (Type II).(Type III) A request is satis�ed by both A and Concurrent-M.Suppose there is a request at node v to page b. Let s be the node at whichConcurrent-M stores b, and let t be the node at which A holds b.Case 1: v = s. �CCM = 0. �CA � 0. �� = 0. Thus (1) is satis�ed.Case 2: v 6= s. In this case �CCM = 1 because v does not have b in Concurrent-M. The counter cbv is incremented by 1. We need to consider three cases.Case (a): Suppose that v = t. �CA = 0. So we have to show that �� � �1.Note that s 6= t. The increment of cbt decreases � by 1. In case another counter isdecremented, then � decreases further by 3. Thus �� 2 f�4;�1g � �1.Case (b): Suppose that v 6= t = s. �CA = 1. So we must show that �� � 7.The increment of cbv increases � by 5. If another counter is decremented, then �decreases by 5. Thus �� 2 f0; 5g � 7.Case (c) Suppose that v 6= t 6= s. �CA = 1 and we must show that �� � 7. Theincrement of cbv increases � by 3. If no decrement takes place, �� = 3. Else ifanother counter except cbt is decremented, � decreases by 3 and totally �� = 0.If cbt is decremented, � increases by 1, and in total �� = 4. 2We can treat Concurrent-M as an on-line algorithm for uniform stars (stars inwhich all edges have length 1). 8



Theorem6. Concurrent-M is 16-competitive for uniform stars.Proof. Let US be the uniform star consisting of n nodes v1; v2; � � � ; vn, with v1being the center node. All edges have length 1. Let K1 and K2 be two completeuniform graphs consisting of n nodes each; in K1 all edges have length 1 and inK2 all edges have length 2. Let u1; u2; � � � ; un and w1; w2; � � � ; wn be the nodesin K1 and K2, respectively. Our analysis maps an arbitrary request sequence �on US onto two request sequences �0 on K1 and �00 on K2, and then comparessimultaneous runs of Concurrent-M on �, �0 and �00. Assume that initially, nodesvi, ui and wi have the same page in their memory, for all i (1 � i � n).We construct �0 from � by replacing each request to a page b at node vi in � bya request to b at node ui in �0. �00 is derived from � similarly. If we simultaneouslyrun Concurrent-M on �, �0 and �00, the (�xed) counter decrement strategy impliesthat whenever Concurrent-M moves a page from vi to vj in US, the same pageis moved from ui to uj in K1 and from wi to wj in K2. Hence, at any time,the page stored at vi is identical to the page stored at ui and wi. Since for anypair of indexes i and j, �uiuj � �vivj � �wiwj , we have CCM(�0) � CCM (�) �CCM (�00). Similarly, COPT (�0) � COPT (�) � COPT (�00). We have CCM (�00) �8COPT (�00) because, by Theorem 4, Concurrent-M is 8-competitive for completeuniform graphs. Also, COPT (�00) = 2COPT (�0) because of the relation betweenK1 and K2. The above formulae give CCM (�) � CCM (�00) � 8COPT (�00) =16COPT (�0) � 16COPT (�) 2Next we present a randomized on-line algorithm for complete uniform graphs.The algorithm is memoryless, i.e. it does not need any memory (e.g. for counters)in order to determine when a migration or a swap should take place.Algorithm COINFLIP: Suppose that there is a request at node v to page b. Ifv has b, COINFLIP performs no action. If v does not have b, the algorithm servesthe request by accessing to the node u that has b. Then with probability 13d , thealgorithm migrates b from u to v if v is empty, and moves b from u to v by aswapping operation if v is not empty.Theorem7. COINFLIP is 5-competitive against adaptive on-line adversaries.Proof. A detailed proof is omitted; we just give the main idea. Let � = 5d � jSj;where S is the set of nodes at which COINFLIP and the adversary A have di�erentpages. Using this potential function we can show E[CCF (�)] � 5CA(�). 25 On-line algorithms for distributed pagingWe present a deterministic on-line algorithm for the migration version of thedistributed paging problem. Let B be the number of di�erent pages in the system.Algorithm DLRU: Each processor v has B counters cv[bi] (1 � i � B). Allcounters are initialized to 0. The algorithmmaintains the invariant that cv[bi] = 0if (but not only if) bi does not belong to v's memory. DLRU serves a request atnode v to page bi as follows. If v has bi, then the request is free and the algorithmsets cv[bi] to k, while all counters whose values were strictly larger than cv[bi]9



