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-	A	strip	of	integral	width	W	and	infinite	height.	
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• Goal	:		
-	Pack	all	rectangles	minimizing	the	height	of	the	strip.	
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• Goal	:		
-	Pack	all	rectangles	minimizing	the	height	of	the	strip.	
-	Axis-parallel	non-overlapping	packing.	

Variant	2:	
90o	rotaWons	
are	allowed!	



Applica6ons:

• CuZng	stock:	cloth	cuZng,	steel/wood	cuZng.	
•  LogisWcs	and	Scheduling:		
memory	allocaWon	,	truck	loading,	palleWzaWon	by	robots.	
• Recent	applicaWons	in	peak	demand	reducWon	in	smart-grids.	
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Strip packing is fun! 
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Strip Packing: 
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•  Strip	Packing	generalizes		
-	bin	packing	(when	all	rectangles	have	same	height),	
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•  Strip	Packing	generalizes		
-	bin	packing	(when	all	rectangles	have	same	height),	
-	makespan	minimizaWon	(when	all	rectangles	have	same	width).	
	
	



Related Problems.
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•  Strip	Packing	generalizes		
-	bin	packing	(when	all	rectangles	have	same	height)	
-	makespan	minimizaWon	(when	all	rectangles	have	same	width)	
•  Strip	Packing	is	NP-hard.	
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• ReducWon	from	ParWWon	Problem:	
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-	PolyWme	approximaWon	hardness	of	3/2	(unless	P=NP).	
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•  Strip	Packing	generalizes		
-	bin	packing	(when	all	rectangles	have	same	height)	
-	makespan	minimizaWon	(when	all	rectangles	have	same	width)	
•  Strip	Packing	is	NP-hard.	
• ReducWon	from	ParWWon	Problem:	
-	Can	not	disWnguish	in	polyWme	if	needs	height	2	or	3.	
-	PolyWme	approximaWon	hardness	of	3/2	(unless	P=NP).	
•  Strongly	NP-hard:	Can	not	be	solved	exactly	in	pseudo-polynomial	Wme	
(in	Wme	poly(W, hmax ,n)  where	max	rectangle	height	is	hmax .�
-	No	other	explicit		hardness	was	known	for	pseudo-polynomial	Wme.	
	



A tale of approximability.
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• Without	rotaWons.	
•  2.7-appx.	[First-Fit-Decreasing-Height,	Coffman-Garey-Johnson-Tarjan	‘80]	…	
•  5/3+ε	[Harren-Jansen-Pradel-vanStee	‘14]	
• AsymptoWc	PTAS	[Kenyon-Remila	‘00	]	–	Good	when	OPT	is	large!	
• Pseudo-polyWme	(1.4+ε)-appx	[Nadiradze-Wiese	SODA	‘16]	
• With	RotaWons.	
• AsymptoWc	PTAS	[Jansen-vanStee	‘05]	
	



Our Results:


• Algorithm:	
• (4/3+ε)-approximaWon	algorithm	in	poly(W,n)	Wme.	
-	For	both	the	cases	without	and	with	90O	rotaWons.	
	
• A	simple	container-based	packing.	
• Breaks	the	barrier	of	3/2	for	the	case	with	rotaWons.	
• Pushes	present	techniques	to	its	limits.	
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Rest of the talk:


• 1.	Existence	of	a	structured	packing	of	all	rectangles	in	
the	strip	with	height	≤(4/3+ε)OPT.	
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Rest of the talk:


• 1.	Existence	of	a	structured	packing	of	all	rectangles	in	
the	strip	with	height	≤(4/3+ε)OPT.	
• 2.	The	algorithm	finds	the	best	structured	packing	in	
Wme	poly(W, n)	using	a	dynamic	program.	
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Existence of a structured packing.


• ClassificaWon	of	rectangles.	
•  Let	α ≥ 1/3,	Find	small	constants	δh	,	δw	>>	μh	,	μw	.	
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≥δh	OPT	

≥ δwW


hi > α OPT,�
wi < δwW


α OPT ≥ hi ≥ δh OPT,�
wi ≤ µwW


hi ≤ µh OPT,�
wi ≤ µwW


hi ≤ µh OPT,�
wi ≥ δwW


Added	aser	packing	
LUTUVUH,	in	the	remaining	
free	spaces	and	addiWonal	

ε-height	of	the	strip.			

