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Abstract

The problem of ordering a set of entities which contain
inherent ties among them arises in many applications.
Notion of “bucket order” has emerged as a popular
mechanism of ranking in such settings. A bucket
order is an ordered partition of the set of entities into
“buckets”. There is a total order on the buckets, but
the entities within a bucket are treated as tied.

In this paper, we focus on discovering bucket order
from data captured in the form of user preferences. We
consider two settings: one in which the discrepancies in
the input preferences are “local” (when collected from
experts) and the other in which discrepancies could
be arbitrary (when collected from a large population).
We present a formal model to capture the setting of
local discrepancies and consider the following question:
“how many experts need to be queried to discover
the underlying bucket order on n entities?”. We
prove an upperbound of O(y/logn). In the case of
arbitrary discrepancies, we model it as the bucket
order problem of discovering a bucket order that
best fits the data (captured as pairwise preference
statistics). We present a new approach which exploits
a connection between the discovery of buckets and the
correlation clustering problem. We present empirical
evaluation of our algorithms on real and artificially
generated datasets.

Keywords: rank aggregation, bucket order, cor-
relation clustering.

1 Introduction

In rank aggregation, we are given multiple ranked lists
of entities, and the goal is to compute a robust ranking
that captures the essence of the input rankings. It was
first studied in social choice theory [17, 18, 24, 23]
and has diverse applications in meta-search [9, 4],
combining experts [7], and similarity searching [11].
Much of the classical literature is on computing a
total order on the entities. However, the nature of the
required ordering varies depending on the application.
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Consider as an example, the problem of aggregat-
ing movie ratings by experts. Let U denote the uni-
verse of movies of interest. Let us assume that the
experts are asked to rate each movie in U on a scale
of 1 to 10. Invariably, there will be contradictions in
the assessments of different experts. Moreover, they
may even apply different levels of granularity in their
scores. In such a setting, it is not very meaningful to
rank a movie with average rating of 7.61 higher than
a movie with average rating of 7.56. Arguably, it is
more meaningful to partition the movies into a set of
ordered groups such that, (i) movies with similar rat-
ing patterns are in the same group and (ii) movies with
significantly different ratings are in different groups.

The notion of bucket order was formalized by Fagin
et al. [10] as a way to order entities in settings such
as the movie ratings example. A bucket order is an
ordered partition of the set of entities into “buckets”,
By,Bs,... Bi. All the entities within a bucket are
assumed to be tied or incomparable. The order
between two entities of different buckets is given by
the relative ordering of the buckets they belong to
(entities in B, are ranked higher than the entities
in B; if i < j). The bucket order problem [11, 10,
14, 12] is, given a set of input rankings, compute a
bucket order that best captures the data. The input
rankings could be defined on subsets of the universe
of entities; they could even be a large collection of
pairwise preferences. The bucket order problem has
been used to discover ordering information among
entities in many applications. It is used in the
context of “seriation problems” in scientific disciplines
such as Paleontology [22, 13], Archaeology [15], and
Ecology [20]. Feng et al. [12] used it to aggregate
browsing patterns of the visitors of a web portal.
Agrawal et al. [1] implicitly use bucket orders to
discover ordered labels from clickstream data. Some
of these applications are explained in Section 6.

In this paper, we focus on discovering bucket orders
from ranking preferences of a population. We consider
two settings for disagreements between the ranking
preferences of different people. These disagreements
will also be referred to as discrepancies. In the first set-
ting, the discrepancies are “local” (typical when data
is collected from experts). We formalize this setting



and study the “query complexity”: “how many experts
need to be queried to reliably discover the underlying
bucket order on n entities”. We prove an upperbound
of O(v/Iogn) in this setting. When the discrepancies
are arbitrary, we model the problem as the traditional
bucket order problem studied in [11, 10, 14, 12]. We
develop a novel approach which exploits a natural re-
lationship between correlation clustering [5] and the
properties satisfied by the buckets in a bucket order.
We conduct experiments on two well-studied real-life
datasets and a large number of artificially generated
datasets. In summary, we make important theoretical
contribution in the form of query complexity, develop
new algorithms, and present empirical evaluation of
our and past approaches.

2 Past Work and Our Results

Some Definitions: We define a few concepts needed
to survey the literature. Let U denote the universe of
entities. A full ranking is a total order on the entities
in U. A bucket order specifies a partial order on the set
of entities in U and is referred to as a partial ranking.

The notion of “distance” between two rankings is
critical in defining aggregation problems. The Kendall
tau distance [18] between two full rankings m; and
mo is the number of pairs which appear in opposite
orders in 7 and my. The Spearman’s footrule distance
between them is (|71 (i) — m2(4)|) where 7y (7) is the
position of 7 in 7, for k£ = 1,2 [18]. These notions were
generalized for the case of partial rankings in [10].

A linear extension of a bucket order is a full
ranking such that, for all 7, entities of bucket 1
are ranked higher than the entities of bucket ¢ + 1.
Entities within a bucket may appear in any order.
Let By = {2,6,3},By = {1,5,9}, B3 = {4,7,8} be
a bucket order on {1,2,...,9} with By < Bs < Bs;
< 6,3,2,9,5,1,8,7,4 > and < 2,3,6,5,1,9,8,7,4 >
are examples of its linear extensions.

2.1 Past Work Fagin et al. [10] defined four dis-
tance metrics based on generalized Kendall tau and
Spearman’s footrule distances for partial rankings.
These metrics are within a constant-factor of each
other. The goal is to discover a bucket order whose
average distance from the input rankings is minimum.
They present a dynamic programming based constant-
factor approximation algorithm for one of the metrics.
This in turn yields constant-factor approximation al-
gorithms for the other metrics as well.

