next up previous contents
Next: Charakteristisches Polynom Up: Rekursionsgleichungen Previous: Rekursionsgleichungen

Multiplikatoren

$\text{f}_1=1; \text{ f}_n=2\text{f}_{n-1} + n,\ n \geq 2$;

\begin{displaymath}
\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\:
 \left.
 \parbox{10em}{...
 ...text{f}_1 + \sum\limits_{i=0}^{n-2}2^i(n-i) = 2^{n+1} - n - 2
 \end{displaymath}

Addieren aller Gleichungen:

\begin{displaymath}
\text{f}_n=2^{n-1} + \sum_{i=0}^{n-2}2^i(n-i) = 
 \underbrac...
 ...-2}2^i}_{(2)} - 
 \underbrace{\sum_{i=0}^{n-2}i\cdot 2^i}_{(3)}\end{displaymath}

(2) (Geometrische Reihe): $n\sum\limits_{i=0}^{n-2}2^i = n (2^{n-1}-1)$
(3) (Substitution: n-2=k):

\begin{displaymath}
\begin{split}
\sum_{i=0}^{k}ix^i 
 &= \sum_{i=1}^{k}ix^i \te...
 ...t)\\  &= \frac{kx^{k+2}-x^{k+1}(k+1)+x}{(x-1)^2}\\  \end{split}\end{displaymath}

Einsetzen von k=n-2 und x=2:

\begin{displaymath}
\leadsto \sum_{i=0}^{n-2}i2^i = 2^n(n-2)-2^{n-1}(n-1)+2 = 2^nn-2^{n+1}-2^{n-1}n+2^{n-1}+2\end{displaymath}

(2)-(3):

\begin{displaymath}
\begin{split}
 n\sum_{i=0}^{n-2}2^i - \sum_{i=0}^{n-2}i2^i
 ...
 ...{n-1}n-2^{n-1}-2\\  &=2^{n-1}(2n-1)-2^n(n-2)-n-2\\  \end{split}\end{displaymath}

(1)+(2)-(3):

\begin{displaymath}
\begin{split}
 2^{n-1} + n\sum_{i=0}^{n-2}2^i + \sum_{i=0}^{...
 ...1} + 2^{n-1}(2n-1)-2^n(n-2)-n-2\\  &=2^{n+1}-n-2\\  \end{split}\end{displaymath}



Abbas-Bardia Kabiri-Jarghouyeh
3/3/1999