Total	area	of	medium	
rectangles	is	small.			
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Existence of a structured packing. 
[Extension of Nadiradze-Wiese] 


0 W

OPT	



•  There	is	a	parWWon	of	[0,W]x[0,OPT]	into	K=O(1)	
boxes	packing	all	rectangles	in	LUTUVUH	s.t.	
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•  There	is	a	parWWon	of	[0,W]x[0,OPT]	into	K=O(1)	
boxes	packing	all	rectangles	in	LUTUVUH	s.t.	
•  Each	box	has	size	either	equal	to	size	of	some	large	
rectangle	(large	box)		
or	height	≤  δh	OPT	(horizontal	box)	
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•  There	is	a	parWWon	of	[0,W]x[0,OPT]	into	K=O(1)	
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•  There	is	a	parWWon	of	[0,W]x[0,OPT]	into	K=O(1)	
boxes	packing	all	rectangles	in	LUTUVUH	s.t.	
•  Each	box	has	size	either	equal	to	size	of	some	large	
rectangle	(large	box)		
or	height	≤  δh	OPT	(horizontal	box)	
or	width	≤  δwW (vertical box).
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•  There	is	a	parWWon	of	[0,W]x[0,OPT]	into	K=O(1)	
boxes	packing	all	rectangles	in	LUTUVUH	s.t.	
•  Each	box	has	size	either	equal	to	size	of	some	large	
rectangle	(large	box)		
or	height	≤  δh	OPT	(horizontal	box)	
or	width	≤  δwW (vertical box).

•  Each large rectangle is contained in a large box.

•  Horizontal rectangles are either contained in a 

horizontal box or cut by a box. Area of cut 
horizontal rectangles is ≤W.O(ε)OPT

•  Tall or vertical rectangles are either contained in 

a vertical box or vertically cut by a vertical box.
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Existence of a structured packing. 
[Extension of Nadiradze-Wiese] 


0 W

OPT	



14.12.16	 35	
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OPT	

Existence of a structured packing. 



• Problem	1.	Rectangles	
can	not	be	cut.	
• Problem	2.	How	do	we	
find	this	packing?	



Existence of a structured packing. 
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Existence of a structured packing. 
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• Problem	1.	Rectangles	
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Existence of a structured packing. 
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0	 W

OPT	
Medium	
Cut	horizontal	

Small	

Medium	

Cut	verWcal	

O(ε)OPT	

≤αOPT	
• Now	only	tall	rectangles	
can	be	cut.		
• One	can	find	packing	of	
horizontal	boxes	using	
an	LP.	
• But	sWll	not	clear	how	to	
find	packing	of	the	
verWcal	boxes.	



Rearrangement of ver6cal box
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•  For	simplicity,	assume		
-	all	verWcal	rectangles	have	unit	width,		
-	no	tall	rectangles	are	cut,		
-	each	height	is	integral	mulWple	of	γOPT.	
•  Tall	=	dark	gray,	VerWcal	=	light	gray.	
•  Any	verWcal	line	intersects	at	most	two	
tall	(>1/3	OPT)	rectangles.	
•  For	each	tall	rectangle,	either	top	or	
bowom	cannot	contain	any	tall	rectangle.	
•  Shis	tall	rectangles	so	that	they	touch	
boundary.	



Rearrangement of ver6cal box
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Rearrangement of ver6cal box
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• Box	B:=(wB, hB), T=Tall	
rectangles.	
• Consider	each	unit	width	
stripes	in	B-T.	
•  Free	rectangle:	If	both	the	top	
and	bowom	sides	of	the	stripe	
overlaps	with	T.	



Rearrangement of ver6cal box
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• Box	B:=(wB, hB), T=Tall	
rectangles.	
• Consider	each	unit	width	
stripes	in	B-T.	
•  Free	rectangle:	If	both	the	top	
and	bowom	sides	of	the	stripe	
overlaps	with	T.	
•  Each	free	rectangle	is	
contained	in	a	strip	of	width	
wB and height at most �
hB-2αOPT ≤ hB(1-2α).