Ailon et al. [3] showed that a simple and powerful
method called PIVOT yields constant-factor approx-
imation algorithms for a host of related problems in-
cluding rank aggregation of full rankings. Ailon [2]

considered the problem of aggregating a set of par-
tial rankings into a full ranking. He generalized the
algorithm of [3] for this case and obtained an im-
proved approximation ratio of % Kenyon-Mathieu and
Schudy [19] gave a Polynomial Time Approximation
Scheme for the related problem of ranking players in a
tournament (in a tournament, every player plays every
other player).

In standard rank aggregation, preferences between
entities are captured in the form of input rankings.
Collecting the statistics on all pairwise preferences is
an alternative way of capturing preferences, especially
when data is collected from a large population. Cohen
et al. [7] first considered normalized pairwise prefer-
ence statistics, expressed in the form of a matrix, to
compute an aggregate full ranking. Gionis et al. [14]
formulated the bucket order discovery problem when
the input is given as a normalized pairwise preference
matrix. They showed how to convert the discovered
bucket order into an equivalent normalized pairwise
preference matrix. They consider the problem of com-
puting a bucket order whose Ly distance from the input
matrix is minimum and showed it to be NP-Complete.
They adopted the PIVOT algorithm [3] and estab-
lished an approximation ratio of 9. Feng et al. [12]
considered the same formulation as Gionis et al., but
restricted the input to a set of total orders. They pro-
posed the bucket gap algorithm (called GAP). At a
high level, they follow the approach of Fagin et al. [11]
of grouping the entities based on their median ranks.
However, they strengthen this heuristic by taking dif-
ferent quantile ranks of the entities which depends on a
parameter called “num_of_frequencies”. In the context
of generating ordered labels from click-stream data,
Agrawal et al. [1] considered Maz Ordered Partition
Problem which implicitly uses bucket orders.

2.2 Ouwur Results As mentioned in Section 1, we
consider two different models of discrepancies in the
input: local and arbitrary discrepancies.

We describe the local discrepancy model using an
example of rating movies by experts. Suppose there is
an underlying bucket order that categorizes the movies
into “classics”, “excellent”, “good”, “average” and so
on. Suppose further that the experts are required
to provide total order on the movies. It is possible
that an expert ranks an excellent movie at the level of
good movies due to subjective considerations. But,
it is unlikely that the expert ranks it at the level
of average movies. In other words, the subjective
inputs given by the experts differ from the underlying
bucket order only in terms of misclassifications across
neighboring buckets. Therefore, the total orders given



by the experts are “close” to some linear extension of
the underlying bucket order. We call this as “local
noise”. We show that with local noise under an
appropriate probabilistic model, it is sufficient to query
only O(yv/logn) expert inputs, to reliably compute the
underlying bucket order on n entities. We call this as
the query complexity of the bucket order discovery.

Our model of query complexity is applicable in
many scenarios. Consider the seriation problem in
Paleontology [14]; the problem is to order a set of fossil
sites in terms of their temporal order (See Section 6.1).
Indeed, the broad agreement among domain experts
is best captured by a bucket order. Assessments by
individual experts differ at the boundary of different
eras. In fact, Puolamaki et al. [22] generate a set of full
rankings on a set of fossil sites in Europe based on this
premise and it is used in the experiments of [14, 12].

The general setting of arbitrary discrepancies arises
when the preferences are collected from large popula-
tions. In this case, we assume that the ordering pref-
erence of the population is captured by pairwise pref-
erence statistics, and model bucket order discovery as
the bucket order problem considered in [14, 12]. We
present a new approach which exploits the connections
between the process of identifying the buckets and the
well studied correlation clustering problem [5].

We need to present a brief overview of the PIVOT
algorithm [14] in order to motivate our approach.
The PIVOT algorithm randomly picks a pivot entity,
and then classifies the remaining entities into three
categories, B, R, and L. B is the set of entities
which belong to the same bucket as the pivot. L
is the set of entities that belong to buckets ranked
higher than B and R is the set of entities belonging
to the buckets which are ranked lower than B. It
recurses on R, L to find the bucket order of the
entities in R and L. The final bucket order is:
bucket order for L followed by B followed by the
bucket order for R. Thus, this algorithm combines
the two important steps, of finding the appropriate
buckets, and of finding an ordering among them, into
a single step. This method has the drawback of being
sensitive to noise in pairwise comparisons involving
the pivot (See Section 5). Our approach is to first
get appropriate buckets via clustering and then obtain
a total order on the clusters. Specifically, we use
correlation clustering to obtain the buckets.

Correlation Clustering [5] is a clustering problem
on a graph in which the edges are labeled positive or
negative. The goal is to find a clustering that min-
imizes the number of disagreements. Disagreements
can arise in two ways: (i) a positive edge cuts across
two different clusters, and (ii) a negative edge lies com-

pletely inside a cluster. We first demonstrate how to
convert the problem of obtaining the buckets to a cor-
relation clustering instance. We use a simple algorithm
for correlation clustering by Ailon et al. [3]. We de-
velop two different heuristics for computing the total
order on the buckets obtained in the first step.

We present detailed empirical evaluation of our and
previous algorithms. Specifically,

e We present empirical evaluation on real-life data:
the g10s10 dataset in Paleontology [22] and the
data on the browsing patterns of the visitors of
MSNBC !. We identify and correct a flaw in the
experiment on the MSNBC dataset in [12].

e We experiment with large number of artificially
generated datasets that are designed to test the
robustness of the algorithms.

e We demonstrate the strengths and the weaknesses
of different algorithms. We present experimental
results to validate the query complexity result.

3 Problem Formulations

In this section, we formally define the bucket order
problem and the query complexity of bucket order
discovery. In the rest of the paper, we use the symbol
“<” to denote an order between entities; a < b means
a is ranked higher than b. For the rest of the paper, we
use the terms entities and elements interchangeably.

