Einführung in die Informatik IV

Skript zu der gleichnamigen Vorlesung von Prof. Dr. Steger

erstellt von Steffen Manthey und Stephan Micklitz

Version: 2.04

24. Juli 2000

Inhaltsverzeichnis

l	Fori	male Sp	rachen und Automaten	1
	1.1	Choms	sky Hierarchie	1
		1.1.1	Chomsky Grammatik	1
		1.1.2	Chomsky Hierarchie	2
		1.1.3	Wortproblem	4
		1.1.4	Ableitungsbäume und -graphen	5
	1.2	Regula	äre Sprachen	6
		1.2.1	Deterministische endliche Automaten	6
		1.2.2	Nichtdeterministische endliche Automaten	7
		1.2.3	Reguläre Ausdrücke	10
		1.2.4	Pumping Lemma	13
		1.2.5	Abschlusseigenschaften	14
		1.2.6	Entscheidbarkeit	15
	1.3	Kontex	xtfreie Sprachen	16
		1.3.1	Normalformen	16
		1.3.2	Wortproblem, CYK-Algorithmus	18
		1.3.3	Abschlusseigenschaften	20
		1.3.4		21
		1.3.5	Kellerautomaten	23
		1.3.6		27
	1.4	Kontex	xtsensitive und Typ 0 Sprachen	28
		1.4.1	Turingmaschine	28
	1.5	Zusam		31
		1.5.1	Chomsky-Hierarchie	32
		1.5.2	Abschlusseigenschaften	32
		1.5.3	Wortproblem	32
		1.5.4	Entscheidbarkeit	32
	1.6	Compi	iler	32
		1.6.1	Lexikalische Analyse: Scanner	33
		1.6.2	Syntaktische Analyse: Parser	34
2				37
	2.1			37
	2.2			38
	2.3			39
		2.3.1		39
		2.3.2		41
		2.3.3		42
		2.3.4		43
	2.4			44
		2.4.1		44
		2.4.2	μ -rekursive Funktionen	47

	2.5	Entsch	neidbarkeit, Halteproblem	47
		2.5.1	Charakteristische Funktionen	47
		2.5.2	Entscheidbare Sprachen	48
		2.5.3	Rekursiv aufzählbare Sprachen	49
		2.5.4	Halteproblem	50
3	Algo	rithme	n und Datenstrukturen	53
	3.1	Analys	se von Algorithmen	53
		3.1.1	Referenzmaschine	53
		3.1.2	Zeitkomplexität	54
		3.1.3	Worst Case Analyse	54
		3.1.4	Average Case Analyse	54
	3.2	Sortier	rverfahren	54
		3.2.1	Selection-Sort	55
		3.2.2	Insertion-Sort	55
		3.2.3	Merge-Sort	56
		3.2.4	Quick-Sort	56
		3.2.5	Heap-Sort	57
		3.2.6	Vergleichsbasierte Sortierverfahren	59
		3.2.7	Bucket-Sort	59
	3.3	Suchve	erfahren	59
		3.3.1	Suchbäume	60
		3.3.2	Binäre Suchbäume	60
		3.3.3	AVL-Bäume	62
		3.3.4	(a,b)-Bäume	65
		3.3.5	Hash-Verfahren	68
		3.3.6	Vorrangwarteschlangen	70
	3.4	Menge	endarstellungen – Union-Find Strukturen	75
	3.5	_	enalgorithmen	80
		3.5.1	Kürzeste Pfade	80
		3.5.2	Minimale Spannbäume	83
		3.5.3	Transitive Hülle	84
4	Kon	ıplexitä	itstheorie	85
	4.1	_	tionen	85
	4.2		ollständigkeit	86
T i	taratı	ırvarzai	ichnis	03

Kapitel 1

Formale Sprachen und Automaten

03.05.2000 Vorlesung 1

Sei Σ ein Alphabet (geordneter Zeichenvorrat). Eine formale Sprache ist eine (beliebige) Teilmenge von Σ^* . Unser Ziel ist es nun eine möglichst einfache bzw. kurze Beschreibung für eine formale Sprache zu finden.

Beispiel 1.1

```
<Subjekt> <Prädikat> <Objekt>
   <Satz>
<Subjekt>
                   <Artikel> <Attribut> <Substantiv>
 <Artikel>
                   der
 <Artikel>
 <Artikel>
                   die
 <Artikel>
                   das
<Attribut>
<Attribut>
                   <Adjektiv>
<Attribut>
                   <Adjektiv> <Attribut>
<Adjektiv>
                   klein
<Adjektiv>
                   groß
u.s.w.
```

Beispiel 1.2

```
\begin{split} L_1 &= \{ \text{ aa, aaaa, aaaaaaa, } ... \} = \{ \text{ (aa)}^n \mid n \in \mathbb{N} \} \\ L_2 &= \{ \text{ ab, abab, ababab, abababab, } ... \} = \{ \text{ (ab)}^n \mid n \in \mathbb{N} \} \\ L_3 &= \{ \text{ ab, aabb, aaabbb, aaaabbbb, } ... \} = \{ \text{ a}^n \text{b}^n \mid n \in \mathbb{N} \} \\ L_4 &= \{ \text{ a, b, aa, ab, bb, aaa, aab, } ... \} = \{ \text{ a}^n \text{b}^m \mid n, m \in \mathbb{N} \} \end{split}
```

1.1 Chomsky Hierarchie

1.1.1 Chomsky Grammatik

Definition 1.1 Eine Grammatik ist ein 4-Tupel $G = (V, \Sigma, P, S)$ das folgende Bedingungen erfüllt:

- V ist eine endliche Menge, die Menge der Variablen.

- Σ ist eine endliche Menge, das Terminalalphabet, wobei $V \cap \Sigma = \emptyset$.
- P ist die Menge der Produktionen oder Regeln. P ist eine endliche Teilmenge von $(V \cup \Sigma)^+ \times (V \cup \Sigma)^*$. (Schreibweise: $(u, v) \in P$ schreibt man meist als $u \to v$.)
- $S \in V$ ist die Startvariable.

Seien $u, v \in (V \cup \Sigma)^*$. Wir definieren die Relation $u \Rightarrow_G v$ (in Worten: u geht unter G unmittelbar in v über), falls u und v die folgende Form haben:

- u = xyz
- v = xy'z mit $x, z \in (V \cup \Sigma)^*$ und
- $y \rightarrow y'$ eine Regel in P ist.

Falls klar ist, welche Grammatik gemeint ist, so schreiben wir oft auch einfach kurz $u \Rightarrow v$ anstelle von $u \Rightarrow_G v$.

Beispiel 1.3

Gegeben sei die Sprache L_1 mit den Produktionen $S \to \mathsf{aa}$ und $S \to \mathsf{aa}S$. Dann ist a^{10} ein Wort dieser Sprache ($\mathsf{a}^{10} \in L_1$), denn:

$$S\Rightarrow \mathsf{aa}S\Rightarrow \mathsf{aaaaa}S\Rightarrow \mathsf{aaaaaaaa}S\Rightarrow \mathsf{aaaaaaaaa}S\Rightarrow \mathsf{aaaaaaaaaa}=\mathsf{a}^{10}$$

Definition 1.2 Die von G definierte (erzeugte, dargestellte) Sprache ist $L(G) := \{w \in \Sigma^* \mid S \Rightarrow_G^* w\}$ wobei \Rightarrow_G^* die reflexive und transitive Hülle von \Rightarrow_G ist.

Eine Folge von Worten $(w_0,w_1,...,w_n)$ mit $w_0=S,\,w_n\in\Sigma^*$ und $w_i\Rightarrow w_i+1$ für i=0,...,n heißt Ableitung von w_n

Beispiel 1.4

$$\begin{array}{ll} L_2: & S \rightarrow \mathsf{ab}, \, S \rightarrow \mathsf{ab}S \\ L_4: & S \rightarrow \varepsilon, \, S \rightarrow A, \, S \rightarrow B, \, S \rightarrow AB, \\ & A \rightarrow \mathsf{a}A, \, A \rightarrow \mathsf{a}, \\ & B \rightarrow \mathsf{b}B, \, B \rightarrow \mathsf{b}, \end{array}$$

1.1.2 Chomsky Hierarchie

Definition 1.3 *Jede Grammatik ist automatisch vom Typ 0. D.h., bei Grammatiken von Typ 0 gibt es keinerlei Einschränkungen an die Regeln in P.*

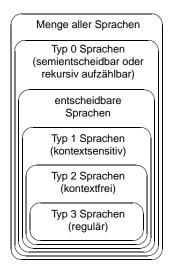
Eine Grammatik ist vom Typ 1 oder kontextsensitiv, falls für alle Regeln $u \to v$ in P gilt: $|u| \le |v|$.

Eine Grammatik ist vom Typ 2 oder kontextfrei, falls für alle Regeln $u \to v$ in P gilt: $u \in V$ (d.h., u ist eine einzelne Variable) und $|v| \ge 1$.

Eine Grammatik ist vom Typ 3 oder regulär, falls für alle Regeln $u \to v$ in P gilt: $u \in V$ (d.h., u ist eine einzelne Variable) und $w \in \Sigma \cup \Sigma V$ (d.h., v ist entweder ein einzelnes Terminalzeichen oder ein Terminalzeichen gefolgt von einer Variablen).

Definition 1.4 Eine Sprache $L \subseteq \Sigma^*$ heißt vom Typ $i, i \in \{0, 1, 2, 3\}$, falls es eine Grammatik vom Typ i gibt mit L(G) = L.

arepsilon-Sonderregelung: Wegen $|u| \leq |v|$ kann das leere Wort bei Typ 1,2,3 Grammatiken nicht erzeugt werden. Wir erlauben daher die folgende Sonderregelung: Ist $arepsilon \in L(G)$ erwünscht, so ist die Regel $S \to arepsilon$ zugelassen, falls die Startvariable S auf keiner rechten Seite einer Produktion vorkommt.



Lemma 1.1 Sei G eine Grammatik mit $u \in V \ \forall \ (u \to v) \in P$. Dann ist L(G) kontextfrei.

Beweis: Zu zeigen ist, dass eine Grammatik G' existiert mit L(G') = L(G) und gilt G' ist vom Chomsky-Typ 2. Wir erzeugen nun G' aus G wie folgt:

- 1. Eliminiere alle Produktionen der Art $u \to \varepsilon$. Angenommen es gilt $A \to \varepsilon$, dann streiche diese Produktion falls $A \neq S$ und füge für jede Produktion $X \to uAw$ zusätzlich eine Produktion $X \to uW$ ein.
- 2. Sorge dafür, dass S auf keiner rechten Seite vorkommt. Füge die Produktion $S \to T$ hinzu, und ersetze alle S in der rechten Seite durch T und füge dann für jede Produktion $S \to u, u \neq \varepsilon, u \in \Sigma \cup V$ eine Produktion $T \to u$ hinzu.

Lemma 1.2 Lemma 1.1 gilt analog auch für reguläre Sprachen:

Sei G eine Grammatik mit $u \in V \land v \in \Sigma \cup \Sigma V \ \forall \ (u \to v) \in P$. Dann ist L(G) regulär.

05.05.2000 Vorlesung 2

Beispiel 1.5

Im folgenden geben wir ein paar Beispiele für Grammatiken:

Typ 3:
$$L=\{a^n\mid n\in\mathbb{N}\}$$
, Grammatik: $S\to \mathbf{a}, S\to \mathbf{a}S$
Typ 2: $L=\{a^nb^n\mid n\in\mathbb{N}\}$, Grammatik: $S\to \mathbf{ab}, S\to \mathbf{a}S\mathbf{b}$
Typ 1: $L=\{a^nb^nc^n\mid n\in\mathbb{N}\}$, Grammatik: $S\to \mathbf{a}SXY, S\to \mathbf{a}XY, XY\to YX$,
$$\mathbf{a}X\to \mathbf{ab}, \mathbf{b}X\to \mathbf{bb}, \mathbf{b}Y\to \mathbf{bc}, \mathbf{c}Y\to \mathbf{cc}$$

Backus-Naur-Form: Die Backus-Naur-Form (BNF) ist ein Formalismus zur kompakten Darstellung von Typ 2 Grammatiken.

- Statt $A \to \beta_1, A \to \beta_2, \ldots, A \to \beta_n$ schreibt man $A \to \beta_1 |\beta_2| \ldots |\beta_n|$
- Statt $A \to \alpha \gamma$, $A \to \alpha \beta \gamma$ schreibt man $A \to \alpha [\beta] \gamma$. (D.h., das Wort β kann, muß aber nicht, zwischen α und γ eingefügt werden.)
- Statt $A \to \alpha \gamma$, $A \to \alpha B \gamma$, $B \to \beta$, $B \to \beta B$ schreibt man $A \to \alpha \{\beta\} \gamma$. (D.h., das Wort β kann beliebig oft (auch Null mal) zwischen α und γ eingefügt werden.)