before the request are decremented by 1. If v does not have bi, then bi is fetchedinto v from the node u holding bi, and a number of counters are changed. In nodev, cv[bi] is set to k and all positive counters are decremented by 1. In node u,cu[bi] is reset to 0 and all positive counters whose values were smaller than cu[bi]before the request are incremented by 1. In particular, when v is full, a page bjsuch that bj 2 v and cv[bj] = 0 is chosen arbitrarily and is swapped out to u.Such a page bj can always be found after the counter manipulation.We mention a simple fact that we will use in the proof of Theorem 8. When anode v has l positive counters, these counters take distinct values in [k� l+ 1; k].Theorem8. DLRU is 2k-competitive.Proof. We assume B = kn. The analysis can be extended to B < kn with onlysmall changes. Let Svopt be the set of pages stored at v in OPT. We de�ne� =Xv2V Xb2Svopt 2(k � cv[b])as our non-negative potential function. It su�ces to prove that, for an arbitraryrequest sequence �, �CDL + �� � 2k�COPT ; for all events contained in thesimultaneous run of DLRU and OPT on �. Here �CDL denotes the cost incurredby DLRU during the event. We assume w.l.o.g. that when there is a request, �rstOPT transfers pages to serve the request and then DLRU starts satisfying it. Sowhen DLRU is serving, the requested page belongs to Svopt. We have to considertwo types of events: (Type I) OPT swaps two pages; (Type II) DLRU satis�esthe request. Due to space limitations we prove �CDL+�� � 2k�COPT only for(Type II). Suppose that there is a request to page bi at node v.Case 1: DLRU already has bi at node v.In this case �CDL = �COPT = 0 and cv[bi] is augmented from some non-negativeinteger l(� k) to k. In addition, at most k � l counters in v decrease their valuesby 1. Since bi 2 Svopt, the change of � is smaller than �2(k � l) + (k � l) � 2 = 0.Thus we obtain �CDL +�� � 0 + 0 = 0 = 2k�COPT .Case 2: DLRU does not have bi at node v yet.Again �COPT = 0. �CDL = 2 because DLRU loads bi into v's local memory,which requires one swap. Let u be the node that stored bi before the request andlet bj be the page brought from v to u to make room at v for bi. In v, cv[bi] isset from 0 to k, and in the worst case k positive counters are decremented. Sincebi 2 Svopt, at least one of the decreased k counters is not in Svopt, and the change of� with respect to v is less than �2k+(k�1) �2 = �2. In node u, cu[bi] is reset to 0and several counters may be incremented. The change of � corresponding to u isless than or equal to 0, because the counter increments lower � and bi =2 Suopt. Thetotal change of � is the sum of the change at u and v. Hence �� � �2 + 0 = �2and �CDL +�� � 2 + (�2) = 0 = 2k�COPT : 2Finally, we investigate randomized distributed paging. For uni-processor pag-ing, a well-known randomized on-line algorithm called Marking attains (2 logk)-competitiveness against the oblivious adversary [7]. We can generalize Markingto the migration version of the distributed paging problem.10



type block = recordmark : 0 or 1page : name of the pageendAlgorithmVMARK: The algorithm is de�ned for each node v separately. Eachof the k blocks in node v has a marker bit and a page �eld associated with it. Themarker bit and the page �eld arecalled the attribute of a block. Thepage �eld is used to specify thename of a page; the page storedin a block can be di�erent fromthat speci�ed in the page �eld, though. Roughly speaking, a page �eld memorizesthe page which would occupy the corresponding block if there were no requests atany nodes except v. The algorithm works in a series of phases. Like Marking, atthe beginning of every phase, all marker bits are reset to 0. As the phase proceeds,the number of marker bits that take the value 1 monotonically increases. Afterall bits have been marked, the phase is over at the next request to an item notcontained in the set of pages written on the k page �elds in v. Marker bits andpage �elds can be modi�ed only if there is a request at v or a page is swappedout to v from other nodes. The details of the algorithm are given in the programstyle. At a page collision, VMARK moves the evicted page to the block that theincoming page occupied before.Procedure Fetchblock /* there is a request at v to bi */if bi belongs to v's local memory thenlet BLi be the block holding bi.if BLi:page = bi then set BLi:mark to 1 and exit.else choose randomly one block BLj s.t. BLj :mark = 0.copy BLi's attribute to BLj 's attribute.BLi:mark  1. BLi:page bi.else /* bi does not belong to v's local memory */if there is a block BL s.t. BL:page = bi thenswap out a page from BL if BL is not empty. /* page collision */fetch bi to BL. BL:mark  1.else choose randomly one block BL0 s.t. BL0:mark = 0:swap out a page from BL0 if BL0 is not empty. /* page collision */fetch bi to BL0. BL0:mark  1. BL0:page bi.Procedure Dropped /* page bi stored at v is fetched by node uand bj is brought into v instead because of a page collision at u */let BL be the block that bi occupied before leaving v.bring bj to BL.if there is a block BL0 s.t. BL0:page = bj thenexchange the attributes of BL and BL0.The program is composed of two procedures, Fetchpage and Dropped. Fetch-page explains the action when there is a request at v. Dropped is called when apage is discarded into v because of a page collision in another node u. Note thatif requests are generated at only one node v, the algorithm performs in exactlythe same way as Marking. VMARK preserves the following crucial properties. (1)During a phase, exactly k di�erent pages are requested at v. (2) There never existtwo blocks BL1 and BL2 in a node v so that BL1 stores a page b and at the sametime b is speci�ed in the page �eld of BL2. (3) If the page stored in block BL11
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