Let V = {v1,v9,...,v,} be the universe of entities
(or elements) Let B = {By, Ba, ..., Be} be a partition
i # j). Let < be a total order on B, i.e. By < By <

. = By. We say that (B, <) forms a bucket order
on V. We refer to each block B; of the partition as
bucket. The semantics of the bucket order is as follows.
If v € B; and v € Bj and B; < By, then, v < u. In
addition, entities within a bucket are incomparable or
tied.

We say that <7 is a linear extension of (B, <), if
it is a total order on V that obeys the bucket order,
i.e, for v € By and u € B; such that B, < B, <r is
guaranteed to have v <p wu.

A pair ordered matriz (p.o. matrix in short) is
a generic way of capturing pairwise preferences in
the input data. It is a |V| x |V]| matrix M. For
each v;,v; € V, M(i,j) > 0 is the fraction of the
comparisons between v; and v;, which ranked v; < v;.
Further, it satisfies that, M(i,7) + M(j,4) = 1 and
by convention, M (i,7) = 0.5. It is easy to convert an
input given in the form of full or partial ranks into an

Thttp://kdd.ics.uci.edu/databases /msnbc/msnbc.html



equivalent p.o. matrix. Given a bucket order (B, <),
we define an equivalent p.o. matrix as follows: let
Cg(i,j) = 1if v; < vj, Cg(i,j) = % if v; and v;
belong to the same bucket, and Cg (7, j) = 0 if v; < v;.

3.1 Bucket Order Problem [14, 12] The input
to the problem is, a set of rankings (full or partial) or a
collection of pairwise preferences, which is represented
as an equivalent p.o. matrix M on V. For a bucket
order (B, <) on V, let Cg denote the corresponding
p.o. matrix. The goal is to find a bucket order such
that the L distance between M and Cg is minimum.
In other words, find a bucket order (B,~<) which
minimizes [Cp — M| =}, ; |Cs(i,j) — M (i, j)|.

Remarks: In some applications (Paleontology ap-
plication in Section 6), there is an unknown underly-
ing bucket order from which the input data is sampled,
and the goal is to find a bucket order that closely ap-
proximates it. While in some applications ( MSNBC
application in Section 6), there is no such underlying
bucket order. However, a bucket order is used only as a
means of effectively capturing the aggregate preference
order in the input. Feng et al. [12] first highlighted
these two aspects of the bucket order problem.

3.2 Query Complexity We now formalize the
problem of the number of expert inputs required to
discover an unknown underlying bucket order when
the inputs are obtained in the form of total orders. As
argued in the introduction, it is reasonable to assume
that the expert inputs are close to some linear exten-
sion and the discrepancies are “local”. Querying the
experts (human or access to competing ranking func-
tions) is a costly process and it is a worthy goal to
minimize the number of queries required to learn the
underlying bucket order.

Suppose there is an underlying bucket order (B, <)
on the elements of V. Let the bucket order be By <
By < ... < By. Let b; denote the size of B; and let
So =0and S; = S;_1 +b;Vi > 1. The range of an
element v € B; is said to be range(v) = [S;—1 + 1, 5]
Thus, in a linear extension, every element occurs
within its range. Given a total order on V, the
displacement error of an element v is said to be d,
if v occurs within a distance d to the right, or to the
left of range(v).

We model the discrepancies in the expert inputs
taking the movie rating application as an example
(see Section 2.2). It is likely that an expert, due to
subjective considerations ranks an excellent movie at
the level of good movies, i.e, an entity in bucket B; may
be placed in buckets B;_1 or B; 1. It is highly unlikely
that the expert ranks an excellent movie at the level

of average movies. So, we may assume that no entity
of B; is placed beyond B;_1 or B;yi. Further, it is
highly unlikely that the expert ranks a large number
of good movies ahead of an excellent movie, i.e, the
displacement error of an entity v is no more than half
the size of the adjacent bucket to which it is getting
displaced. We thus have the following model for local
errors that captures biases or erroneous recordings.

1. If a displacement error occurs for v € B;, then v
is placed either in B;_1 or Bj;1.

2. If an entity v € B; is erroneously placed in Bj,
j € {i — 1,4+ 1}, then, its displacement error is
atmost |B;|/2.

For the rest of this paper, the term local error will
refer to the above two conditions. Let @ be the set of
all total orders which satisfy the local error property.
We assume that the expert inputs are drawn uniformly
at random from @. The query complezity problem is
defined as follows: given n, the number of entities, how
many expert inputs need to be sampled for discovering
the bucket order? Our formulation is similar in spirit
to the problem of sorting under noise which is studied
in prior literature (see [6, 16]).

4 Discovering the underlying Bucket Order

We consider an unknown underlying bucket order
(B, <) with [ buckets. Let 7 be the set of orders
that have a displacement error of at most half the
size of the adjacent buckets. Each query returns a
total order chosen uniformly at random from 7. The
goal is to bound the number of queries required to
reconstruct (B, <) with high probability. Let B =
{B1,Ba,...,B¢}. Let b; denote the size of B; and d;
denote b; /2.

CrLAM 4.1. The probability that a query to (B, <)
returns a particular total order with local error is equal
to

(4.1) !

b1!ba! ... by! (dlj—l(iQ) (d2;—2d3) o (dzC;;_Jrldz)

Proof. Number of linear extensions of (B,<) is
b1!bs!. .. by, Fix one of these linear extensions and
let O; denote the order in which elements of B; occur.
There are [ — 1 regions, each of length d; +d; 1, at the
boundaries of O; and O;41 for ¢ = 1,...,l — 1 where
local error can arise. Moreover, there are (d"'er‘f"* !

ways of placing the last d; elements of O; in this
region while preserving the ordering of elements of
O;+1. Therefore, there are Hifl (d"’+d(%"’+1) ways of ob-
taining unique total orders from each linear extension
obeying the local error conditions. This implies that



| T| = balbo! .. bt (17 %2) (25%) .. (149 Since the
samples are chosen uniformly at random from 7, the

proof of the claim follows.