1.1.3 Wortproblem

Beispiel 1.6

Arithmetische Ausdrücke:

```
<exp> = <term>
<exp> = <exp> + <term>
<term> = (<exp>)
<term> = <term> * <term>
<term> = a | b | ... | z
```

Die Aufgabe eines Compilers ist es, zu prüfen ob ein gegebener String einen gültigen arithmetischen Ausdruck darstellt und, falls ja, ihn in seine Bestandteile zu zerlegen. Abstrakt kann man diese Probleme wie folgt formulieren:

- 1. Wortproblem: Für eine gegebene Grammatik $G = (V, \Sigma, P, S)$ will man feststellen, ob für das Wort $w \in \Sigma^*$ gilt, dass $w \in L(G)$.
- 2. Ableitungsproblem: Für eine gegebene Grammatik $G=(V,\Sigma,P,S)$ und ein gegebenes Wort $w\in L(G)$ will man eine Ableitung von w konstruieren. D.h., Worte $w_0,w_1,...,w_n\in (\Sigma\cup V)^*$ mit $w_0=S,w_n=w$ und $w_0\Rightarrow w_1\Rightarrow...\Rightarrow w_n$.

Satz 1.1 Für kontextsensitive Sprachen ist das Wortproblem entscheidbar. Genauer: Es gibt einen Algorithmus, der bei Eingabe einer kontextsensitiven Grammatik G und eines Wortes w in endlicher Zeit entscheidet, ob $w \in L(G)$.

Beweisidee: Angenommen $w \in L(G)$. Dann gibt es $w_0, w_1, ..., w_n \in (\Sigma \cup V)^*$ mit $w_0 = S$ und $w_n = w$ und $w_0 \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n$.

Wichtig: Da G kontextsensitiv ist, gilt $|w_0| \le |w_1| \le ... \le |w_n|$. D.h., es genügt alle Worte in L(G) der Länge $\le n$ zu erzeugen.

Beweis: Definiere

$$T_m^n := \{w \in (\Sigma \cup V)^* \mid |w| \le n$$
 und w lässt sich aus S in höchstens m Schritten herleiten. $\}$

Diese Mengen kann man für alle n induktiv wie folgt berechnen:

$$\begin{array}{lcl} T_0^n &:= & \{S\} \\ T_{m+1}^n &:= & \{T_m^n \cup \left(w \in (\Sigma \cup V)^* \mid |w| \leq n \text{ und } w' \Rightarrow w \text{ für ein } w' \in T_m^n\} \end{array}$$

Für alle m gilt:

$$|T_m^n| \le \sum_{i=1}^n |\Sigma \cup V|^i$$

Es muss daher immer ein m_0 geben mit $T^n_{m_0} = T^n_{m_0+1} = \dots$

Algorithmus:

```
\begin{split} n &:= |w|; \\ T_0^n &:= \{S\}; \\ m &:= 0; \\ \text{repeat} \\ T_{m+1}^n &:= < \text{wie oben}>; \\ m &:= m+1; \\ \text{until } T_m^n &= T_{m-1}^n \text{ or } w \in T_m^n; \\ \text{if } w &\in T_m^n \text{ then return ("Ja") else return ("Nein")}. \end{split}
```

Beispiel 1.7

Gegeben sei eine Grammatik mit den Produktionen $S \to \mathsf{ab}$ und $S \to \mathsf{a}S\mathsf{b}$ sowie das Wort $w = \mathsf{abab}$.

$$\begin{split} T_0^4 &= \{~S~\}\\ T_1^4 &= \{~S,~\text{ab},~\text{a}S\text{b}~\}\\ T_2^4 &= \{~S,~\text{ab},~\text{a}S\text{b},~\text{aabb}~\}~\text{Die Ableitung aa}S\text{bb besitzt bereits Länge 5}.\\ T_3^4 &= \{~S,~\text{ab},~\text{a}S\text{b},~\text{aabb}~\} \end{split}$$

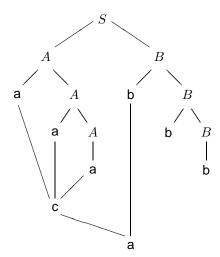
Wie unschwer zu erkennen ist lautet die Antwort darauf, ob sich w mit der gegebenen Grammatik erzeugen lässt "Nein".

Wichtig: Das vorgestellte Verfahren ist nicht effizient! Für kontextfreie Sprachen geht es wesentlich effizienter (mehr dazu später).

1.1.4 Ableitungsbäume und -graphen

Beispiel 1.8

Gegeben sei die folgende Grammatik: $S \to AB, A \to aA, A \to a, B \to bB, B \to b$, aaa \to c, cb \to a.



Die Terminale ohne Kante nach unten entsprechen, von links nach rechts gelesen, dem durch den Ableitungsgraphen dargestellten Wort. In obigem Beispiel gilt also $abb \to L(G)$. Der Ableitungsgraph entspricht der Ableitung:

```
S\Rightarrow AB\Rightarrow \mathsf{a}AB\Rightarrow \mathsf{a}A\mathsf{b}B\Rightarrow \mathsf{a}\mathsf{a}A\mathsf{b}B\Rightarrow \mathsf{a}\mathsf{a}A\mathsf{b}B\Rightarrow \mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}B\Rightarrow \mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b}B\Rightarrow \mathsf{a}\mathsf{a}\mathsf{a}\mathsf{b}\mathsf{b}B\Rightarrow \mathsf{a}\mathsf{b}\mathsf{b}
```

Bei kontextfreien Sprachen sind die Ableitungsgraphen immer Bäume. Diese werden dann auch als Ableitungsbäume bezeichnet.

Beispiel 1.9

Gegeben sei die folgende Grammatik: $S \to aB, S \to Ac, A \to ab, B \to bc$. Für das Wort abc gibt es zwei verschiedene Ableitungsbäume:

Definition 1.5 Eine Ableitung $S = w_0 \Rightarrow w_1 \Rightarrow ... \Rightarrow w_n$ eines Wortes w_n heißt Linksableitung, wenn für jede Anwendung einer Produktion $y \rightarrow y'$ auf Worte $w_i = xyz, w_{i+1} = xy'z$ gilt: Auf jedes echte Präfix von xy lässt sich keine Regel anwenden.

Eine Grammatik wird als *eindeutig* bezeichnet wenn es für jedes Wort $w \in L(G)$ genau eine eindeutige bestimmte Linksableitung gibt. Nicht eindeutige Grammatiken nennt man auch *mehrdeutig*.

1.2 Reguläre Sprachen

1.2.1 Deterministische endliche Automaten

Definition 1.6 Ein deterministischer endlicher Automat (englisch: deterministic finite automata, kurz DFA) wird durch ein 5-Tupel $M=(Z,\Sigma,\delta,z_0,E)$ beschrieben, das folgende Bedingungen erfüllt:

- Z ist eine endliche Menge von Zuständen.
- Σ ist eine endliche Menge, das Eingabealphabet, wobei $Z \cap \Sigma = \emptyset$.
- $z_0 \in Z$ ist der Startzustand.
- $E \subseteq Z$ ist die Menge der Endzustände.
- $\delta: Z \times \Sigma \to Z$ heißt Übergangsfunktion.

Die von M akzeptierte Sprache ist $L(M):=\{w\in \Sigma^* \mid \hat{\delta}(z_0,w)\in E\}$ wobei $\hat{\delta}:Z\times \Sigma^*\to Z$ induktiv definiert ist durch:

- $\hat{\delta}(z,\varepsilon) = z$
- $\hat{\delta}(z, \mathbf{a}x) = \hat{\delta}(\delta(z, \mathbf{a}), x)$

Endliche Automaten können durch (gerichtete und beschriftete) Zustandsgraphen veranschaulicht werden:

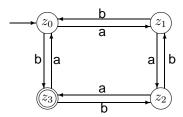
- Knoten $\hat{=}$ Zustände
- Kanten $\hat{=}$ Übergänge
- genauer: Kante (u, v), beschriftet mit $a \in \Sigma$, entspricht $\delta(u, a) = v$

Endzustände werden durch doppelte Kreise gekennzeichnet.

Beispiel 1.10

Sei $M=(Z,\Sigma,\delta;z_0,E)$ ein endlicher deterministischer Automat, wobei $Z=\{z_0,z_1,z_2,z_3\}$, $\Sigma=\{a,b\}$, $E=\{z_3\}$ und folgenden Zustandsübergängen:

$$\begin{array}{lll} \delta(z_0,a) = z_1 & & \delta(z_1,a) = z_2 & & \delta(z_2,a) = z_3 & & \delta(z_3,a) = z_0 \\ \delta(z_0,b) = z_3 & & \delta(z_1,b) = z_0 & & \delta(z_2,b) = z_1 & & \delta(z_3,b) = z_2 \end{array}$$



Satz 1.2 Sei M ein endlicher deterministischer Automat dann existiert eine reguläre Grammatik G mit L(G) = L(M).

Beweisidee: Sei $M=(Z,\Sigma,\delta,z_0,E)$ ein endlicher deterministischer Automat (DFA). Setze $G=(V,\Sigma,P,S)$ mit $V:=Z,S:=z_0,P:=\{z\to \mathsf{a}\delta(z,\mathsf{a})\mid z\in Z,\mathsf{a}\in\Sigma\}$, dann gilt L(G)=L(M).

Beispiel 1.11

Sei M der Automat aus dem Beispiel von oben und w= abaaa ein Wort der von M erzeugten Sprache L(M). Wir versuchen nun dieses Wort nach der obigen Beweisidee, durch eine Reihe von Produktionen herzuleiten.

$$S=z_0\Rightarrow \mathsf{a} z_1\Rightarrow \mathsf{a} \mathsf{b} z_0\Rightarrow \mathsf{a} \mathsf{b} \mathsf{a} z_1\Rightarrow \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{a} \mathsf{a} z_2\Rightarrow \mathsf{a} \mathsf{b} \mathsf{a} \mathsf{a} \mathsf{a} \mathsf{a} z_3$$

Zwar ist z_3 ein Endzustand, aber es ist offensichtlich, das weitere Produktionen notwendig sind (um das z_3 zu eliminieren). Diese Produktionen erhält man wie folgt:

$$\{z \to \mathbf{a} \mid z \in Z, \mathbf{a} \in \Sigma \land \delta(z, \mathbf{a}) \in E\}$$

Beweis: mit den eben aufgestellten Regeln gilt für $a_1, a_2, ..., a_n \in \Sigma^*$ $a_i \in \Sigma$:

$$\begin{array}{ll} a_1,a_2,...,a_n\in L(M)\\ \Leftrightarrow &\exists \quad z_0,z_1,...z_n\in Z \text{ mit } z_0 \text{ Startzustand}\\ &\forall \quad i=1,...,(n-1): \quad \delta(z_i,a_i)=z_{i+1} \quad z_n\in E\\ \Leftrightarrow &\exists \quad z_0,z_1,...z_n\in V \text{ mit } z_0 \text{ Startvariable}\\ &z_0\Rightarrow a_1z_1\Rightarrow a_1a_2z_2\Rightarrow ...\Rightarrow a_1...a_{n-1}z_{n-1}\Rightarrow a_1...a_{n-1}a_n\\ \Leftrightarrow &a_1,a_2,...,a_n\in L(G) \end{array}$$

1.2.2 Nichtdeterministische endliche Automaten

Definition 1.7 Ein nichtdeterministischer endlicher Automat (englisch: nondeterministic finite automata, kurz NFA) wird durch ein 5-Tupel $M=(Z,\Sigma,\delta,S,E)$ beschrieben, das folgende Bedingungen erfüllt:

- Z ist eine endliche Menge von Zuständen.
- Σ ist eine endliche Menge, das Eingabealphabet, wobei $Z \cap \Sigma = \emptyset$.
- $S \subseteq Z$ ist die Menge der Startzustände.
- $E \subseteq Z$ ist die Menge der Endzustände.
- $\delta: Z \times \Sigma \to \mathcal{P}(Z)$ heißt Übergangsfunktion.

Die von M akzeptierte Sprache ist $L(M):=\{w\in \Sigma^* \mid \hat{\delta}(S,w)\cap E\neq\emptyset\}$ wobei $\hat{\delta}:Z\times \Sigma^*\to Z$ induktiv definiert ist durch:

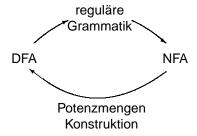
-
$$\hat{\delta}(Z', \varepsilon) = Z' \quad \forall Z' \subseteq Z$$

-
$$\hat{\delta}(Z',\mathbf{a}x) = \bigcup_{z \in Z'} \hat{\delta}(\delta(z,\mathbf{a}),x)$$

Satz 1.3 Sei G reguläre Grammatik, dann existiert ein endlicher nichtdeterministischer Automat M mit L(G) = L(M).

Beweisidee: Sei $G = (V, \Sigma, P, S)$ eine reguläre Grammatik. Setze $M = (Z, \Sigma, \delta, \hat{S}, E)$ mit $Z := V, \hat{S} := \{S\}$ und $z' \in \delta(z, \mathbf{a}) \Leftrightarrow z \to \mathbf{a}z'$.