αOPT	

αOPT	

≤ hB(1-2α)	



Rearrangement of ver6cal box
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• Box	B:=(wB, hB), T=Tall	
rectangles.	
• Consider	each	unit	width	
stripes	in	B-T.	
•  Free	rectangle:	If	both	the	top	
and	bowom	sides	of	the	stripe	
overlaps	with	T.	
• Pseudo	rectangle:	If	at	most	
one	of	the	top	and	bowom	
sides	of	the	stripe	overlaps	
with	T.	

≤ hB(1-2α)	



Rearrangement of ver6cal box
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• Remove	all	free	rectangles.	
• Rearrange	tall	and	pseudo	
rectangles.	(same	heights	are	
grouped	together	as	much	as	
possible).	
• Removed	free	rectangles	are	
packed	into	two	strips		
W/2 x (1-2α)OPT. 


≤ hB(1-2α)	
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45	
W

O(ε)OPT	

≤αOPT	

•  Nadiradze-Wiese:		
For	α=2/5,	α=2(1-2α);	7/5	ApproximaWon.	

≤2(1-2α)OPT	

						W/2


0	

OPT	

W

≤αOPT	

						(1-γ)W


•  Our	packing:	For	α=1/3, α=(1-2α); 4/3 ApproximaWon	

							γW


≤(1-2α)	
			OPT	



A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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αOPT	

αOPT	

≤ hB�

 (1-2α)	

≤ hB(1-2α)	

wB	



A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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αOPT	

αOPT	

W	
f(i)=height	of	i’th	free	rectangle.	
g(i)=height	of	i’th	newly	free	rectangle	

≤ hB(1-2α)	

≤ hB�

 (1-2α)	



A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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W	
f(i)=height	of	i’th	free	rectangle.	
g(i)=height	of	i’th	newly	free	rectangle	

• Σ f(i) = Σ g(i).	
•  If	g(i) ≥ f(i)  =>	We	can	repack	them.	 ≤ hB(1-2α)	
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•  Let	G	be	indices	with	g(i) ≥ f(i) .
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A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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W	
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• Σ f(i) = Σ g(i).	
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A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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W	
f(i)=height	of	i’th	free	rectangle.	
g(i)=height	of	i’th	newly	free	rectangle	

• Σ f(i) = Σ g(i).	
•  If	g(i) ≥ f(i)  =>	We	can	repack	them.	
•  Let	G	be	indices	with	g(i) ≥ f(i) .

•  Let	G’	be	indices	with	g(i) < f(i).

•  (1-2α)hB.|G| ≥ Σ{i in G} g(i)-f(i)�

                         = Σ{i in G’} f(i)-g(i)�

 
     ≥ (wB-|G|). γhB


•  |G|≥ wB .γ.


≤ hB(1-2α)	



A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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αOPT	

αOPT	

≤ hB(1-2α)	

≤ hB(1-2α)	
wB	

γ	wB	



A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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αOPT	

αOPT	

≤ hB(1-2α)	

≤ hB(1-2α)	
wB	

γ	wB	



A repacking lemma: 
 A small frac6on of free rectangles can be repacked inside ver6cal box. 
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αOPT	

αOPT	

≤ hB(1-2α)	

≤ hB(1-2α)	
(1-γ)wB	
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OPT	

≤αOPT	

						(1-γ)W								γW	

≤(1-2α)OPT	

Existence of container-based packing


OPT	

						(1-γ)W	

≤αOPT	 ≤(1-2α)OPT	

•  For	α=1/3,	α=(1-2α)		
=>	4/3	ApproximaWon.	

•  Each	box	can	be	decomposed	
into	O(1)	number	of	containers.	



The algorithm
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•  Find	sizes	and	posiWons	of	
containers	in	the	container-
based	packing	of	all	rectangles	
in	LUTUVUH	in	strip	height	≤ 
(4/3+ε)OPT.	
• Pack	non-small	rectangles	using	
dynamic	program	for	MulWple	
knapsack.	
• Pack	small	rectangles	greedily	in	
the	remaining	space	using	Next-
Fit-Decreasing-Height	

	



The algorithm


•  From	ExistenWal	packing,	all	non-
small	rectangles	are	packed	into	
O(1)	containers.	
•  Each	container	has	size	and	
posiWon	in		
{0, …, W} x {0, …, nhmax}.