To prove an upper bound of O(y/logn) on the query
complexity, we give an algorithm which queries only
v/200Tog n expert inputs for total orders, and produces
the correct bucket order with a very high probability.
The algorithm is described in Algorithm 1. In the
algorithm, we first get the elements of the left most
bucket, remove them from the input total orders and
iterate the process to get the remaining buckets. Let
17,17, ...,T} be the k input bucket orders at the j"
iteration. Let a; denote the leftmost element of Tij ,
and let L’ = {aj,as,...a;}. For an element v, we
count the number of times it occurs to the left of some
element in L’. This gives us a score, which we use to
decide which bucket v belongs to. So if L (u<w)isa

function that is 1 if u < v in order T/, and zero other
wise (i.e. the indicator function of {u < v}), we have
the following definition of score(j,v).

score(T/,v) = Z 1Tij(v<a)
a€Li
i=k

(4.2) score(j,v) = Zscore(TJ,v)
=1

At the j* iteration we assume that the buckets
B1, By, ..., Bj_1 have been output correctly, and their
clements deleted from 77, ..., T/. Then the set L’ of
all the left most elements of Tij are in B;. Hence it
is likely that the score() for entities of B; are higher
than for the entities not in B;. We output as A;, the
entities with a high score.

1 Set i =0;

2 Query (B, <) to get k input orders
TiTi,....Ti;

3 Let L’ be the left most elements of
T, .. T

4 For every entity v, calculate score(i,v);

5 Let A; be the set of elements that have a score
of at least (3/8) (g),

6 Output A; as the bucket B;. Delete the
elements of A; from each of the orders
Tj,..., T}, to get Ty, ... T+,

7 If there are elements left in the orders, set 7 to
i+ 1 and repeat the steps starting from step 3;

Algorithm 1: Bucket Reconstruction Algorithm

Let A; be the bucket returned by the algorithm as
B;. We first prove that every element v in B;, will be

in A; with a high probability.

THEOREM 4.1. letv € B;. Suppose that the algorithm
returns the buckets By, Ba,...,B;_1 correctly. Then
the probability that v is not in A; is at most #, for

k=+2001Inn.

Proof. Let L7 = {ay,az,...,a;x} be the left most
elements of the input orders T7,75,...,T), at the
j-th iteration. Since we assume that the buckets
B, By, ..., Bj_1 have been returned correctly, the left
most elements of le s ,T,z at the j iteration belong
to Bj, i.e. L7 C Bj. The score() function is now
defined with respect to L7. Suppose v ¢ A;. Then,
from the algorithm we see that score(j,v) < (3/8) (’;)
For a; € L7, let X" be the indicator random variable
that v occurs to the left of a; in T,{L. We then have

(4.3) Xi+Xi+... +XF

+X5+ X2+ ..+ Xb

score(j,v) =

+XE+XE XY

Now, since v € Bj, and a; € Bj, the probability that
v occurs before a; in a random order is 1/2. Thus the
expected value if X" is

1
BIX[ = SV¥m=1.. km#i
= 0 ifm=i
Thus, the expected value of score(j,v) is

k(k —1)
2

- )

Since the X" are independent 0 — 1 random variables,
we have using Chernoff Bounds (theorem 4.5 in [21])

e <i) = ()0
k
2)

For k = +/2001nn, we get the above probability to be
at most n~2, which proves the above theorem.

Elscore(j,v)] =

2
¢)
e}
/T\
g
S| ot

Next, we bound the probability that an element w
not in Bj is in A;.
THEOREM 4.2. Let w ¢ Bj. Suppose that the algo-

rithm returns the buckets Bi, Ba,...,Bj_1 correctly.
The probability that w € A; is at most n=2, for

k=+2001nn.



Proof. Since the buckets By,...B;_; have been re-
turned correctly, and since the displacement error is
at most half the size of the buckets, w € Bjyi. Let
Y™ denote the indicator random variable that in the
order T4, , w occurs before a;. Suppose w occurs before
a; in an order. Then a; lies to the right of range(a;) by
at most dj;1 places, or w lies to the left of range(w)
by at most d; places. Let this d; + d;j41 region on the
boundary of B; and Bjy1 be denoted by D. Suppose
w occurs at index z and a; occurs index y in D. The
number of orders in which this can occur is

dj+dj—2
bl'bg'(bj—]_y( J dJ_Jrll >(bj+1—1)!bj+2!
J

byl (dl + dz) o <dj1 + dj) (dj+1 + dj+2)
dy d; dj1
(d41 + dz)
\ de
Since there are (dj +g” 1) choices for the indices x and
y where w occurs before a;, and since each order is
equally likely, the probability that w occurs before
a; in a given order is (after multiplying by (d-7+g-7+1)
and the probability of occurrence of the order and
simplifying)
Pr(Y/"=1) = Ldjdjsn 4
2bj b
= 0ifi=m

We now get the expectation of the score of w to be

B 1d; djs1
wil = 2b; bj

k11 1
L[k
o 4\2
Since the Y;™ are independent 0 — 1 random variables,
we have using Chernoff Bounds (theorem 4.4 in [21])

Pr (score(j,w) > %(S)) < exp ( ! <k> ; i)
k2
e (~55)

Since k = /200 Inn, we find that the above probability
is bounded by n=2

E[score(j, k(k—1)=

N

Q

We now use the above lemmas to prove that our
algorithm succeeds with high probability.