10.05.2000 Vorlesung 3



Satz 1.4 Jede von nichtdeterministischen endlichen Automaten akzeptierte Sprache ist auch von deterministischen endlichen Automaten akzeptierbar.

Beweis: Sei $M = (Z, \Sigma, \delta, S, E)$ ein NFA.

Unsere Idee ist es nun einen DFA zu konstruieren bei dem jede mögliche Teilmenge von Z ein neuer Zustand ist. Für diesen DFA gilt:

-
$$M^* = (Z^*, \Sigma, \delta^*, z_0^*, E^*)$$

-
$$Z^* = \mathcal{P}(Z)$$
 (Potenzmenge von Z)

-
$$\delta^*(Z',a) = \bigcup_{z' \in Z'} \delta(z',a) = \hat{\delta}(Z',a)$$
 $Z' \subseteq Z$

$$-z_0^* = S$$

$$-E^* = \{Z' \subset Z \mid Z' \cap E \neq \emptyset\}$$

Beachte:

$$\begin{aligned} &a_1,...,a_n \in \Sigma^* & a_1,...,a_n \in L(M) \\ \Leftrightarrow & \exists \quad Z_1,....,Z_n \subseteq Z \\ & \delta(S,a_1) = Z_1, \quad \delta(S,a_2) = Z_2, \quad ... \quad , \delta(S,a_n) = Z_n \qquad Z_n \cap E \neq \emptyset \\ \Leftrightarrow & a_1,....,a_n \in L(M^*) \end{aligned}$$

Satz 1.5 *Ist* $M = (Z, \Sigma, \delta, z_0, E)$ *ein deterministischer endlicher Automat, so ist die durch*

$$P := \{z \to \mathbf{a}z' \mid \delta(z, \mathbf{a}) = z'\} \cup \{z \to \mathbf{a} \mid \delta(z, \mathbf{a}) \in E\}$$

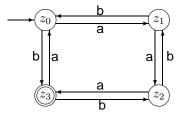
gegebene Grammatik $G = (Z, \Sigma, z_0, P)$ regulär.

Beispiel 1.12

Gegeben sei eine Grammatik mit den folgenden Produktionen:

-
$$z_0 \rightarrow \mathsf{a} z_1, \, z_0 \rightarrow \mathsf{b} z_3, \, z_0 \rightarrow \mathsf{b}, \, z_1 \rightarrow \mathsf{a} z_2, \, z_1 \rightarrow \mathsf{b} z_0,$$

-
$$z_2
ightarrow \mathsf{a} z_3,\, z_2
ightarrow \mathsf{b} z_1,\, z_2
ightarrow \mathsf{a},\, z_3
ightarrow \mathsf{a} z_0,\, z_3
ightarrow \mathsf{b} z_2$$



Satz 1.6 Ist $G=(V,\Sigma,S,P)$ eine reguläre Grammatik, so ist $M=(V\cup\{X\},\Sigma,\delta,S,E)$ ein nichtdeterministischer endlicher Automat, wobei

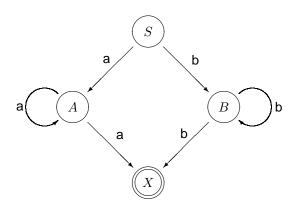
$$E \quad := \quad \left\{ \begin{array}{ll} \{S,X\}, & \text{falls } S \to \varepsilon \in P \\ \{X\}, & \text{sonst} \end{array} \right.$$

$$B \in \delta(A, a) \Leftrightarrow A \to aB$$
 und $X \in \delta(A, e) \Leftrightarrow A \to a$

Beispiel 1.13

Gegeben sei eine Grammatik mit den folgenden Produktionen:

-
$$S \rightarrow aA$$
, $S \rightarrow bB$, $A \rightarrow a$, $A \rightarrow aA$, $B \rightarrow b$, $B \rightarrow bB$



1.2.3 Reguläre Ausdrücke

Definition 1.8 Reguläre Ausdrücke sind definiert durch:

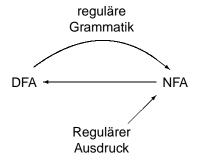
- ∅ ist ein regulärer Ausdruck.
- ε ist ein regulärer Ausdruck.
- Für jedes $a \in \Sigma$ ist a ein regulärer Ausdruck.
- Wenn α und β reguläre Ausdrücke sind, dann sind auch $\alpha\beta$, $(\alpha|\beta)$ und $(\alpha)^*$ reguläre Ausdrücke.

Zu einem regulären Ausdruck γ ist eine zugehörige Sprache $L(\gamma)$ induktiv definiert durch:

- Falls $\gamma = \emptyset$, so gilt $L(\gamma) = \emptyset$.
- Falls $\gamma = \varepsilon$, so gilt $L(\gamma) = \{\varepsilon\}$.
- Falls $\gamma = a$, so gilt $L(\gamma) = \{a\}$.
- Falls $\gamma = \alpha \beta$, so gilt $L(\gamma) = L(\alpha)L(\beta) = \{uv \mid u \in L(\alpha), v \in L(\beta)\}$
- Falls $\gamma = (\alpha | \beta)$, so gilt $L(\gamma) = L(\alpha) \cup L(\beta) = \{u \mid u \in L(\alpha) \lor u \in L(\beta)\}$
- Falls $\gamma = (\alpha)^*$, so gilt $L(\gamma) = L(\alpha)^* = \{u_1, ..., u_n \mid n \in \mathbb{N}, u_1, ..., u_n \in L(\alpha)\}$

Beispiel 1.14

- Alle Worte die gleich 0 sind oder mit 00 enden. { $0 \mid (0|1)*00$ }
- Alle Worte die 0110 enthalten. $\{(0|1)^*0110(0|1)^*\}$
- Alle 0-1 Werte, die die Binärdarstellung einer durch 3 teilbaren Zahl darstellen. Beispiel: 3 = 11, 6 = 110, 9 = 1001, ...



Satz 1.7 $L \subseteq \Sigma^*$ durch einen regulären Ausdruck beschreibbar $\Leftrightarrow L$ regulär.

Beweis: "⇒"-Richtung

Sei also $L = L(\gamma)$. Wir zeigen nun das ein NFA M existiert mit L = L(M).

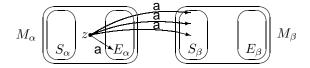
Induktionsanfang:

Gilt $\gamma=\emptyset,\ \gamma=\varepsilon$ oder $\gamma=\mathsf{a},\ \mathsf{so}$ folgt sofort ein NFA M mit L=L(M) existiert.

Induktionsschritt:

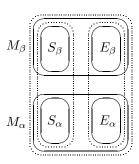
 $\gamma=\alpha\beta$: Nach Induktionsannahme existiert ein NFA M_{α} und ein NFA M_{β} mit $L(M_{\alpha})=L(\alpha)$ und $L(M_{\beta})=L(\beta)$.

Unsere Idee ist es nun die beiden Automaten "in Serie" zu Schalten. Für alle Zustände z von M_{α} und alle $\mathbf{a} \in \Sigma$.

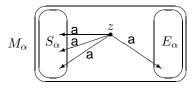


 $\gamma=(\alpha|\beta)$: Seien M_α und M_β definiert wie eben. Unsere Idee ist es nun einen neuen NFA M_γ als Vereinigung von M_α und M_β zu konstruieren. Dieser NFA ist wie folgt definiert:

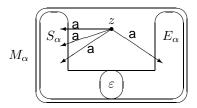
- $M_{\gamma} = (Z_{\gamma}, \Sigma, \delta_{\gamma}, S_{\gamma}, E_{\gamma})$
- $Z_{\gamma} = Z_{\beta} \cup Z_{\alpha}$
- $E_{\gamma} = E_{\beta} \cup E_{\alpha}$
- $-S_{\gamma} = S_{\beta} \cup S_{\alpha}$



 $\gamma=(\alpha)^*$: Auch für diesen Fall existiert ein NFA M_{α} . Für alle Zustände z von M_{α} und alle $\mathbf{a}\in\Sigma$.



Es ist zu beachten, dass $\varepsilon\in L((\alpha)^*)$. Dies bedeutet, dass die Konstruktion nicht funktioniert, falls $\varepsilon\not\in L(\alpha)$. Daher modifizieren wir nun zunächst M_α , so dass auch ε erkannt wird. Wir fügen dazu einen Extrazustand $x\in S_\alpha$ und $x\in E_\alpha$ und x hat keine (weitere) Kante.



Beweis: "⇐"-Richtung:

Sei $M=(Z,\Sigma,\delta,z_1,E)$ ein deterministischer endlicher Automat. Wir zeigen nun, dass es einen regulären Ausdruck γ gibt mit $L(M)=L(\gamma)$. Ohne Einschränkung sei $Z=\{z_1,...,z_n\}$. Wir setzen

 $R^k_{ij} := \{x \in \Sigma^* \mid \text{die Eingabe } x \text{ überführt den im Zustand } z_i \text{ gestarteten}$ Automaten in den Zustand z_j , wobei alle zwischendurch durch-laufenen Zustände einen Index kleiner gleich k haben $\}$

Behauptung: Für alle $j \in \{1, ..., n\}$ und alle $k \in \{1, ..., n\}$ gilt: Es gibt einen regulären Ausdruck α_{ij}^k mit $L(\alpha_{ij}^k) = R_{ij}^k$.

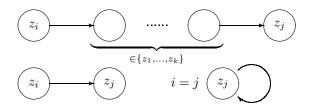
Der Beweis erfolgt nun durch Induktion über k:

Induktionsanfang:

k = 0: Hier gilt

$$R_{i,j}^{0} := \begin{cases} \{a|\delta(z_{i},a) = z_{j}\} & i \neq j \\ \{a|\delta(z_{i},a) = z_{j}\} \cup \{\varepsilon\} & i = j \end{cases}$$

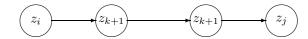
D.h., R_{ij}^0 ist endlich und läßt sich daher durch einen regulären Ausdruck α_{ij}^0 beschreiben.



Induktionsschritt:

 $k \Rightarrow k+1$: Hier gilt

$$\begin{array}{lcl} R_{ij}^{k+1} & = & R_{i(k+1)}^k (R_{(k+1)(k+1)}^k)^* R_{(k+1)j}^k \\ \alpha_{ij}^{k+1} & = & \alpha_{i(k+1)}^k (\alpha_{k+1,k+1}^k)^* \alpha_{(k+1)j}^k \end{array}$$



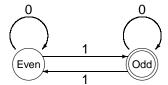
Somit gilt: $L(M)=(\alpha_{e_1}^n\mid\alpha_{e_2}^n\mid...\mid\alpha_{e_r}^n)$, wobei $e_1,...,e_r$ die Indizes der Endzustände seien.

Die Algorithmische Berechnung der Ausdrücke entspricht im Prinzip der Dynamischen Programmierung.

Beispiel 1.15

Sei \bar{L} die Menge aller Worte über $\{0,1\}$ die eine ungerade Anzahl von Einsen enthalten. Dazu ist folgender Deterministischer Endlicher Automat gegeben, der die Sprache lesen kann:

12.05.2000 Vorlesung 4



Im folgenden stehe z_1 für Even und z_2 für Odd. Wir bauen nun schrittweise die von dem Automaten erzeugte reguläre Sprache auf. Der Automat verfügt zunächst einmal über die folgenden Zustandsübergänge:

$$\begin{array}{lllll} R_{11}^0 & = & \{\varepsilon,0\} & & \alpha_{11}^0 & = & (\varepsilon \mid \mathbf{0}) \\ R_{12}^0 & = & \{\mathbf{1}\} & & \alpha_{12}^0 & = & \mathbf{1} \\ R_{21}^0 & = & \{\mathbf{1}\} & & \alpha_{21}^0 & = & \mathbf{1} \\ R_{22}^0 & = & \{\varepsilon,0\} & & \alpha_{22}^0 & = & (\varepsilon \mid \mathbf{0}) \end{array}$$

Mit dem im obigen Beweis verwendeten Algorithmus konstruieren wir daraus die regulären Ausdrücke, die die von dem Automaten akzeptierte reguläre Sprache beschreiben:

$$\begin{array}{rcl} R_{11}^1 & = & R_{11}^0 \cup R_{11}^0(R_{11}^0)^* R_{11}^0 \\ \alpha_{11}^1 & = & \alpha_{11}^0 \mid \alpha_{11}^0(\alpha_{11}^0)^* \alpha_{11}^0 \\ & = & (0)^* \\ \\ R_{12}^1 & = & R_{12}^0 \cup R_{11}^0(R_{11}^0)^* R_{12}^0 \\ \alpha_{12}^1 & = & \alpha_{12}^0 \mid \alpha_{11}^0(\alpha_{11}^0)^* \alpha_{12}^0 \\ & = & (0)^* 1 \\ \\ \alpha_{21}^1 & = & 1(0)^* \\ \alpha_{22}^1 & = & (1(0)^* 1 \mid \varepsilon \mid 0) \end{array}$$

Nun interessieren uns natürlich die regulären Ausdrücke γ . Für diese gilt $L(\gamma)=L(M)$. Wir zeigen nun das gilt $\gamma=\alpha_{12}^2$

$$\begin{array}{rcl} \alpha_{12}^2 & = & \alpha_{12}^1 \mid \alpha_{12}^1(\alpha_{22}^1)^*\alpha_{22}^1 \\ & = & \alpha_{12}^1 \mid \alpha_{12}^1(\alpha_{22}^1)^* \\ & = & ((0)^*1 \mid (0)^*1(1(0)^*1 \mid \varepsilon \mid 0)^*) \end{array}$$

1.2.4 Pumping Lemma

Beispiel 1.16

Betrachten wir die Sprache $L=\{{\bf a}^n{\bf b}^n\mid n\in\mathbb N\}$ hinsichtlich der Fragestellung ob diese Sprache regulär ist. Für diese Sprache lässt sich natürlich sofort die Grammatik: $S\to {\bf a} b, S\to {\bf a} S {\bf b}$ angeben. Diese Grammatik ist natürlich nicht regulär. Aber geht es auch anders ... ?