•  So	we	can	enumerate	all	possible	
such	packings	in	pseudo-polyWme.	
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•  Find	sizes	and	posiWons	of	
containers	in	the	container-
based	packing	of	all	rectangles	
in	LUTUVUH	in	strip	height	≤ 
(4/3+ε)OPT.	
• Pack	non-small	rectangles	using	
dynamic	program	for	MulWple	
knapsack.	
• Pack	small	rectangles	greedily	in	
the	remaining	space	using	Next-
Fit-Decreasing-Height	

	



The algorithm
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•  Find	sizes	and	posiWons	of	
containers	in	the	container-
based	packing	of	all	rectangles	
in	LUTUVUH	in	strip	height	≤ 
(4/3+ε)OPT		.	
• Pack	non-small	rectangles	using	
dynamic	program	for	MulWple	
knapsack.	
• Pack	small	rectangles	greedily	in	
the	remaining	space	using	Next-
Fit-Decreasing-Height	

	



The algorithm


•  For	horizontal	(or	verWcal)	
container	j	:=	(wCj x hCj), create 
knapsack of size hCj (or wCj). 

• For rectangle Ri, degine size 

w.r.t. knapsack j:

    = hi if it gits in the container.�
    = ∞ otherwise.
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•  Find	sizes	and	posiWons	of	
containers	in	the	container-
based	packing	of	all	rectangles	
in	LUTUVUH	in	strip	height	≤ 
(4/3+ε)OPT		.	
• Pack	non-small	rectangles	using	
dynamic	program	for	MulWple	
knapsack.	
• Pack	small	rectangles	greedily	in	
the	remaining	space	using	Next-
Fit-Decreasing-Height	

	

hCj	
∞ 	

hi	



The algorithm
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•  Find	sizes	and	posiWons	of	
containers	in	the	container-
based	packing	of	all	rectangles	
in	LUTUVUH	in	strip	height	≤ 
(4/3+ε)OPT		.	
• Pack	non-small	rectangles	using	
dynamic	program	for	MulWple	
knapsack.	
• Pack	small	rectangles	greedily	in	
the	remaining	space	using	Next-
Fit-Decreasing-Height	

	



The algorithm
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•  Find	sizes	and	posiWons	of	
containers	in	the	container-
based	packing	of	all	rectangles	
in	LUTUVUH	in	strip	height	≤ 
(4/3+ε)OPT		.	
• Pack	non-small	rectangles	using	
dynamic	program	for	MulWple	
knapsack.	
• Pack	small	rectangles	greedily	in	
the	remaining	space	using	Next-
Fit-Decreasing-Height	

	



With Rota6ons!
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• N-W	Algorithm	packed	horizontal	rectangles	
using	an	LP.		
Not	clear:		
1.	which	rectangles	are	packed	using	the	LP.		
2.	which	rectangles	are	small.	

	



With Rota6ons!
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•  For	container-based	
packing,	we	can	assign	
all	rectangles	using	
mulWple	knapsack.	
• Pack	small	rectangles	
greedily	in	the	
remaining	space	using	
Next-Fit-Decreasing-
Height	

	

•  For	horizontal	(or	verWcal)	container	j	:=	(wCj x hCj), create 
knapsack of size hCj (or wCj). 


•  For rectangle Ri, degine size w.r.t. horizontal knapsack j:�
  = min{hi , wi} ,  if it gits both rotated and nonrotated�
  = hi ,                    if it gits only rotated �
  = wi ,                   if it gits only nonrotated �
  = ∞ otherwise.


•  Extra knapsack (for small rectangles) of size �
= area not occupied by nonsmall rectangles in OPT. �
If a rectangle Ri is small w.r.t. current parameters as rotated or 
nonrotated, its size= area of Ri.




Open Problems


•  Tight	polynomial-Wme	approximaWon	for	strip	packing.	
• Bewer	Pseudo-polyWme	hardness/approximaWon	algorithm.	
		(Adamaszek	et	al.,	No	Pseudo-polyWme	approximaWon	scheme;	Arxiv	-	Oct’16)	

•  Extension	to	d-dimensional	strip	packing.	
	