THEOREM 4.3. By sampling from k = +/2001Inn total
orders, the above algorithm gets the correct bucket
order with a probability of at least 1 — %

Proof. The algorithm first outputs A;, then deletes
the entities in A; from each of the input orders
T1,...,T; and repeats to find As and so on. Let S;
be the event that the algorithm outputs the i* bucket
correctly. The algorithm fails if there is some step i,
during which it outputs the a faulty bucket. Suppose
S1,59,83,...,8;_1 occur. Then A; # B; only if an
element of B; is missing from A;, or an element not in
B; is in A;. From the above two lemmas, we conclude
that the probability of this occurring is at most 2n =2
Thus the probability that the algorithm fails in some
step is

< Pr(S;U(5:]81) U (S3](S1US2)...))
< ZPI‘(§|(51U5’2 - USit1))
<

1

Thus, with probability at least (1 — %) our algorithm
outputs the correct bucket order.

5 Algorithms for the Bucket Order Problem

In this section, we consider the general setting of
arbitrary discrepancies and present a new approach
for the bucket order problem (see Section 3.1).

Recall the main “pivoting” step of the PIVOT
algorithm of Gionis et al. [14]: based on a randomly
chosen pivot p, three sets B, R, and L are created. B
is the set of entities belong to the pivot’s bucket, L is
the set of entities that should occur before the pivot,
and R is the set of entities that should occur after
the pivot. The pivoting step determines the relative
ordering of non-pivot entities with respect to the pivot
and the algorithm recurses on L and R respectively.
Suppose M is the input p.o. matrix. The splitting of
the entities into B, R, L is based on a parameter called
B. An entity ¢ is put in B if |M[p, ¢|—0.5| < 5. Tt is put
in Lis Mp,q] < (0.5—0) and in R if M|[p,q] > 0.5+ 0.
The PIVOT algorithm combines the two steps of (i)
obtaining appropriate buckets and (ii) finding relative
ordering among the buckets.

The pivot step is sensitive to discrepancies in the
pairwise comparisons involving the pivot p. Let us
consider an extreme form of discrepancy in which the
pairwise preferences involving p are reversed. In this
case, the pivot step introduces a major error where
the relative ordering between the entities classified as
R and L is reversed. While such a discrepancy is
highly unlikely, it emphasizes the danger of ordering
entities based solely on their pairwise preferences with
respect to the pivot. So, even if a small (but not



negligible) fraction of the entities have discrepancies
in their pairwise comparisons, the pivot step has a
corresponding probability of introducing errors in its
ordering. Our approach is to decouple the steps of
obtaining the buckets and ordering them.

We adopt a two-phase approach in which we first
discover the appropriate buckets. An ordering on the
buckets is obtained by looking at preference statistics
at the level of buckets, rather than individual entities
as in the PIVOT algorithm. Our first observation
is that, ideally, we would like the buckets to be
“clustered” in the following sense. Let S be a bucket
discovered in the first phase. We would like to ensure
the following conditions: (i) Va,b € S, M(a,b) =~ 0.5
and (ii) Ya € S,Yb € S, (0.5 — M(a,b)| > 0. We
can parameterize this by a number 0 < g < 0.5
as follows: (i) Va,b € S, 0.5 — M(a,b)| < [ and
(ii) Ya € S,Vb ¢ S, 0.5 — M(a,b)] > 8. We now
show how to reduce the problem of discovering buckets
which satisfy the above properties to the problem of
correlation clustering [5].

The input to correlation clustering is a graph whose
edges are labeled +ve or -ve. Our goal is to find
disjoint clusters that cover all the nodes and minimize
overall disagreements. A disagreement is said to occur
if a +ve edge cuts across two clusters or if a -ve edge
is inside a cluster.

input : p.o. matrix M over entities V'
output: Bucket Order (B, <)
1 G = ObtainCClnstance(M );
2 B = CorrelationCluster(G) ;
3 (B, <) = SortHeuristic(B) (OR PIVOT(B); See
text for details);
Algorithm 2: Aggregation via Correlation Clus-
tering

input : p.o. matrix M on V and parameter
6<0.5
output: Edge Labeled Graph G = (V, E)
for (VieV,VjeV)do
if (0.5—70) < M(i,j) < (0.5+ () then
| label the edge (i, j) positive
else
| label the edge (i, j) negative
end
end
return G

Procedure ObtainCClnstance
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The labeling of the edges is done based on the pair-

wise preference between its end-points. The edge con-
necting a pair (¢, 7) is labeled +ve if the pairwise pref-
erence between ¢ and j suggests that they should be
in the same bucket. Ideally, we should have M][i, j] =
M]j,i] = 0.5 if the pair (4,7) are in the same bucket.
Instead, we use the region [0.5 — 3,0.5 + (] to char-
acterize pairs for whom the corresponding edges must
be labeled positive. Procedure ¢ ObtainCClnstance”
presents the pseudocode which constructs a correlation
clustering instance based on the pairwise preference
matrix M. We get a solution to the correlation clus-
tering problem using the powerful technique of Ailon
et al. [3] (See Procedure “ CorrelationCluster” for de-
tails). Note that this approach circumvents the danger
that we highlighted with respect to discrepancies in
pairwise preferences involving the pivot entity. It sim-
ply puts the pivot in a separate bucket and recurses
on the remaining entities.

input : Labeled Graph G = (V, E)
output: The set of buckets B
p <« Random pivot entity. O « @ and
B —{p}
for for all entities v € V do
if label(p,v) is positive then
| add v to B
else
| add v to O
end

=

end
Output
B U CorrelationCluster(G = (O, E(O))