An dieser Stelle kommt das Pumping Lemma in's Spiel. Es ist ein mächtiges Hilfsmittel, um von einer Sprache zu zeigen, dass sie nicht regulär ist.

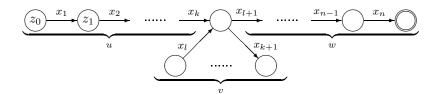
Satz 1.8 (Pumping Lemma, uvw-Theorem) Sei L eine reguläre Sprache. Dann gibt es ein $n \in \mathbb{N}$, so dass es für jedes Wort $x \in L$ mit $|x| \ge n$ eine Zerlegung x = uvw gibt, so dass

1.
$$|v| \ge 1$$
,

2.
$$|uv| \le n$$
,

3. für alle $i \in \mathbb{N}_0$ gilt: $uv^i w \in L$.

Beweis: Da L eine reguläre Sprache ist, existiert ein deterministischer endlicher Automat M mit L(M)=L. n (gemeint ist das n aus dem Pumping Lemma) ist die Anzahl der Zustände von M. Beim Abarbeiten eines Wortes x, $|x|\geq n$, durchläuft der Automat mindestens (n+1) Zustände. Damit gibt es mindestens einen Zustand der mindestens zwei Mal durchlaufen wird.



Es ist klar, dass alle Werte uv^iw vom Automaten erkannt werden, also $uv^iw \in L$.

Ein möglicher Sonderfall liegt mit $u=\varepsilon, w=\varepsilon$ und v=a vor. In diesem Fall besteht der Automat aus nur einem Knoten und die Schleife nur aus einer Kante.

Es gilt natürlich auch, dass $|uv| \leq n$ (der Automat verfügt ja nur über n Zustände, und demzufolge muss die erste Schleife nach spätestens n Zeichen abgeschlossen sein) und $|v| \geq 1$ (auch wenn die Schleife keinen Knoten enthält, so enthält sie zumindest eine Kante). \Box

Satz 1.9 Die Sprache $L = \{a^n b^n \mid n \in \mathbb{N}\}$ ist nicht regulär.

Beweis: Angenommen L wäre eine reguläre Sprache. Sei n die Zahl aus dem Pumping Lemma und betrachten wir das Wort: $x = \mathbf{a}^{3n}\mathbf{b}^{3n} \in L, |x| \geq n$. Damit gilt x = uvw und $|uv| \leq n$:

aaa		aaa bbb	••••	bbb
u	v	\overline{w}		

Damit gilt auch, dass u und v nur a's enthalten können. Das heißt, es existiert ein $j \in \mathbb{N}$, so dass $v = a^j$.

Wählen wir zum Beispiel das Wort uv^2w , es enthält 3n+ja's und 3nb's. Damit ist uv^2w kein Wort aus L, da es mehr a's als b's gibt. Dies steht im Wiederspruch zum Pumping Lemma.

1.2.5 Abschlusseigenschaften

Definition 1.9 *Man sagt, eine Menge* \mathcal{L} *von Sprachen ist abgeschlossen unter der Operation* \circ *falls gilt:* $L_1, L_2 \in \mathcal{L} \Rightarrow L_1 \circ L_2 \in \mathcal{L}$.

Satz 1.10 Die Menge der Regulären Sprachen ist abgeschlossen unter :

- Vereinigung
- Schnitt

- Komplement
- Produkt
- "Stern"

Beweis: Siehe Beweis zu Satz 1.7 auf Seite 10 und Übungsblatt 2.

1.2.6 Entscheidbarkeit

Beispiel 1.17

Wie wir bereits wissen ist das Wortproblem für reguläre Sprachen L entscheidbar. Wenn L durch einen deterministischen endlichen Automaten gegeben ist, ist dies sogar in linearer Laufzeit möglich. Allerdings gilt, dass bei der Überführung eines nichtdeterministischen endlichen Automaten in einen deterministischen endlichen Automaten die Komplexität exponentiell zunimmt.

17.05.2000 Vorlesung 5

Wortproblem: Ist ein Wort x in L(G)?

Das Wortproblem ist für alle Sprachen mit einem Chomsky-Typ größer 0 entscheidbar. Allerdings wächst die Laufzeit expotenziell zur Wortlänge n (Laufzeit := $O(|\Sigma|^n)$).

Leerheitsproblem: Ist $L(G) = \emptyset$?

Das Leerheitsproblem ist für Sprachen vom Chomsky-Typ 2 und 3 entscheidbar. Für andere Sprachtypen lassen sich Grammatiken konstruieren für die nicht mehr entscheidbar ist ob die Sprache leer ist.

Endlichkeitsproblem: Ist $|L(G)| < \infty$?

Das Endlichkeitsproblem ist für alle regulären Sprachen lösbar.

Korollar 1.1 Sei n die Pumping-Lemma-Zahl, die zur Sprache L gehört. Dann gilt: $L = \infty \Leftrightarrow \exists$ Wort $w \in L$ mit $n \leq |w| < 2n$

Beweis: Wir zeigen zunächst ⇐:

Aus dem Pumping-Lemma folgt, dass gilt: x=uvw für $|x|\geq n$ und $uv^iw\in L$ für alle $i\in\mathbb{N}_0$. Damit erzeuge man ∞ viele Wörter.

Nun wird \Rightarrow gezeigt:

Dass es ein Wort x mit $|x| \geq n$ gibt, ist klar (es gibt ja ∞ viele Wörter). über das Pumping-Lemma lässt sich ein solches Wort auf Länge < 2n reduzieren. \square

⇒ Damit kann dieses Problem auf das Wortproblem zurückgeführt werden.

Schnittproblem: Ist $L(G_1) \cap L(G_2) = \emptyset$?

Das Schnittproblem ist nur für Sprachen vom Chomsky-Typ 3 entscheidbar

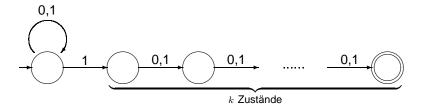
Äquivalenzproblem: Ist $L(G_1) = L(G_2)$?

Das Äquivalenzproblem läßt sich auch wie folgt Formulieren: $L_1 = L_2 \Leftrightarrow (L_1 \cap \overline{L_2}) \cup (L_2 \cap \overline{L_1}) = \emptyset$

Wichtig für eine effiziente Lösung der Probleme ist, wie die Sprache gegeben ist. Hierzu ein Beispiel:

Beispiel 1.18

 $L = \{w \in \{0; 1\}^* : k\text{-letztes Bit von } w \text{ ist gleich } 1\}$ Ein NFA für diese Sprache ist gegeben durch:



Insgesamt hat der NFA k+1 Zustände. Man kann nun diesen NFA in einen deterministischen Automaten umwandeln und stellt fest, dass der entsprechende DFA $O(2^k)$ Zustände hat.

Da die Komplexizität eines Algorithmus von der Größe der Eingabe abhängt, ist dieser Unterschied in der Eingabegröße natürlich wesentlich, denn es gilt: kleine Eingabe wie beim NFA \rightarrow "wenig Zeit" für einen effizienten Algorithmus, große Eingabe wie beim DFA \rightarrow "mehr Zeit" für einen effizienten Algorithmus.

1.3 Kontextfreie Sprachen

Geklammerte Sprachkonstrukte sind nicht regulär, denn schon die Sprache $L=\{\mathbf{a}^n\mathbf{b}^n\mid n\in\mathbb{N}\}$ ist nicht regulär. Der Beweis erfolgt durch Anwendung des Pumping-Lemmas. Im folgendem sind ein paar Beispiele für kontextfreie Sprachen angegeben:

Beispiel 1.19

- Arithmetische Ausdrücke:

$$E \rightarrow T|E+T$$

$$T \rightarrow F|T*F$$

$$F \rightarrow a|(E)$$

- Klammerpaare in Programmiersprachen:

Definition 1.10 Eine Grammatik ist vom Chomsky-Typ 2 oder kontextfrei, wenn für alle Regeln $w_1 \to w_2$ gilt, dass w_1 eine einzelne Variable ist.

Beispiel 1.20

Die Sprache $L=\{\mathbf{a}^n\mathbf{b}^n\mid n\in\mathbb{N}\}$ ist demzufolge kontextfrei, da sie sich durch die Grammatik $S\to \mathbf{ab}|\mathbf{a}S\mathbf{b}$ erzeugt wird.

Die Menge der regulären Sprachen ist also eine echte Untermenge der Menge der kontextfreien Sprachen.

1.3.1 Normalformen

An eine Normalform einer Grammatik stellen wir die folgenden Anforderungen:

- Wir wollen eine möglichst einfache Form für die erlaubten Regeln.
- Jede Kontextfreie Sprache soll mit einer Grammatik dieser Form beschrieben werden können.

Der erste Schritt hin zur Normalform besteht darin, an die Grammatik aus der wir die Normalform erzeugen wollen gewisse Anforderungen zu stellen.

- Die Grammatik ist ε -frei.
- Die Grammatik enthält keine Regeln der Form $A \to B$, wobei A und B Variablen sind.

Definition 1.11

- Eine Grammtik heißt ϵ -frei, falls es keine Regel der Form $A \to \varepsilon$ gibt.
- Zu jeder Grammatik G gibt es eine äuqivalente Grammatik G', die ε -frei ist. Äquivalent bedeutet: L(G) = L(G')

Um eine Grammatik G in eine äquivalente, ϵ -freie Grammatik umzuwandeln, verwende man folgendes Vorgehen:

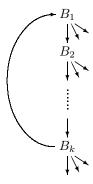
1. Teile die Menge der Variablen von G in zwei disjunkte Teilmengen V_1 und V_2 , so dass

$$A \in V_1$$
 genau dann wenn $A \Rightarrow^* \epsilon$

- 2. Lösche alle Produktionen der Form $A \rightarrow \epsilon$.
- 3. Füge für jede Regel $B \to xAy$ mit $A \in V_1$ eine Regel $B \to xy$ ein.

Zur Elimination der Regel der Form $A \to B$, wobei $A, B \in V$ ist, gehe man folgendermaßen vor:

1. Betrachte Zyklen der Form $B_1 \to B_2, B_2 \to B_3, \dots, B_{k-1} \to B_k, B_k \to B_1$ und ersetze die Variablen B_i durch eine neue Variable B.



- 2. Ordne die Variablen $\{A_1, \ldots, A_l\}$, so dass $A_i \to A_j$ nur für i < j.
- 3. Eliminiere von hinten nach vorne (d.h. für $k=l-1,\ldots,1$) durch Ersetzen von $A_k\to A_{k'}$ k'>k durch $A_k\to x_1|\ldots|x_m$ wobei x_1,\ldots,x_m die Satzformen sind, die aus $A_{k'}$ entstehen können (d.h. $A_{k'}\to x_1|\ldots|x_m$).

Definition 1.12 Eine kontextfreie Grammatik G mit $\varepsilon \notin L(G)$ heißt Chomsky Normalform, falls alle Regeln eine der beiden Formen $A \to BC$ oder $A \to a$ haben, wobei A, B und C Variablen sind und a ein Terminalsymbol ist.

Definition 1.13 Eine kontextfreie Grammatik G mit $\varepsilon \notin L(G)$ heißt Greibach Normalform, falls alle Regeln die Form $A \to aB_1, B_2, \ldots, B_l$ haben, wobei A, B_1, B_2, \ldots, B_l Variablen sind und a ein Terminalsymbol ist.

Die Eigenschaften der Chomsky Normalform CNF

- Ableitungen bei Grammatiken in der CNF sind Binärbäume \Rightarrow ein Wort der Länge n kann in genau 2n-1 Schritten abgeleitet werden. Skizze mit n-1 Kanten und n Kanten = 2n-1 Kanten.

Existenz von Normalformen

Satz 1.11 Zu jeder kontextfreien Grammatik G mit $\varepsilon \notin L(G)$ gibt es eine Chomsky Normalform Grammatik G' mit L(G) = L(G').

