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Clos Networks

e Clos[1953]: Interconnection networks with small number of links to
route simultaneous connection requests such as telephone calls.

e 1990s: Ethernet connectivity.

* 2010s: modern data center networking =I=1=0=
architectures to achieve high performance e N S Bl K%
and resiliency. [Liu et al. NSDI’13, | III

Akella et al. ICDCN’15, Jyothi et al. SOSR’15,

Valadarsky et al. Hotnets’15 etc.] 7
. « G 6 @ & @ @ @ &
* Used in layer-2 data center protocol
Transparent Interconnect of Lots of Links (TRILL).

FabricPath (Cisco), QFabricSystem (Juniper), VCS Fabric (Brocade).
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Practical Motivation: Clos Networks

* Clos networks —
design of interconnection networks with
small number of links to route simultaneous
connection requests such as telephone calls.
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Practical Motivation: Clos Networks

* Clos networks —
design of interconnection networks with
small number of links to route simultaneous
connection requests such as telephone calls.

=
—

* Rearrangeably nonblocking in the multirate
setting: multiple paths for the call to be
switched through the network so that calls
will always be connected and not "blocked"
by another call.

e Minimize number of crossbars in the middle
stage.
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Weighted Bipartite Edge Coloring

* Given: An edge-weighted bipartite
multi-graph G: = (V, E)with
edge-weights w: E — [0,1].

* Goal: Find a proper weighted
coloring with minimum number of
colors.

* Proper weighted coloring:
Sum of the edges incident to any
vertex of any coloris < 1.
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For Theory CS People

Edge Coloring Meets Bin Packing




Bipartite Edge Coloring

* A special case of WBEC when all edge
weights are one.

* Chromatic Index y'(G): min # of

colors required for a proper edge
coloring.

e Konig’s Theorem:
For bipartite graphs y'(G) = A.
where A is maximum degree.
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Bin Packing Problem:

* Given :nitems with sizes sq, S, ...s,, s.t. s; € (0,1]
* Goal: Pack all items into min # of unit bins.

* Example: items {0.8, 0.6, 0.3, 0.2, 0.1} can be
packed in 2 unit bins: {0.8, 0.2} and {0.6, 0.3, 0.1}.

* NP Hardness from Partition
* Approx: OPT + log OPT [Hoberg-Rothvoss ‘15]
* Special case of WBEC: |V | = |V,| =1

(Edges = items, colors = bins).

* Many other generalizations: See my thesis!
Geometric Bin Packing [Bansal-K. ,SODA’14],
Vector Packing [Bansal-Elias-K. ,SODA’16] etc.




Weighted Bipartite Edge Coloring: Previous Works

* Conjecture 1. [Chung & Ross1991]
There is a proper weighted coloring with 2m -1 colors where

m = gngg{mm # bins to pack w,s | e € §(v)}.
v

Lower bound: _ ,’,,', -~
_=—"mx04

° NgO -Vu SODA’03:1.25m -

Upper bound: m/Z <1

* Duetal SIAM J. Comp. 98: 41m/16 = 2.562 m
e Correa-Goemans STOC 04: 2.548 m
* Feige-Singh ESA 08:9m /4 = 2.25m



This talk:

 m = max{min# bins to pack w;s | e € §(v)}
{vev}

* Theorem 1: Polynomial time algorithm for proper edge coloring with ?m

colors.
* Purely combinatorial algorithm. (Coloring — Konig’s theorem)
* Intricate analysis using configuration linear program. (Bin Packing)

* Theorem 2: Polynomial time algorithm for proper edge coloring with

11 : 1
—m colors when all edge weights are > "



Algorithm:

* 1. Start with an empty set.
F < Q.
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in F in non-increasing order of
weight s.t. degp v < [tm|V v EV.
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Algorithm:

* 1. Include edges with weight > 1—10

in F in non-increasing order of
weight s.t. degrv < [tm|V v E V.

* 2. Decompose Fintor = | tm |
matchings and color them using r
colors [Konig’s Thorem].

* 3. Greedily add remaining edges in
non-increasing order of weight
maintaining that the weighted 1
degree of each color at each vertex
is at most one [First Fit].




Proof of correctness: t = 20/9 is enough!

* Assume there is an edge e: = (u, v)

with weight w, = a that can not be
added.

* Either u or v has degree = tm.
* Tight bin at v: weight > 1 — a.

* Assume deg(u) = tm and Sm bins are
tight on v.