Procedure CorrelationCluster
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The next problem is to obtain a total ordering on
the set of buckets obtained via correlation clustering.
We first collapse the entities inside each bucket into
metanodes. We then define an appropriate p.o. ma-
trix on the metanodes as shown in steps 1 and 2 of
Procedure “ SortHeuristic”. We present two different
heuristics to obtain a total ordering. The first heuris-
tic is to define appropriate indegree for each metanode
which is indicative of how preferred it is over others
(higher the value higher is its preference over others)
and then sort the metanodes in the decreasing order
of their indegrees. This heuristic of sorting based on
in-degrees is similar to the one proposed by Copper-
smith et al. [8] for ranking players in weighted tourna-
ments. The second heuristic is to call the PIVOT al-
gorithm of [14] on the p.o. matrix of metanodes. Since
the correlation clustering is based on minimizing dis-
agreements, the expectation here is that the PIVOT
will now return a total order. The pseudocodes in



“Algorithm 2” and Procedures “ ObtainCClnstance”,
“CorrelationCluster”, “SortHeuristic” show all the de-
tails. We call the correlation clustering algorithm with
the sorting heuristic as “SortCC” and correlation clus-
tering followed by PIVOT as “PivotCC”.

input : Set of Buckets B, p.o. matrix M
output: Bucket Order (B, <)
1 Collapse each bucket B; into a meta node Nj;
2 Compute M(Ni, Nj) = 3 ogn, 2ouen, M(u,v);
ZNj¢N,i M(N;i,N;) .
TINVISINGD
4 Define < on B based on decreasing order of
indegrees and return (B, <);

3 Compute indegree(N;) =

Procedure SortHeuristic

6 Experimental Evaluation

In this section, we present empirical evaluation of the
following algorithms: SortCC, PivotCC, PIVOT, and
GAP algorithms. The SortCC, PivotCC, and PIVOT
are parameterized by § and the GAP algorithms is
parameterized by “num_of_frequencies” [12].

Let Ct denote the p.o. matrix corresponding to the
input rankings. If the input is sampled from an un-
known underlying bucket order (called ground truth),
then we denote the p.o. matrix of the ground truth by
Cqg. Let Cp be the output p.o. matrix computed by
an algorithm for the bucket order problem. As in [12],
we call |C1 — Cg| as the I-distance and |Cq — Cg| as
the G-distance of the output p.o. matrix Cg.

6.1 Seriation Problem in Paleontology A typ-
ical fossil discovery database contains details of the
fossil remains of different species found across differ-
ent sites. Let F' denote the set of fossil sites and let
S denote the set of species whose fossil remains are
documented. For every discovered fossil, the database
records the site at which it was discovered and the
species the fossil belongs to. This in turn can be trans-
lated to a 0-1 present/absent matrix of order |F| x | S|
where the (i,7)th entry indicates whether fossil re-
mains of species j were found in site 7. The seriation
problem is one of biochronology: in the absence of ge-
ological evidences and lack of geochronologically dat-
able materials, obtain a temporal order on the sites
based purely on the |F| x |S| present/absent matrix.
In this experiment, we consider a dataset based on the
data collected on 124 fossil sites in Europe and 139
species. Domain experts have assigned each of the 124
sites to a mammal neogene (MN) class ranging from
3 (oldest) to 17 (youngest). This is indeed a bucket
order on the sites. So, one evaluation criteria for the

algorithms is how well does the discovered bucket or-
der compare with this ground truth.

Puoldmaki et al. [22] developed a Monte Carlo
Markov Chain heuristic for generating total orders
based on the |F| x |S| present/absent matrix. The
probability of a total order being picked depends on
its nearest distance to a valid linear extension of the
ground truth bucket order. Closer a total order is to
a linear extension, higher is its probability of being
sampled. Note the resemblance between this heuristic
and our model for sampling in the query complexity
problem. They generated about 2000 total orders
based on present/absent information for the 124 sites
and 139 species. This dataset is popularly referred to
as g10s10 dataset. We conducted empirical evaluation
of the different algorithms on the ¢10s10 dataset.

Figures 1 and 2 show the the G-distance and I-
distance graphs for the Paleontological dataset respec-
tively. For the PIVOT, SortCC, and PivotCC algo-
rithms, the z-axis corresponds to the labeled  val-
ues from 0.05 to 0.25. For the GAP algorithm, z-axis
corresponds to its main parameter num_of_frequencies
which can range from 1 to 99. We report the best
value for the parameter in the following five ranges:
[1:19],[20: 39],[40 : 59],[60 : 79],[80 : 99]. We follow
this convention for the rest of the experiments.
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Figure 1: G-distance on Paleontological dataset.
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Figure 2: I-distance on Paleontological dataset



Consider the G-distance which is the real objective
of optimization in this application. The SortCC algo-
rithm computed the best solution. The performance
of the GAP algorithm was the most inferior. In case
of the I-distance, there is not much to separate the al-
gorithms in terms of their best output. But, the GAP
algorithm has the advantage that it is relatively stable
across different settings of num_of_frequencies.

Different settings of the parameters of the algo-
rithms give rise to different results. So, we must have
a heuristic to pick a setting which, hopefully, mini-
mizes the distance of the solution to the ground truth.
One obvious way is to pick the solution with mini-
mum [-distance over different parameter settings. In
the case of g10s10, it is interesting to note that, for the
pivot based algorithms, the minimum [-distance also
coincides with the minimum G-distance. However, for
the GAP algorithm, minimum [I-distance corresponds
to a solution with maximum G-distance.