Beweis: Existenz der CNF

Alle Regeln der Grammatik $G=(V,\Sigma,P,S)$ haben die Form $A\to a$ oder $A\to x$ mit $x\in (V\cup\Sigma)^*, |x|\geq 2.$

- Für jedes Terminalzeichen $a \in \Sigma$ führen wir eine neue Variable B_a ein mit der Regel: $B_a \to a$.
- In den Produktionen wird jedes Terminalsymbol a durch die entsprechende Variable Ba ersetzt.
- Regel der Form $A \to B_1B_2 \dots B_l$. Hier wird eine neue Regel der Form $C_2 \to B_2 \dots B_l$ eingeführt, dann eine Regel der Form $C_3 \to B_3 \dots B_l$ etc. bis nur noch Regeln der Form $X \to YZ$ vorhanden sind.

$$A \rightarrow B_1 \underbrace{B_2, \dots, B_l}_{C_1 \rightarrow B_2} \underbrace{B_3, \dots, B_l}_{C_2 \rightarrow B_3 \underbrace{B_4, \dots, B_l}_{C_3 \rightarrow \dots}}_{C_3 \rightarrow \dots}$$

1.3.2 Wortproblem, CYK-Algorithmus

20.05.2000 Vorlesung 6

Das Wortproblem für kontextfreie Grammatiken

Gegeben sei eine kontextfreie Grammatik G und ein Wort x mit $x \in \Sigma^*$. Um festzustellen ob $x \in L(G)$ ist, geht man wie folgt vor:

1. Schritt: Überführe G in eine äquivalente Grammatik G' in CNF (Chomsky-Normalform). Algorithmus dazu siehe Seite 18.

2. Schritt: Löse das Wortproblem für die Grammatik G' in CNF. Verwende hierzu den CYK-Algorithmus (benannt nach COCKE, YOUNGER, KASAMI).

Der CYK-Algorithmus basiert auf der Idee der Dynamischen Programmierung.

Sei $x=x_1x_2\ldots x_i\ldots x_j\ldots x_n$ mit $x_i\in \Sigma$. Berechne für alle i,j die Menge $T_{i,j}$ der Variablen, aus denen man das Teilwort $x_i\ldots x_j$ ableiten kann. Dann gilt (mit S als Startsymbol):

$$x \in L(G) \Leftrightarrow S \in T_{1,n}$$

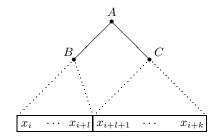
Die $T_{i,j}$ berechnet man induktiv über die Länge k des Teilwortes $x_i \dots x_j$:

Induktionsanfang: k = 1:

$$T_{i,i} = \{A \in V \mid A \to x_i\}$$

Induktionsschritt: $k \rightarrow k + 1$:

$$T_{i,k+i} = \{ A \in V \mid A \to BC, \exists 0 \le l < k \ B \in T_{i,i+l}, C \in T_{i+l+1,i+k} \}$$



Es existiert also eine Ableitung $A \to BC$, so das B den Anfang des Wortes erzeugt und C genau den Rest.

19

Beispiel 1.21

Gegeben sei die Grammatik G mit folgenden Produktionen:

$$S \to AB, A \to ab|aAb, B \to c|cB|$$

Man sieht leicht, dass G kontextfrei ist und für die von G erzeugte Sprache L(G) gilt:

$$L(G) = \{ \mathbf{a}^n \mathbf{b}^n \mathbf{c}^m \mid n, m \in \mathbb{N} \}$$

Die Umformung in CNF ergibt:

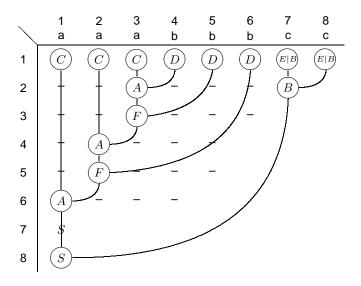
$$S \to AB, \ A \to CD|CF, \ B \to \mathbf{c}|EB, \ C \to \mathbf{a}, \ D \to \mathbf{b}, \ E \to \mathbf{c}, \ F \to AD$$

Möchte man nun überprüfen ob $x = aaabbbcc \in L(G)$, so geht man folgendermaßen vor:

- 1. Zur Lösung des Problems verwenden wir eine Tabelle mit Spaltenindex i und Zeilenindex k. An der Position k, i befindet sich am Ende des Verfahrens T_{ik} , also die Menge der Variablen aus denen sich das Teilwort $x_i \dots x_{i+k}$ erzeugen lässt. Existiert keine Variable aus der man das Teilwort ableiten kann, so ist diese Menge leer.
- 2. Weiterhin enthält die Tabelle im Tabellenkopf in der i. Spalte das Zeichen x_i des Wortes x.
- 3. In die erste Zeile der Tabelle werden nun in jedem Feld 1,i die Variablen X eingetragen, für die eine Produktion $X \to x_i$ existiert.
 - In unserem Beispiel existiert für die Terminalzeichen a und b jeweils nur eine Produktion, nämlich $C \to a$ bzw. $D \to b$. Für das Terminalzeichen c hingegen existieren zwei Produktionen, $E \to \mathbf{c}$ und $B \to \mathbf{c}$. Dementsprechend ergeben sich die Einträge in der ersten Zeile.
- 4. Für die weiteren Felder k, i der Tabelle sucht man nun nach Ableitungen $X \to YZ$, die das betrachtete Teilwort $x_i \dots x_{i+k}$ erzeugen. Und zwar so, dass Y den Anfang des Teilwortes erzeugt und Z genau den Rest. Es muss also ein l mit $0 \le l \le k$ existieren, so dass Y im Feld l, i und Z im Feld k-l, i+l steht.
 - In unserem Beispiel existieren für die ersten beiden Felder 2, 1 und 2, 2 keine passenden Produktionen (die Grammatik enthält keine Produktion der Art $X \to CC$). Erst für das Feld 2,3 existiert eine passende Produktion, nämlich $A \to CD$. Dementsprechend wird A im Feld 2, 3 gespeichert, ...

\	1 a	2 a	3 a	4 b	5 b	6 b	7 c	8 c
1	C	C	C	D	D	D	E B	E B
2	_	-	$\overset{A\to CD}{A}$	-	_	_	$\overset{B\to EB}{B}$	
3	_	-	$\overset{F\to AD}{F}$	-	_	-		
4	_	$\overset{A\to CF}{A}$	-	-	-			
5	_	$\overset{F\to AD}{F}$	-	-	-			
6	$\stackrel{A \to CF}{A}$	-	-	-				
7	$\stackrel{S \to AB}{S}$							
8	S							

- 5. Der Algorithmus ist beendet wenn man das Feld n, 1 n = |x| ereicht hat. Enthält dieses Feld das Startzeichen S, so ist das Wort x in der Sprache enthalten, sonst nicht.
- 6. Ist das Wort in der Sprache enthalten, lässt sich aus der Tabelle eine Ableitung (oder je nach Fall auch mehrere) konstruieren.



1.3.3 Abschlusseigenschaften

Satz 1.12 Die kontextfreien Sprachen sind abgeschlossen unter

- Vereinigung
- Produkt
- Sternbildung

aber sie sind nicht abgeschlossen unter

- Schnitt
- Komplement

Beweis:

"U": (Vereinigung) Seien $G_1=(V_1,\Sigma,P_1,S_1)$ und $G_2=(V_2,\Sigma,P_2,S_2)$ kontextfrei. Ohne Einschränkung gelte ebenso $V_1\cap V_2=\emptyset$. Sei nun

$$G = (V_1 \circ V_2 \cup \{S\}, \Sigma, P, S)$$
 mit

$$P = \{S \to S_1 \mid S_2\} \cup P_1 \cup P_2$$

Klar ist, dass $L(G) = L(G_1) \cup L(G_2)$ kontextfrei ist.

"·": (Produkt) Beweis wie oben, aber: $P = \{S \to S_1 S_2\} \cup P_1 \cup P_2$

"*": (Sternbildung) Der Beweis erfolgt wie oben, allerdings gilt hier: $P = \{S \to \epsilon, S \to S_1, S_1 \to S_1, S_1\} \cup P_2 \setminus \{S_1 \to \epsilon\}$. Dann ist $L(G) = (L(G))^*$

" \cap ": (Schnitt) Der Beweis erfolgt über ein Gegenbeispiel. Die Sprachen L_1 und L_2 mit:

$$\begin{array}{lcl} L_1 &=& \{a^nb^nc^m \mid n,m \in \mathbb{N}\} & \quad \text{und} \\ L_2 &=& \{a^mb^nc^n \mid n,m \in \mathbb{N}\} & \end{array}$$

sind beide kontextfrei (siehe hierzu Beispiel 1.21 auf Seite 19). Sei nun $L:=L_1\cap L_2$, dann gilt:

$$L = \{a^n b^n c^n \mid n \in \mathbb{N}\}$$

Die Sprache L ist aber nicht kontextfrei (siehe Abschnitt 1.22 auf Seite 22).

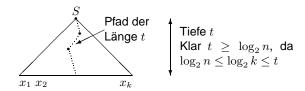
"\": (Komplement) Gegenbeispiel: de Morgan

1.3.4 Pumping Lemma für kontextfreie Grammatiken

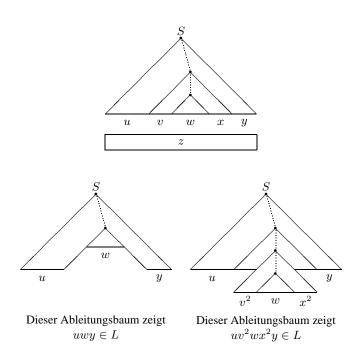
Satz 1.13 Sei L eine kontextfreie Sprache. Dann gibt es eine Zahl $n \in \mathbb{N}$, so dass sich alle Wörter $z \in L$ mit $|z| \ge n$ in z = uvwxy zerlegen lassen, wobei folgende Eigenschaften erfüllt sind:

- 1. $|vx| \ge 1$
- $2. |vwx| \leq n$
- 3. für alle $i \ge 0$ ist $uv^i wx^i y \in L$.

Beweis: Setze $n:=2^{\#\text{Variablen}+1}$. Ebenso sei o.E. G mit L(G) kontextfrei in CNF gegeben. Sei z ein beliebiges Wort aus L(G) mit $k=|z|\geq n$. Betrachte nun folgenden Ableitungsbaum:



Für den Pfad der Länge t gilt also: $t \ge \log_2 n = \text{\#Variablen} + 1$, d.h. der Pfad enthält mindestens eine Variable mindestens zweimal. Wähle $von\ unten$ die erste Variable A, die zumindest zweimal vorkommt.

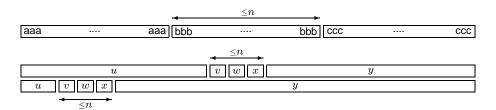


24.05.2000 Vorlesung 7 Die Bedingungen 1 und 2 sind hierbei ebenso erfüllt. Warum? \rightarrow ÜA.

Beispiel 1.22

Mit dem Pumping Lemma kann man nun zeigen, dass die Sprache $L=\{{\bf a}^m{\bf b}^m{\bf c}^m\mid m\geq 1\}$ nicht kontextfrei ist.

Beweis: Angenommen doch. Dann kann man das Pumping-Lemma anwenden: Sei n die Zahl aus dem Lemma. Betrachte nun das Wort $z={\tt a}^{3n}{\tt b}^{3n}{\tt c}^{3n}$.



Wegen $|vwx| \le n$ kann vwx nicht gleichzeitig a's und b's und c's enthalten. Daher enthält vx unterschiedlich viele a's und c's und das Wort uv^2wx^2y ist nicht in der Sprache L enthalten $(uv^2wx^2y \notin L)$. Dies steht im Widerspruch zur Aussage des Pumping Lemmas und damit kann L nicht kontextfrei sein.

Beispiel 1.23

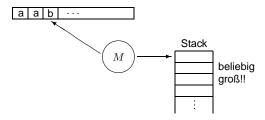
Weiterhin kann man mit dem Pumping Lemma zeigen:

- $L = \{1^p \mid p \text{ ist Primzahl }\}$ ist *nicht* kontextfrei.
- $L = \{1^n \mid n \text{ ist Quadratzahl }\}$ ist *nicht* kontextfrei.
- Jede kontextfreie Sprache über einem einelementigen Alphabet ist bereits regulär.

1.3.5 Kellerautomaten

Für reguläre Sprachen gilt, dass es zu jeder regulären Sprache einen endlichen Automaten gibt, der diese Sprache erkennt bzw. dass es zu jedem endlichen Automaten eine entsprechende reguläre Sprache gibt.

Für kontextfreie Sprache ergibt sich nun: $L=\{a^mb^m\mid m\in\mathbb{N}\}$ kann *nicht* durch einen endlichen Automaten erkannt werden, da dieser keinen Speicher besitzt, um sich die Anzahl der schon gelesenen a's zu merken. Deshalb erlauben wir jetzt einen Speicher in Form eines Kellers / Stacks.