Analysis: t> 20/9

* Edges incident at u or v can not be packed into m
bins.

* More involved analysis using two Bin Packing
Configuration LP and Dual LP.

* Number of bins = Opt soln of Configuration LP
Relaxation = Dual Optimum = Dual Feasible Solution
> m



Analysis: t>20/9 at vertex u

* There can be many item sizes. We discretize!

e Classify edges incident at u into three classes:

* LARGE: (1/2,1], MEDIUM: (1/3,1/2], SMALL: (1/4, 1/3].
 Tight Bins: Bins with weight > 1 — «.

* Lemma: All tight bins in our algorithm will have at most
one item from L U M.



Analysis: t> 20/9, at vertex u

e Possible Configurations of Tight Bins in ALGO:
(L) (L,S) (M,S)  (MS,S)  (S,S,9)

- —

e (L,M),(M,M),(M,M,S) does not appear in ALGO.

* Configurations in OPT packing are the following (or
subsets of the following) :

* (L,M), (L, S), (M,M,S), (M, S,S), (S, S, S).

* Using valid configurations in OPT we need to cover
all itemsin L, M, S.



Configuration LP

* Possible Configurations of Tight

Bins in ALGO: =
x4 bins: (L), e Z”E’
. . L S) =1
x2 a!ns. ( =17 I+ 1o+ 13+ +a5 = T
x3 bins: (M,S), _
X4 0iNS: (M,S,S), - Y1ty = 11+ a2+ 7
xg bins: (S,S,S).
. - Y1 +2ys +ys = a3+ g+ 2
* Say, in OPT solution, there are
V1 0INS: (L,M), Yo + ys + 2yy + 3ys > a9+ 13 + 204 + 315 + 23
Yy, bins: (L,S), o -
y3 bins: (M,M,S), Atantas 2 0
v4 bins: (M,S,S),
ys bins: (S,S,S).
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Analysis:

* For side v, more intricate analysis as there can be edges < « |

. 2t
* Dual optima foru : D, > Tm—ﬂg—m

. 9
* Dual optima for v: D, > f—;n

*Ift > 20/9 then either D, or D, is > m.
* Giving us the desired contradiction.



Open Questions!

1. Resolving Chung-Ross conjecture.
* Improve existential upper bound (20/9) or lower bound (5/4).

2. Better Approximation.

3. Online setting:
* Present upper bound 5n (Correa-Goemans),
* Lower bound 3n — 2 (Tsai, Wang, Hwang).



Questions!
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Extra Slides

* Online Setting, General Graphs, Knapsack version.

* Profit is arbitrary and total weight/bins is n and we aim to get 1/2n of
the total profit.



Configuration LP

» C:setof configurations(possible way of feasibly packing a bin).

e

min { > xc: ) xc=21(i€l),xc=0(CeC)}
5 ZCZC C

N
Primal:

C3i )

>

Objective: min # configurations(bins)
Constraint:
For each item, at least one configuration

containing the item should be selected.

< 4
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Configuration LP

» C:setof configurations(possible way of feasibly packing a bin).

e

AV

Primal:

min {ZxC:ZxC >1(ie€el),xc=0(CeC)}
C

C3i

N

)

Gilmore Gomory LP for multiple identical items:
Min {1Tx: Ax > b, x;= 0(C € C)}
Columns: Feasible configurations

Rows: ltems (or types of items)

<

>
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0.75

A

0.66

0.33

AAAA

BBB
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BAA




Configuration LP

Z U 0 0 I T U 0 U I
020010 I 100
00 3 00 1 011
0 00 3 0 0O 1 1 1
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Configuration LP

Gilmore Gomory LP:
Min {1Tx: Ax = b, x> 0(C € C)}

1 g*_ ________________
0. 44 0.26 imput
-
min 17 »
o 2 O o 1 o o 1 1 o o 1 _’ -~ 1
O 03 00101011 1]*" = 1
r > 0
1/2x 1/2x
_’_
12/16/201 - Rothvoss ‘13
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Proof of correctness: t = 20/9 is enough!

* Assume there is an edge e: = (u, v) with
weight w, = « that can not be added.

*/Step 1: Include edges in F in non-dec order of
weight s.t. degr v < [tm|V v E V.

* As e was not added in step 1, one of its
endpoints have degree [tm].

-[Step 3: Greedily add remaining edges into }

maintaining that the weighted degree of each
color at each vertex is at most one.