6.2 Aggregating the Browsing Patterns of vis-
itors of MSNBC We use the MSNBC dataset used
by Feng et al. [12]. It contains the browsing sequences
of all the 981818 visitors to the MSNBC website on
September 28th 1999. The webpages were classified
into 17 categories. The dataset contains, for each visi-
tor, the sequence of the categories of the webpages she
visited. They can be viewed as preference orders of the
visitors. The goal is to capture the likely orders that
visitors are likely to follow across the different cat-
egories, such as “front-page”’->‘“news”-> “business”-
> “sports”->“exit”. As it is unlikely that there will
be one strict ordering, bucket order turns out to be a
convenient way of capturing the likelihood of different
orderings.

Feng et al. [12] first reported experiments with the
MSNBC dataset. But, their experiment is severely
limited by a particular feature of their algorithm. We
need to describe the main idea of their algorithm to
present the limitation in their experiment. The input
to their algorithm is a set of total orders. The “median
rank” of an entity is the median of its rank across the
different total orders in the input. The heuristic used
in [11] is to rank the entities based on their median
ranks. Feng et al. [12] generalize this heuristic, first
by not only considering median rank of an entity, but
also its rank at different quantiles. To determine if
two entities should belong to the same bucket, they
use similarities in their ranks at different quantiles.

Observe that the main idea of capturing the rank of
an entity at different quantiles implicitly assumes that
the input is given in the form of total orders. In the
MSNBC application, this means that each visitor visits

pages from each of the 17 categories. However, this is
not true. In fact, the number of visitors who visit
pages from four or more categories is less than 10%.
So, to apply their algorithm in this context, they have
the following preprocessing step. Let .S be the ordered
set of categories visited by a visitor and let S’ be the
missing categories in the increasing order of category
number. They obtain a total order by appending
S’ at the end of S. It is very important to note
that the appended S’ introduces erroneous preference
statistics for the categories within S’. Moreover,
simply relabeling the categories changes the input
as considered by their preprocessing step! To limit
the effect of errors introduced by the preprocessing
step, they consider only those visitors whose sequence
has atleast 14 categories. This brings the number of
visitors considered in the experiment to just 160 (out
of 981818)! This small sample of visitors is unlikely to
be representative of the aggregate preferences of the
visitors. We correct this anomaly in our experiment.

We need the labels of different categories to help
present the experimental results in a meaningful
manner. The labels for the categories are: front-
page(1), news(2), tech(3), local(4), opinion(5), on-
air(6), misc(7), weather(8), msn-news(9), health(10),
living(11), business(12), msn-sports(13), sports(14),
summary(15), bbs(16), travel(17). Figure 3 presents
the experimental results. The first column specifies
two parameters: minimum sequence length for a visi-
tor to quality for the experiment, and the number of
visitors who qualified. For the GAP algorithm, we re-
produce the two bucket orders reported in [12]: median
bucket order and bucket order with minimum cost.

Interpretation: Since the GAP algorithm consid-
ers just 160 users, its bucket order cannot highlight
rare categories like opinions(5) and bbs(16). Other al-
gorithms consistently do this (quite significantly, even
for 160 users). Categories like on-air(6), msn-news(9),
and msn-sports(13) which are quite popular with many
visitors are not reflected high enough in GAP because
of confining to just 160 users. Rest of the algorithms
do bring out this distinction. The three algorithms,
PIVOT, SortCC, and PivotCC, consistently put the
categories opinions(5), bbs(16) at the end and the cat-
egories front-page(1), msn-news(9), business(12), msn-
sports(13), and news(2) at the top. We have manu-
ally checked the corresponding p.o. matrices to en-
sure that these orderings indeed reflect pairwise pref-
erences. Conceptually, this experiment highlights the
limitation of the GAP algorithm of requiring total or-
der inputs.



Details Bucket Order

GAPmin | {1,2,12} < {3,4,5,6,7,8,10,11,14,15} <

(14,160) | {9,13,16,17}

GAPmed | {1,2] < {3.4,6,7,10,11,12,14,15] <

(14,160) | {5.8} < {9,13,16,17}

PIVOT | 1<{2,9,12,13}<15<

(14,160) | {3,6,8,0,10,11,14,17}<7<4<5<16

SortCC 1 < {2,12915} < {4,10} <

(14,160) | {3,6,7,8,11,13,17} < 5 < 16

PivotCC | 1<{2,12}<15<1{4,6,7,9,11,13,14,17} <

(14,160) | {3,8,10}<5<16

PIVOT | {9,13] < 1 <

(4,79331) | {2,3,6,7,8,10,11,12,15,17} < {4,14} <
5 < 16

SortCC | 1< 9 < {2,3,4,6,7,8,10,12,13, 14,17} <

(4,79331) | {11,15,16} < 5

PivotCC | {6,9,13} < 1 <

(4,79331) | {2,3,7,8,10,11,12,14,15,17} <4<5<16

PIVOT | {6,9,12,13}<1<{2,7}<

(all users) | {3,4,8,10,11,14,15,17}<5<16

SortCC | 1<9<1{2,3,4,6,7,8,10,11,12,14}

(all users) | <{13,15,16}<17< 5

PivotCC | 9<1<{2,4,6,8,10,12,13,14,17}<{3,7,11}

(all users) | <{15,16}<5

Figure 3: Table of bucket orders for different subsets
of visitors of the MSNBC portal.