Definition 1.14 Ein nichtdeterministischer Kellerautomat (englisch: pushdown automata, kurz PDA) wird durch ein 6-Tupel $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ beschrieben, das folgende Bedingungen erfüllt:

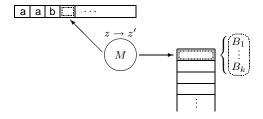
- Z ist eine endliche Menge von Zuständen.
- Σ ist eine endliche Menge, das Eingabealphabet.
- $-\Gamma$ ist eine endliche Menge, das Kelleralphabet.
- $\delta: Z \times (\Sigma \cup \{\varepsilon\}) \times \Gamma \rightarrow \langle endliche \ Teilmengen \ von \ Z \times \Gamma^* \rangle$, die Übergangsfunktion.
- $-z_0 \in Z$ ist der Startzustand.
- $-\ \#\in\Gamma$ ist das unterste Kellerzeichen.

Intuitiv bedeutet $\delta(z, a, A) \ni (z', B_1 \dots B_k)$:

Wenn sich M im Zustand z befindet und das oberste Zeichen des Kellers ein A ist, kann man durch Lesen des Eingabezeichens a in den Zustand z' übergehen, wobei das Zeichen A des Kellers durch $B_1 \dots B_k$ ersetzt wird.

Die folgenden Spezialfälle sind erlaubt:

- $a=\varepsilon$ d.h., Kellerinhalt wird verändert *ohne*, dass ein Eingabezeichen gelesen wird.
- k=0 d.h., das Zeichen A des Kellers wird "gePOPt".



Die von M akzeptierte Sprache L(M) ist die Menge der Worte, für die es eine Folge von Übergängen gibt, so daß der Keller nach Abarbeiten des Wortes leer ist.

Beispiel 1.24

Gegeben sei die Sprache L mit $L=\{{\bf a}^n{\bf b}^n\mid n\in\mathbb N\}$. Der Kellerautomat für L besitzt zwei Zustände:

- 1. z_0 interpretation: "Liest a-Teil"
- 2. z_1 interpretation: "Liest b-Teil"

Der Automat ergibt sich also zu: $M=(\{z_0,z_1\},\{\mathsf{a},\mathsf{b}\},\{\#,A\},\delta,z_0,\#)$ Für die Zustandsübergangsfunktion gilt:

$$\delta(z_0, \mathbf{a}, \#) \ni (z_0, A\#), (z_1, A\#)$$

 $\delta(z_0, \mathbf{a}, A) \ni (z_0, AA), (z_1, AA)$
 $\delta(z_1, \mathbf{b}, A) \ni (z_1, \varepsilon)$
 $\delta(z_1, \varepsilon, \#) \ni (z_1, \varepsilon)$

Gibt es nun auch die Möglichkeit, für kontextfreie Sprachen deterministische Kellerautomaten zu konstruieren? Ist dies dann auch für jede kontextfreie Sprache möglich? Hierzu folgendes Beispiel:

Beispiel 1.25

$$L_1 = \{x_1 x_2 \dots x_n \$ x_n \dots x_2 x_1 \mid n \in \mathbb{N}, x_i \in \Sigma \setminus \{\$\}\}$$

Diese Sprache kann (wegen des Trennzeichens \$) durch einen deterministischen Kellerautomaten erkannt werden.

$$L_2 = \{x_1 x_2 \dots x_n x_n \dots x_2 x_1 \mid n \in \mathbb{N}, x_i \in \Sigma\}$$

Die Sprache L_2 kann durch einen nichtdeterministischen Kellerautomaten erkannt werden, aber *nicht* durch einen deterministischen Kellerautomaten (die Trennstelle zwischen den beiden x_n muss vom Automaten "erraten" werden).

Definition 1.15 Für einen deterministischen Kellerautomaten muss (zusätzlich zu den Angaben in der Definition eines nichtdeterministischen Kellerautomaten) gelten:

- Er hat eine Menge $E \subseteq Z$ von Endzuständen.
- Es muss gelten:

$$\forall z \in Z, \ \forall a \in \Sigma, \ \forall A \in \Gamma : |\delta(z, a, A)| + |\delta(z, \varepsilon, A)| \le 1$$

- Ein Wort x wird genau dann vom Automaten akzeptiert, sich die Maschine in einem Endzustand befindet. Der Stack muss hierbei nicht leer sein!

Es ist klar, dass das Wortproblem von einem deterministischen Kellerautomaten in *linearer* Zeit gelöst werden kann.

Aber leider gibt es *nicht* zu jeder kontextfreien Sprache einen deterministischen Kellerautomaten (siehe hierzu Beispiel 1.25).

Satz 1.14 Ist $G = (V, \Sigma, P, S)$ eine kontextfreie Grammatik, so ist $M = (\{z\}, \Sigma, V \cup \Sigma, \delta, z, S)$ ein nichtdeterministischer Kellerautomat, wenn wir δ wie folgt definieren:

- Für jede Regel $A \to \alpha$ setzen wir $\delta(z, \epsilon, A) \ni (z, \alpha)$.

- Zusätzlich fügen wir für alle $a \in \Sigma$ noch $\delta(z, a, a) \ni (z, \varepsilon)$ ein. .

Beispiel 1.26

Gegeben sei die kontextfreie Grammatik G mit $S \to ab \mid aSb$. Dann erfolgt die Konstruktion des Kellerautomaten wie folgt:

- Der Kellerautomat verfügt nur über einn Zustand, der mit z bezeichnet wird.
- Das Kelleralphabet Γ ist definiert mit $\Gamma = \{S, a, b\}$.
- Das unterste Kellerzeichen ist S.
- Nun erfolgt die Definition der Übergangsfunktionen δ :
 - 1. Die Regel $S \rightarrow \mathsf{ab}$ führt zu:

$$\delta(z, \epsilon, S) \ni (z, \mathsf{ab}).$$

2. Die Regel $S \rightarrow \mathsf{a} S \mathsf{b}$ führt zu:

$$\delta(z, \epsilon, S) \ni (z, \mathsf{a}S\mathsf{b}).$$

3. Zusätzlich noch:

$$\delta(z, \mathbf{a}, \mathbf{a}) \ni (z, \varepsilon), \qquad \delta(z, \mathbf{b}, \mathbf{b}) \ni (z, \varepsilon).$$

Arbeitsweise bei Erkennung des Wortes aabb:

	ungelesene Zeichen	Kellerinhalt
	der Eingabe	
Startzustand:	aabb	S
Regel (2):	aabb	a S b
Regel (3):	abb	Sb
Regel (1):	abb	abb
Regel (3):	bb	bb
Regel (3):	b	b
Regel (3):	ε	ε

Satz 1.15 Ist $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ ein nichtdeterministischer Kellerautomat, so ist $G=(V,\Sigma,P,S)$ eine kontextfreie Grammatik, wenn wir V und P wie folgt definieren:

$$V := \{S\} \cup Z \times \Gamma \times Z$$

und

$$\begin{array}{ll} S & \rightarrow & [z_0,\#,z] & \text{ für alle } z \in Z \\ [z,A,z'] \rightarrow a & \text{ für alle Übergänge } \delta(z,a,A) \ni (z',\varepsilon) \\ [z,A,y] \rightarrow a[z',B,y] & \text{ für alle Übergänge } \delta(z,a,A) \ni (z',B) \text{ und alle } y \in Z \\ [z,A,y'] \rightarrow a[z',B,y][y,C,y'] & \text{ für alle Übergänge } \delta(z,a,A) \ni (z',BC) \text{ und alle } y,y' \in Z \end{array}$$

[Achtung: Hier nehmen wir ohne Einschränkung (Wieso?!) an, daß es keine Übergänge $\delta(z,a,A)\ni(z',B_1\ldots B_k)$ mit $k\geq 3$ gibt.]

Beispiel 1.27

Sei nun ein Kellerautomat gegeben durch:

$$\begin{array}{l} \delta(z_{0},\mathbf{a},\#)\ni(z_{0},A\#),\;(z_{1},A\#)\\ \delta(z_{0},\mathbf{a},A)\ni(z_{0},AA),\;(z_{1},AA)\\ \delta(z_{1},\mathbf{b},A)\ni(z_{1},\varepsilon),\\ \delta(z_{1},\varepsilon,\#)\ni(z_{1},\varepsilon) \end{array}$$

Wie unschwer zu erkennen, erzeugt dieser Automat die gleiche Sprache wie die Grammatik aus Beispiel 1.26 auf Seite 25. Nun konstruieren wir nach den Regeln aus Satz 1.15 aus dem Kellerautomaten eine Grammatik (bitte mit der aus dem anderen Beispiel vergleichen):

- Das neue Startsymbol: S
- Die Variablen: S und 8 Variablen der Form $[z_i, \#/A, z_j]$
- Die Produktionen für Startzustand:

$$S \rightarrow [z_0, \#, z_0] \mid [z_0, \#, z_1]$$

Die Produktionen für Übergang $\delta(z_1, b, A) \ni (z_1, \varepsilon)$:

$$[z_1, A, z_1] \rightarrow \mathsf{b}$$

Produktionen für Übergang $\delta(z_1, \varepsilon, \#) \ni (z_1, \varepsilon)$:

$$[z_1, \#, z_1] \to \varepsilon$$

Produktionen für Übergang $\delta(z_0, \mathbf{a}, \#) \ni (z_0, A\#)$:

$$\begin{array}{l} [z_0,\#,z_0] \rightarrow \mathbf{a}[z_0,A,z_0][z_0,\#,z_0] \\ [z_0,\#,z_1] \rightarrow \mathbf{a}[z_0,A,z_0][z_0,\#,z_1] \\ [z_0,\#,z_0] \rightarrow \mathbf{a}[z_0,A,z_1][z_1,\#,z_0] \\ [z_0,\#,z_1] \rightarrow \mathbf{a}[z_0,A,z_1][z_1,\#,z_1] \end{array}$$

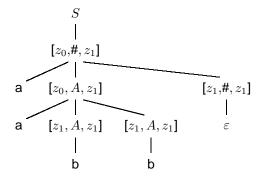
Produktionen für Übergang $\delta(z_0, \mathbf{a}, \#) \ni (z_1, A\#)$:

$$\begin{array}{l} [z_0,\#,z_0] \rightarrow \mathbf{a}[z_1,A,z_0][z_0,\#,z_0] \\ [z_0,\#,z_1] \rightarrow \mathbf{a}[z_1,A,z_0][z_0,\#,z_1] \\ [z_0,\#,z_0] \rightarrow \mathbf{a}[z_1,A,z_1][z_1,\#,z_0] \\ [z_0,\#,z_1] \rightarrow \mathbf{a}[z_1,A,z_1][z_1,\#,z_1] \end{array}$$

Analog für die beiden restlichen beiden Übergänge:

$$\begin{split} [z_0,A,z_0] &\rightarrow \mathbf{a}[z_1,A,z_0][z_0,A,z_0] \\ [z_0,A,z_1] &\rightarrow \mathbf{a}[z_0,A,z_0][z_0,A,z_1] \\ [z_0,A,z_0] &\rightarrow \mathbf{a}[z_0,A,z_1][z_1,A,z_0] \\ [z_0,A,z_1] &\rightarrow \mathbf{a}[z_0,A,z_1][z_1,A,z_1] \\ [z_0,A,z_0] &\rightarrow \mathbf{a}[z_0,A,z_0][z_0,A,z_0] \\ [z_0,A,z_1] &\rightarrow \mathbf{a}[z_1,A,z_0][z_0,A,z_1] \\ [z_0,A,z_0] &\rightarrow \mathbf{a}[z_1,A,z_1][z_1,A,z_0] \\ [z_0,A,z_1] &\rightarrow \mathbf{a}[z_1,A,z_1][z_1,A,z_1] \end{split}$$

Der Ableitungsbaum für aabb sieht damit wie folgt aus:



26.05.2000 Vorlesung 8 Auf Seite 24 haben wir in Definition 1.15 wie folgt einen deterministischen Kellerautomaten definiert:

Ein nichtdeterministischer Kellerautomat heißt deterministisch, falls gilt:

Für alle
$$z \in Z$$
, $a \in \Sigma$, $A \in \Gamma$ ist

$$|\delta(z, a, A)| + |\delta(z, \varepsilon, A)| \le 1.$$

Erläuterung: Dies bedeutet, dass der Automat zu jedem Zeitpunkt höchstens eine Alternative hat. Daher der Name *deterministisch*.

Um nun die von einem deterministischen Kellerautomaten M akzeptierte Sprache L(M) zu definieren, mussten wir $M=(Z,\Sigma,\Gamma,\delta,z_0,\#)$ noch um eine Menge $E\subseteq Z$ von Endzust den erweitern. L(M) besteht dann aus genau den Worten, für die es eine Folge von Übergängen gibt, so dar sich M nach Abarbeiten des Wortes in einem Endzustand befindet. Darauf aufbauend definieren wir nun:

Definition 1.16 Eine kontextfreie Grammatik G heisst deterministisch kontextfrei, falls es einen deterministischen Kellerautomaten M gibt mit L(G) = L(M).

1.3.6 LR(k)-Grammatiken

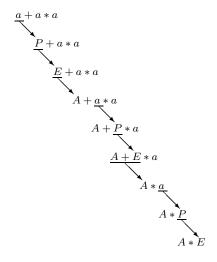
Die *Idee* ist hierbei: Wir wollen eine Grammatik, für die wir zu einem gegebenem Wort "schnell" eine Ableitung erzeugen können.