» As e was not added in step 4, V color class C ;'ght b'nczlweéggt: tl - “('j
either weight,(u) > 1 —aor ssume deg(u) = tman
weight.(v) > 1 — a. fm bins are tight on v.




Proof of correctness: t = 20/9 is enough!

ca < 1/3
* Each bin can contain at most two edges with
weight >1/3.

* As all edges incident to a vertex can be packed
into m bins, there can be at most 2m edges
incident to a vertex with weight > 1/3.

e Aswechoset > 2,a<1/3.

*m>fm(1l —a) [From v]
=1 >p(1 —a) Tight bin: weight > 1 — a.

em > (tm— fm)(1 — a)+ Sma [From u] Assume deg(u) = tm and

bins are tight on v.
>1>t(l—a)+BRa —1 pm %
( )+ 5( ) Each bin at u has weight > «




Analysis: t> 20/9

e Case A: a <

*t(1 —a )+ B(2a —1) =2 1 - Contradiction!

1

g.

* Edges incident at u or v can not be packed into m bins.

ol B

°CaseB:i<aS

* More involved analysis using Bin Packing Configuration LP and
Dual LP.

* Number of bins = Opt soln of Configuration LP Relaxation >
Dual Optimum = Dual Feasible Solution > m



. 1 1
Analysis: t> 20/9 and Z < Hu < 5, atvertexu

* Classify edges incident at u into three classes:
* LARGE: (1/2,1], MEDIUM: (1/3,1/2], SMALL: (1/4, 1/3].

* Observation: Each configuration (feasible way of
packing a bin) will have < 1 items from L, < 2 items
from L UM and < 3 itemsfromL U M U S.

* Tight Bins: Bins with weight > 1 — «.
* Open Bins: Bins with weight € (0,1 — «]

* Lemma: All tight bins in our algorithm will have at most
one item from L U M.
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Analysis: t> 20/9 and Z < Hu < 5, at vertex u

* Possible Configurations of Tight Bins in ALGO:
(L) (L,S) (M,S)  (M,S,S)  (S,5,9)

- —

e (L,M),(M,M),(M,M,S) does not appear in ALGO.

* Configurations in OPT packing are the following (or
subsets of the following) :

* (L,M), (L, S), (M,M,S), (M, S,S), (S, S, S).




. 1 1
Analysis: t> 20/9 and - < Hu < -, at vertex u

* Possible Configurations of Tight Bins in ALGO:
x1 bins: (L), x5 bins: (L,S), x5 bins: (M,S), x, bins: (M,S,S), x¢ bins: (S,S,S).

* Let z4, z,, z3 be the number of items of type L, M, S in open bins.
* X1 +x, + x5 + x4 + x5 = Number of tight bins =t = (tm — fm).
* Using valid configurations in OPT we need to cover all items in L, M, S.

* Say, in OPT solution, there are y; bins: (L,M), y, bins: (L,S), y3 bins: (M, M,S),
V4 bins: (M,S,S), v bins: (S,S,S).

* Number of items in L,M,S comes as a function of x; ‘s.
*e.g., ForLitems:y; +y, =2 x4 +x, + 2
* This gives us the following LP.



Configuration LP

* Possible Configurations of Tight
Bins in ALGO: x4 bins: (L), x, bins:
(L,S), x5 bins: (M,S), x, bins:
(M,S,S), xc bins: (S,S,S).

* Let z4, z,, Zz3 be the number of

items of type L, M, S in open colors.

* Say, in OPT solution, there are y,
bins: (L,M), vy, bins: (L,S), y3 bins:
(M,M,S), y, bins: (M,S,S), ys bins:
(S,S,S).

man E Ui

1=1

Ty +To+T3+ Ty +T5 =2

Y1 + Yo
Y1 + 2y3 + y4
Yo + ys + 2y4 + 3ys

Z1 T+ Z9 T+ 23

—

/

Y o el O W bt |
Ty T Ty T 29

> xg+ w3+ 2wy + 3w5 + 23

0
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Configuration LP

» C. set of configurations in OPT
o T: types of items (L,M, S ).
Primal:

Dual:

40



Analysis:

* For side v, more intricate analysis as there can be edges < « |

. 2t
* Dual optima foru : D, > Tm—ﬂg—m

. 9
* Dual optima for v: D, > f—;n

*Ift > 20/9 then either D, or D, is > m.
* Giving us the desired contradiction.