6.3 Experiments on Artificially Generated
Data We now present our experiments with artifi-
cially generated data.

e Input Generator: This module generates the in-
put for testing the algorithms. The input to this mod-
ule is a tuple (N, T,b,0,B, f1, f2, f3) where N spec-
ifies the number of entities, T specifies the number
of total orders to be generated, b specifies the mini-
mum size of a bucket, § specifies the bound on the dis-
placement error of the entities, B specifies the number
of buckets. Given a specification like this, the mod-
ule first generates G, the ground truth bucket order
consisting of B buckets over IV entities in which each
bucket is of size at least b. It then generates f1-T
number of linear extensions of G, f2 -7 number of to-
tal orders whose local error w.r.t. GG is at most 9, and
f3 - T completely random total orders. The fractions
f1, 2, f3 > 0 are such that f1+4 f2+ f3 =1.0. The
linear extensions generator is such that it picks each
possible linear extension of G with equal probability.
This is also true for the total orders with local errors.
We use the generator with various combination of val-
ues that the tuple (N, T,b,6, B, f1, f2, f3) can take.

e Fxperimentation: For each of the dataset, we run
all the four algorithms. The randomized algorithms
SortCC, PivotCC, and PIVOT are run multiple times.
We collected statistics like best solution, median solu-
tion etc. The GAP algorithm is run for every possible
value of num_of_frequencies.

e Results: We report results as follows. For each 3
value, we report the G-distance value of the solution
with minimum [-distance. This is necessary as a
predetermined setting of the parameters may not work
well for every instance. For the GAP algorithm, we
report the best results for the five ranges as described
in Section 6.1.

e Selection of Cases: We have generated 180
datasets with the number of entities ranging from 50
to 4000 and for different combinations of the tuple
(N,T,b,5,B, f1, f2, f3). Due to space considerations
we present the experimental results on a select few
cases. The chosen cases highlight some of the interest-
ing aspects of the experiments.

6.3.1 Low Noise: (250,25,25,2,10,0.1,0.80,0.10).
This dataset was designed to test the upperbound on
query complexity. It contains 25 total orders on 250
entities (upperbound in Section 4 suggests 40) of which
22 have local error. It is similar to an input that would
be drawn under local noise setting. All the algorithms
were able to consistently discover the ground truth,
thus validating the upperbound.

6.3.2 High Noise, Small Displacement:
(250, 250, 25,2, 10,0.10,0.40,0.50) This dataset con-
tains 250 total orders on 250 entities with 50% of them
being random. The remaining 50% are total orders
with displacement error of 2. This is sufficient for
all the algorithms to recover the ground truth. But,
they show different behaviour for different parameter
settings. With the usual semantics of the z-axis as
explained in Section 6.1, the results are presented
in Figure 4. The y-axis is on logscale. It can be
seen that the GAP algorithm is relatively stable
across its different parameter settings. The other
three algorithms show sudden deterioration when
the 3 value crosses a threshold. We identify general
guidelines for [ values for different conditions in the
following experiments.

6.3.3 Low Noise, Large Displacement:
(1000, 1000, 1, 20,100, 0.10,0.80,0.10) This  dataset
contains 1000 total orders on 1000 entities. The noise
was low with just 10% of them being random. More
importantly, the displacement error is large at 20 and
the minimum bucket size is low at 1. Figure 5 shows
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the graph of the four algorithms for this dataset.
The G-distance for all the algorithms is quite low
considering there are 1000 entities. The pivot based
algorithms perform exceedingly well and are even
able to recover single entity buckets. But, the GAP
algorithm’s performance is inferior compared to the
other algorithms. The reason that GAP suffers is
because it is heavily dependent on median ranks
of the entities which get affected because of large
displacements.

6.3.4 High Noise, Large Displacement:
(500,500, 1, 20, 50, 0.10,0.40,0.50) This dataset con-
tains 50% random total orders and 40% total orders
with displacement error of 20 on 500 entities. Figure 6
shows the graph of the four algorithms for this
dataset. In this case, we observe the phenomena
observed in Figure 4. While the algorithms PIVOT,
PivotCC, and SortCC are able to compute solution
with very low G-distance for low values of 3, they
show rapid deterioration for higher values. The GAP
algorithm on the other hand is stable across different
settings, but the best solution it obtains is inferior to
the best solutions of other methods.
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G-distance graph for the data used in
Section 6.3.4

6.3.5 Summarization of Experimental Results
Based on the above cases presented and an analysis of
the results for the other 100+ remaining datasets, we
can infer certain patterns in the performance of the
different heuristics. They are:

e For the real datasets, the correlation clustering
methods SortCC and pivotCC performed better
than all others, thus highlighting the potential
value of the correlation clustering idea. Across
all experiments, PivotCC i.e, correlation cluster-
ing for discovering the buckets followed by pivot
algorithm to order them performed most robustly.
Even the PIVOT algorithm performed particu-
larly well, especially when the number of input
total orders was high.

e The pivot based algorithms are capable of approx-
imating G-distance in presence of both high noise
and large displacements. But, they are not stable
across all § values. For noisy inputs, we suggest
that the 3 value should be low: 0.05 to 0.10.

e The GAP algorithm performance is comparable
to the pivot based algorithms only when the noise
is low. The median (and percentile) rank based
heuristic of GAP suffers when the input is noisy or
displacements are large. However, one advantage
of the GAP algorithm is its relative stability
across different settings of num_of_frequencies.

e When the noise was very high, i.e, the percentage
of random total orders was more than 70% and
the number of input ordering were less (10% of
number of entities), even pivot based algorithms
performed poorly. This was because of increased
number of misclassifications at the time of pivot
itself introduced by the global noise.



7 Conclusions

We studied the bucket order aggregation problem from
both theoretical and empirical viewpoints. We for-
malized the notion of query complexity of discovering
bucket orders and showed that a small sample is suf-
ficient to discover the bucket order with high proba-
bility when the local error is bounded. We presented
novel algorithms based on an insight of relating the
process of discovering the buckets to the notion of cor-
relation clustering. We presented extensive experimen-
tal results to establish the efficacy of our approach. It
would be interesting to analyze our correlation clus-
tering heuristics, especially SortCC, from the point of
view of approximation ratio.
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