Beispiel 1.28

Eine Grammatik für Arithmetische Ausdrücke sei durch folgende Regeln gegeben:

$$S \rightarrow A \\ A \rightarrow E \\ A \rightarrow A + E \\ A \rightarrow A - E \\ E \rightarrow P \\ E \rightarrow E * P \\ E \rightarrow E/P \\ P \rightarrow (A) \\ P \rightarrow a$$

Hierbei tritt das *Problem* auf, dass man beim Reduzieren von links in Sackgassen laufen kann, wie in folgendem Ableitungsbaum deutlich wird:

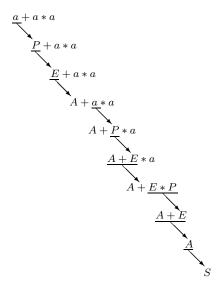


Zur Behebung führen wir "Lookaheads" (der Länge k) ein. Diese sind wie folgt zu interpretieren: Die Regel darf nur dann angewendet werden, wenn die nächsten k Zeichen mit den erlaubten Lookaheads übereinstimmen.

Beispiel 1.29Arithmetische Ausdrücke mit Lookaheads

Regeln	Lookaheads (der Länge 1)	
$S \to A$	ϵ	
$A \to E$	$+,-,),\epsilon$	
$A \rightarrow A + E$	$+,-,),\epsilon$	
$A \rightarrow A - E$	$+,-,),\epsilon$	
$E \to P$	beliebig	
$E \to E * P$	beliebig	
$E \to E/P$	beliebig	
$P \to (A)$	beliebig	
$P \rightarrow a$	beliebig	

Damit ergibt sich nun folgender Ableitungsbaum:



Dies führt auf folgende Definition einer LR(k)-Grammatik

Definition 1.17 Eine kontextfreie Grammatik ist eine LR(k)-Grammatik, wenn man durch Lookaheads der Länge k erreichen kann, dass bei einer Reduktion von links nach rechts in jedem Schritt genau eine Regel anwendbar ist.

Korollar 1.2 Jede kontextfreie Sprache für dies es eine LR(k)-Grammatik gibt, ist deterministisch kontextfrei.

1.4 Kontextsensitive und Typ 0 Sprachen

1.4.1 Turingmaschine

Definition 1.18 Eine nichtdeterministische Turingmaschine (kurz TM) wird durch ein 7-Tupel $M = (Z, \Sigma, \Gamma, \delta, z_0, \square, E)$ beschrieben, das folgende Bedingungen erfüllt:

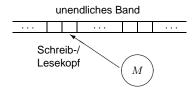
- Z ist eine endliche Menge von Zuständen.
- $-\Sigma$ ist eine endliche Menge, das Eingabealphabet.
- $-\Gamma$ ist eine endliche Menge, das Bandalphabet.
- $-\delta: Z \times \Gamma \to \mathcal{P}(Z \times \Gamma \times \{L, R, N\})$, die Übergangsfunktion.
- $-z_0 \in Z$ ist der Startzustand.
- $-\Box \in \Gamma \setminus \Sigma$, das Leerzeichen.
- $-E\subseteq Z$, die Menge der Endzustände.

Definition 1.19 Eine nichtdeterministische Turingmaschine ist genau dann deterministisch, falls gilt

$$|\delta(z,a)|=1$$
 für alle $z\in Z, a\in \Gamma.$

Erläuterung: Intuitiv bedeutet dabei $\delta(z,a)=(z',b,x)$ bzw. $\delta(z,a)\ni(z',b,x)$:

Wenn sich M im Zustand z befindet und unter dem Schreib-/Lesekopf das Zeichen a steht, so geht M im nächsten Schritt in den Zustand z' über, schreibt an die Stelle des a's das Zeichen b und bewegt danach den Schreib-/Lesekopf um eine Position nach rechts (falls x=R), links (falls x=L) oder läßt ihn unverändert (falls x=R).



Beispiel 1.30

Ziel ist die Angabe einer Turingmaschine, die einen gegeben String aus $\{0,1\}^*$ als Binärzahl interpretiert und zu dieser Zahl Eins addiert. Folgende Vorgehensweise bietet sich an:

- 1. Gehe ganz nach rechts (bis ans Ende der Zahl). Dieses Ende kann durch das erste Auftreten eines Leerzeichens gefunden werden.
- 2. Gehe wieder nach links bis zur ersten Null und mache aus dieser Null eine Eins. Mache dabei alle Einsen auf dem Weg zu einer Null.

Daraus ergibt sich folgende Beschreibung der Zustandübergänge:

1.
$$\delta(z_0, 0) = (z_0, 0, R)$$

 $\delta(z_0, 1) = (z_0, 1, R)$
 $\delta(z_0, \square) = (z_1, \square, L)$

2.
$$\delta(z_1, 1) = (z_1, 0, L)$$

 $\delta(z_1, 0) = (z_e, 1, N)$
 $\delta(z_0, \square) = (z_e, 1, N)$

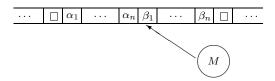
Benötigt wird also die Menge der Zustände $Z=\{z_0,z_1,z_e\}$, wobei sich die Menge der Endzustände zu $E\{z_e\}$ ergibt.

Definition 1.20 Eine Konfiguration einer Turingmaschine ist ein Tupel:

$$(\alpha, \beta, z) \in \Gamma^* \times \Gamma^+ \times Z$$

Interpretation: Das Wort $w=\alpha\beta$ entspricht der Belegung des Bandes, wobei dieses rechts und links von w mit dem Leerzeichen \square gefüllt sei. Der Schreib-/Lesekopf befindet sich auf dem ersten Zeichen von β .

Definition 1.21 Die Startkonfiguration der Turingmaschine bei Eingabe $x \in \Sigma^*$ entspricht der Konfiguration (ϵ, x, z_0) , d.h., auf dem Band befindet sich genau die Eingabe $x \in \Sigma^*$, der Schreib-/Lesekopf befindet sich auf dem ersten Zeichen der Eingabe und die Maschine startet im Zustand z_0 .



Je nach aktueller Bandkonfiguration und Richtung $x \in \{N, R, L\}$ ergeben sich folgende Konfigurationsübergänge auf dem Band für die Ausführung des Zustandsübergangs $\delta(z, \beta_1) = (z', c, x)$:

$$(\alpha_1 \dots \alpha_n, c \, \beta_2 \dots \beta_m, z') \qquad \text{falls } x = N, \\ n \geq 0, m \geq 1 \\ (\alpha_1 \dots \alpha_{n-1}, \alpha_n \, c \, \beta_2 \dots \beta_m, z') \qquad \text{falls } x = L, \\ n \geq 1, m \geq 1 \\ (\alpha_1 \dots \alpha_n \, c, \beta_2 \dots \beta_m, z') \qquad \text{falls } x = R, \\ n \geq 0, m \geq 2 \\ (\varepsilon, \Box \, c \, \beta_2 \dots \beta_m, z') \qquad \text{falls } x = L, \\ n = 0, m \geq 1 \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = L, \\ n = 0, m \geq 1 \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ n \geq 0, m = 1 \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ n \geq 0, m = 1 \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ n \geq 0, m = 1 \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{falls } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots \alpha_n \, c, \Box, z') \qquad \text{fall } x = R, \\ (\alpha_1 \dots$$

Die von einer Turingmaschine ${\cal M}$ akzeptierte Sprache kann folgendermaßen beschrieben werden:

$$L(M) := \{ x \in \Sigma^+ \mid (\varepsilon, x, z_0) \vdash^* (\alpha, \beta, z) \text{ mit } \alpha \in \Gamma^*, \beta \in \Gamma^*, z \in E \}$$

$$\hline \dots \quad \Box \quad x_1 \quad x_2 \quad \dots \quad x_n \quad \Box \quad \dots$$

Definition 1.22 Eine Turingmaschine heißt linear beschränkt (kurz: LBA), falls für alle $z \in Z$ gilt:

$$(z',a) \in \delta(z,\Box) \implies a = \Box.$$

D.h., ein Leerzeichen wird nie durch ein anderes Zeichen überschrieben. Mit anderen Worten: Die Turingmaschine darf ausschliesslich die Positionen beschreiben, an denen zu Beginn die Eingabe x stand.

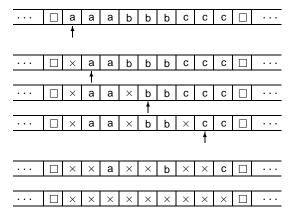
Satz 1.16 Die von linear beschränkten, nichtdeterministischen Turingmaschinen akzeptierten Sprachen sind genau die kontextsensitiven Sprachen.

Beweis: Der Beweis hierzu ist bitte in der Literatur nachzuschlagen. □

Satz 1.17 Die Sprache $L = \{a^m b^m c^m \mid m \in \mathbb{N}\}$ ist kontextsenitiv.

Beweis: Es gibt zwei Möglichkeiten, diesen Satz zu beweisen:

- 1. Angabe einer kontextsensitiven Grammatik für L.
- 2. Angabe einer nichtdeterministischen, linear beschränkten Turingmaschine, die ${\cal L}$ erkennt.



Analog wie in Satz 1.16 kann man zeigen:

Satz 1.18 Die von Turingmaschinen akzeptierten Sprachen sind genau die Typ 0 Sprachen.

Hinweis: Hier ist es egal, ob man die Turingmaschine deterministisch oder nichtdeterministisch wählt.

Genauer gilt sogar: Zu jeder nichtdeterministischen Turingmaschine M gibt es eine deterministische Turingmaschine M' mit L(M) = L(M'). Es ist zu beachten, dass man bisher noch *nicht* weiss, ob es auch zu jeder nichtdeterministischen, linear beschränkten Turingmaschine eine entsprechende deterministische, linear beschränkte Turingmaschine gibt.

1.5 Zusammenfassung

Zum Abschluss dieses Kapitels werden hier die wesentlichen Punkte aus den vorangegangenen Abschnitten tabellarisch zusammengefasst.

1.5.1	Chomsky-Hierarchie
1.0.1	Chombiny Therateme

	reguläre Grammatik
Typ 3	DFA
1 y p 3	NFA
	regulärer Ausdruck
Deterministisch-	LR(k)-Grammatik
kontextfrei	deterministischer Kellerautomat
Typ 2	kontextfreie Grammatik
1902	(nichtdeterministischer) Kellerautomat
Typ 1	kontextsensitive Grammatik
Typ 1	(nichtdeterministische) linear beschränkte Turingmaschine
Тур 0	endliche Grammatik
тур о	Turingmaschine

1.5.2 Abschlusseigenschaften

Chomsky-Typ	Schnitt	Vereinigung	Komplement	Produkt	Stern
Typ 3	ja	ja	ja	ja	ja
Det. kf.	nein	nein	ja	nein	nein
Typ 2	nein	ja	nein	ja	ja
Typ 1	ja	ja	ja	ja	ja
Typ 0	ja	ja	nein	ja	ja

1.5.3 Wortproblem

Chomsky-Typ	Laufzeit
Typ 3, gegeben als DFA	lineare Laufzeit
Det. kf, gegeben als DPDA	lineare Laufzeit
Typ 2, gegeben durch Grammatik in CNF	CYK-Algorithmus, Laufzeit $O(n^3)$
Typ 1	⟨nächstes Kapitel⟩
Typ 0	⟨nächstes Kapitel⟩

1.5.4 Entscheidbarkeit

Folgende Tabelle zeigt die Entscheidbarkeit verschiedener Standardprobleme für die einzelnen Tpyen der Chomsky-Hierarchie:

Problem	Wortproblem	Leerheitsproblem	Äquivalenzpr.	Schnittproblem
Typ 3	ja	ja	ja	ja
Det. kf.	ja	ja	ja	nein
Typ 2	ja	ja	nein	nein
Typ 1	ja	nein	nein	nein
Typ 0	nein	nein	nein	nein

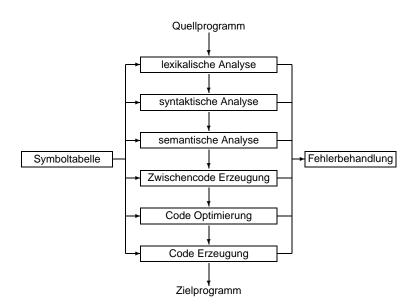
1.6 Compiler

31.05.2000 Vorlesung 9

Was ein Compiler macht sollte eigentlich jedem bekannt sein. Im folgendem ist noch einmal ein grob der der Ablauf eines Compilerlaufes dargestellt. Die Skizze ist weitgehend selbsterkärend und mit den im vorigen Semester zu Assemblern dargelegten sollte ihr Verständniss keine Probleme bereiten.