• More	related	literature	and	open	problems:	
Approxima7on	and	Online	Algorithms	for	Mul7dimensional	Bin	
Packing:	A	Survey,	Christensen-K.-Pokuwa-Tetali.	
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Ques6ons!
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Addi6onal Slides
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Next Fit Decreasing Height(NFDH)
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•  Considered	items	in	a	non-increasing	order	of	height	and	
greedily	packs	items	into	shelves.		

•  Shelf	is	a	row	of	items	having	their	bases	on	a	line		that	is	either	
the	base	of	the	bin	or	the	line	drawn	at	the	top	of	the	highest	
item	packed	in	the	shelf	below.		

•  items	are	packed	les-jusWfied	starWng	from	bowom-les	corner	
of	the	bin,	unWl	the	next	item	does	not	fit.	Then	the	shelf	is	
closed	and	the	next	item	is	used	to	define	a	new	shelf	whose	
base	touches	the	tallest(les	most)	item	of	the	previous	shelf.		

•  If	the	shelf	does	not	fit	into	the	bin,	the	bin	is	closed	and	a	new	
bin	is	opened.	The	procedure	conWnues	Wll	all	the	items	are	
packed.	

•  If	we	pack	small	rectangles	(𝑤,ℎ≤𝛿)	using	NFDH	into	B,	total	𝑤.ℎ −(𝑤+ℎ).𝛿 area	can	be	packed.	



		

Guillo6ne Bin Packing

GuilloWne	Cut:	Edge	to	Edge	cut	across	a	bin	
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Guillo6ne Bin Packing

GuilloWne	Cut:	Edge	to	Edge	cut	across	a	bin	
	
	
	
	
	
	
	
k-stage	GuilloWne	Packing		[Gilmore,	Gomory]	

k	recursive	levels	of	guilloWne	cuts	to	recover	all	items.	

2 3 

1 5 

3 

6 

1 

2 

4 

2-stage 4-stage 
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Non-guillo6ne Packing


	
	

1 

2 
3 

4 
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s			
	

a 

b 
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Shelf Packing

Given	a	rectangular	region	of	size		a	x	b	
Goal:	Pack	squares	of	length	≤	s			
Algorithm:		Decreasing	size	shelf	packing.	

1 3 

a 

b 

2 

Take squares in decreasing size 
 
•  Place sequentially 
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	≤	s			
Algorithm:		Decreasing	size	shelf	packing.	

1 3 

a 

b 

2 

Take squares in decreasing size 
 
•  Place sequentially 
•  If next does not fit, 
  open a new shelf 
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s			
Algorithm:		Decreasing	size	shelf	packing.	

1 3 

4 8 a 

b 

Take squares in decreasing size 
 
•  Place sequentially 
•  If next does not fit, 
  open a new shelf  
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

1 3 

4 8 

9 16 

a 

b 

Take squares in decreasing size 
 
•  Place sequentially 
•  If next does not fit, 
  open a new shelf  
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b) 
 

1 3 

4 8 

9 16 

a 

b 
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Shelf Packing

Given	a	rectangular	region	of	size		a	x	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b) 
 
Right side: At most s £ a 

1 3 

4 8 

9 16 

a 

b 
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b) 
 
Right side: At most s £ a 
Top · s16 b 
 

1 3 

4 8 

9 16 

a 

b 
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b) 
 
Right side: At most s £ a 
Top · s16 b 
 
Shelf 1:  (s1 –s3) b 

1 3 

4 8 

9 16 

a 

b 
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b) 
 
Right side: At most s £ a 
Top · s16 b 
 
Shelf 1:  (s1 –s3) b 
Shelf 2: (s4 – s8) b  
… 1 3 

4 8 

9 16 

a 

b 
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Shelf Packing

Given	a	rectangular	region	of	size		a	£	b	
Goal:	Pack	squares	of	length	·	s	
Algorithm:		Decreasing	size	shelf	packing.	

Wasted Space · s(a+b) 
 
Right side: At most s £ a 
Top · s16 b 
 
Shelf 1:  (s1 –s3) b 
Shelf 2: (s4 – s8) b  
…. 
Adding all, at most (s1-s16) b 

1 3 

4 8 

9 16 

a 

b 
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