Im folgendem wollen wir uns auf zwei Aspekte aus dem Ablaufdiagramm beschränken, nämlich auf die lexikalische Analyse und die syntaktische Analyse. Weitergehende Betrachtungen seien den dafür vorgesehenen Vorlesungen vorbehalten. 1.6. COMPILER 33

Phasen eines Compilerlaufes:



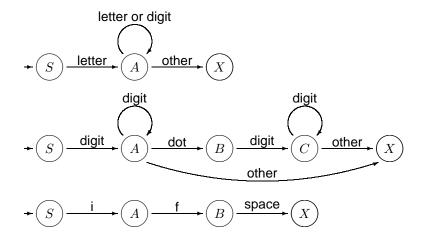
1.6.1 Lexikalische Analyse: Scanner

Aufgabe: Extrahiere aus dem Eingabestring die nächste "Einheit", z.B. Namen einer Variablen, eine Zahl, reserviertes Wort (wie z.B. if, while, etc.), "+"-Zeichen, usw.

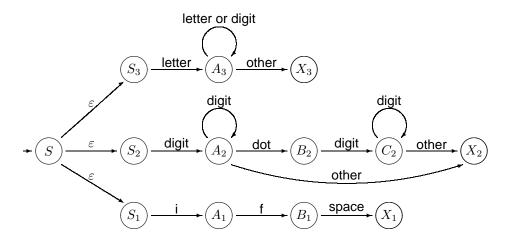
```
Beispiel 1.31
identifier := letter(letter|digit)*
number := digit<sup>+</sup> | digit<sup>+</sup>.(digit)<sup>+</sup>
if := if
```

Anwendung der Erkenntnisse der Vorlesung: Zu jedem regulären Ausdruck gibt es einen endlichen Automaten, der genau die Wörter aus dieser Sprache erkennt.

Beispiel 1.32



Für die lexikalische Analyse verbindet man diese endlichen Automaten zu einem einzigen *nichtdeterministischen* Automaten.



Anwendung der Erkenntnisse der Vorlesung: Mit Hilfe der *Potenzmengenkonstruktion* kann man daraus wieder einen deterministischen endlichen Automaten bauen ... und aus diesem kann man dann relativ einfach ein C oder Java Programm erzeugen.

Tools: Es gibt fertige Programme, die aus regulären Ausdrücken den zugehörigen Parser erzeugen. Das klassische Tool hierfür ist lex (A Lexical Analyzer Generator); die entsprechende GNU-Version ist flex. Mehr Informationen hierzu unter http://www.combo.org/lex_yacc_page/.

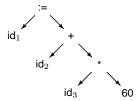
1.6.2 Syntaktische Analyse: Parser

Aufgabe: Extrahiere aus der vom Scanner bereitgestellten Eingabe die logische Struktur.

Beispiel 1.33

Aus dem Ausdruck $id_1 := id_2 + id_3 * 60$ soll die folgende logische Struktur extrahiert werden:

1.6. COMPILER 35



Ansatz: Die zulässige Syntax eines Programms wird durch eine (möglichst deterministische) kontextfreie Grammatik beschrieben.

Anwendung der Erkenntnisse der Vorlesung:

- Mit Hilfe des CYK-Algorithmus kann man in $O(n^3)$ Zeit aus einem Wort die zugehörige Ableitung rekonstruieren.
- Ist die Grammatik deterministisch kontextfrei geht dies sogar in linearer Zeit.

Tools: Es gibt fertige Programme, die aus einer (geeignet spezifizierten) Grammatik einen zugehörigen (effizienten) Parser erzeugen. Das klassische Tool hierfür ist yacc (Yet Another Compiler-Compiler); die entsprechende GNU-Version ist bison. Mehr Informationen hierzu unter http://www.combo.org/lex_yacc_page/.

Kapitel 2

Berechenbarkeit und Entscheidbarkeit

2.1 Intuitiv berechenbar

Idee: $f: \mathbb{N}_0^k \to \mathbb{N}_0$ ist *berechenbar*, wenn es einen *Algorithmus* gibt, der f berechnet. Genauer: der bei Eingabe $(n_1 \dots n_k) \in \mathbb{N}_0^k$ nach endlich vielen Schritten mit dem Ergebnis $f(n_1 \dots n_k)$ stoppt.

Was bedeutet "Algorithmus" an dieser Stelle? C-Programm, JAVA-Programm, etc? Gibt es einen Unterschied, wenn man sich auf eine bestimmte Programmiersprache beschränkt? **Analog:** für *partielle* Funktionen $f:A\to\mathbb{N}_0$, wobei $A\subseteq\mathbb{N}_0^k$, bedeutet berechenbar folgendes:

- Algorithmus soll mit richtigem Ergebnis stoppen, wenn $(n_1 \dots n_k) \in A$
- und nicht stoppen, wenn $(n_1 \dots n_k) \not\in A$

Beispiel 2.1

Wir definieren folgende Funktionen:

$$\begin{array}{lll} f_1(n) & = & \left\{ \begin{array}{ll} 1 & \text{falls } n \text{ ist Anfangsstück von } \pi \\ 0 & \text{sonst} \end{array} \right. \\ f_2(n) & = & \left\{ \begin{array}{ll} 1 & \text{falls } n \text{ kommt in } \pi \text{ vor} \\ 0 & \text{sonst} \end{array} \right. \\ f_3(n) & = & \left\{ \begin{array}{ll} 1 & \text{falls } \geq n \text{ aufeinanderfolgende 7er in } \pi \\ 0 & \text{sonst} \end{array} \right. \end{array}$$

Einige Beispiele für $\pi=3,141592...$: $f_1(314)=1, f_1(415)=0, f_2(415)=1$ Zu obigen Funktionen ergeben sich folgende Aussagen zur Berechenbarkeit:

- f_1 : Wie man leicht einsieht, ist f_1 berechenbar, denn um festzustellen, ob eine Zahl ein Anfangsstück von π ist, muss π nur auf entsprechend viele Dezimalstellen berechnet werden.
- f_2 : Für f_2 wissen wir nicht ob es berechenbar ist. Um festzustellen ob die Zahl in π enthalten ist, müsste man π schrittweise genauer approximieren. Der Algorithmus würde stoppen wenn die Zahl gefunden wurde. Aber was ist wenn die Zahl nicht in π vorkommt. Vielleicht gibt es aber einen (noch zu findenden) mathematischen Satz der Aussagen über die in π vorkommenden Zahlenfolgen ermöglicht.

 f_3 : Hingegen ist f_3 berechenbar, denn $f_3 \equiv f_4$,

$$f_4(n) = \begin{cases} 1 & n \le n_0 \\ 0 & \text{sonst} \end{cases}$$

wobei n_0 die maximale Anzahl von aufeinanderfolgenden 7ern in π ist (bzw. ∞).

Zurück zur Frage: Was heisst "berechenbar"? Wir verstehen unter berechenbar:

Definition 2.1 *Turing-Berechenbarkeit:*

Es gibt eine Turingmaschine, die bei Eingabe $bin(n_1)\#bin(n_2)\#\dots\#bin(n_k)$ nach endlich vielen Schritten mit $bin(f(n_1,\dots n_k))$ auf dem Band stoppt.

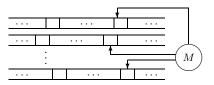
Churche These: Die Turing-berechenbaren Funktionen entsprechen genau den intuitiv berechenbaren Funktionen.

2.2 Turing Berechenbarkeit

Bemerkung: Es gibt viele verschiedene Definitionen von "Turing-Maschine". Vom Standpunkt der Berechenbarkeit sind diese alle äquivalent, d.h. man kann sie gegenseitig simulieren.

Beispiel 2.2

k-Band Turingmaschine



Wichtig: k Schreib-/Leseköpfe, die unabhängig voneinander bewegt werden können.

Satz 2.1 Jede k-Band Turingmaschine kann man durch eine 1-Band Turingmaschine simulieren.

Beweis: Beweisidee: Definiere geeignetes Bandalphabet für 1-Band Turingmaschine, wobei Γ das Bandalphabet der k-Band Turingmaschine ist: $(\Gamma \times \{-,*\})^k$

	 x_1	
	 x_2	
:		
	 x_n	

Ein Zeichen (x_1, x_2, \ldots, x_k) des neuen Bandes erhält man damit zunächst dadurch, dass man die "übereinanderstehenden" Zeichen der k Bänder zusammenfasst. Jedoch hat man damit noch keine Informationen über die Position der Lese-/Schreibköpfe der k-Band Turingmaschine gespeichert. Hierzu werden die beiden Symbole "*" und "-" verwendet. Bei der Konstruktion eines Zeichens der 1-Band Turingmaschine wird jeweils eins dieser Symbole nach jedem einzelnen Zeichen der k-Band Turingmaschine eingefügt. Das Symbol

"*" besagt, dass sich der Lesekopf an dem Zeichen befindet. Das Symbol "-" besagt, dass sich der Lesekopf nicht an dem Zeichen befindet. Bei dem Zeichen $(x_1,-,x_2,*,\ldots,x_k)$ der 1-Band Turingmaschine befand sich in der zugrundeliegenden k-Band Turingmaschine der Lese-/Schreibkopf für das 2. Band am Zeichen x_2 . Damit kann man einen Schritt auf der k-Band Turingmaschine durch eine Folge von Schritten auf der 1-Band Turingmaschine simulieren.

Im folgendem wollen wir noch kurz auf den Zusammenhang mit "normalem" einem Algorithmus eingehen.

Beispiel 2.3

```
Berechnung von m+n: x:=m; while n\neq 0 do \{x:=x+1; n:=n-1; \} return (x);
```

Idee: Wir verwenden 2 Bänder.

1. Schritt: Schreibe m auf das 1. Band, n auf das 2. Band.

2.Schritt: Schleife: addiere 1 auf dem 1. Band, subtrahiere 1 auf dem 2. Band. Solange bis 2. Band = 0.

2.3 LOOP-, WHILE- und GOTO-Berechenbarkeit

02.06.2000

Ziel: Möglichst einfacher Ansatz um Turing-berechenbar über eine Programmiersprache Vorlesung 10 auszudrücken.

2.3.1 LOOP-berechenbar

LOOP-Programme sind wie folgt definiert:

Variablen: $x_1, x_2, x_3, ...$ Konstanten: 0, 1, 2, ...Trennsymbole: ; := Operationszeichen: + -

Schlüsselworte: LOOP DO END

Aufbau von LOOP-Programmen:

- $x_i := c$, $x_i := x_j + c$, $x_i := x_j c$ sind LOOP-Programme. Die Interpretation dieser Ausdrücke erfolgt, wie üblich, mit der Einschränkung, dass $x_j c$ als Null gewertet wird, falls $c > x_j$.
- Sind P_1, P_2 LOOP-Programme so ist auch $P_1; P_2$ ein LOOP-Programm. Interpretation: Führe erst P_1 und dann P_2 aus.
- Ist P LOOP-Programm, so ist auch LOOP x_i DO P END ein LOOP-Programm. Interpretation: Führe P genau \langle Wert von $x_i \rangle$ -mal aus. **Achtung:** Änderungen von x_i im Innern von P haben keinen Einfluss auf die Anzahl Wiederholungen.

Definition 2.2 Eine Funktion f heißt LOOP-berechenbar genau dann wenn es ein LOOP-Programm gibt, das f berechnet.

LOOP-Programme können IF .. THEN .. ELSE .. END Konstrukte simulieren. Der Ausdruck IF x=0 THEN A END kann durch folgendes Programm nachgebildet werden:

$$y := 1;$$

LOOP x DO $y := 0$ END;
LOOP y DO A END;

LOOP-berechenbare Funktion sind immer *total*, denn: LOOP-Programme *stoppen immer*. Damit stellt sich natürlich die Frage, ob alle totalen Funktionen LOOP-berechenbar sind. Die Antwort hierauf lautet allerdings: Nein! Dazu folgende Beispiele für nicht LOOP-berechenbare Funktionen:

Beispiel 2.4

Busy Beaver-Funktion (für LOOP-Programme), s. dazu Skript zur Vorlesung Informatik I, WS 1998/99 (Prof. Brauer) [2].

Beispiel 2.5

Ackermann-Funktion: $a: \mathbb{N}_0^2 \to \mathbb{N}$.

$$a(x,y) := \left\{ \begin{array}{ll} y+1 & \text{falls } x=0 \\ a(x-1,1) & \text{falls } x \geq 1, y=0 \\ a(x-1,a(x,y-1)) & \text{falls } x,y \geq 1 \end{array} \right.$$

Einige Eigenschaften der Ackermann-Funktion, die man per Induktion zeigen kann:

- **1.** a(1,y) = y + 2 $\forall y, \ a(2,y) = 2y + 3$ $\forall y$
- **2.** y < a(x,y) $\forall x,y$
- **3.** a(x,y) < a(x,y+1) $\forall x,y$
- **4.** $a(x, y + 1) \le a(x + 1, y)$ $\forall x, y$
- **5.** a(x,y) < a(x+1,y) $\forall x,y$

Klar ist: Die Ackermannfunktion ist intuitiv berechenbar, hier einige Werte:

$$\begin{array}{lll} a(1,1) & = & 3, & a(2,1) = 5, & a(3,1) = 13, \\ a(4,1) & = & a(3,a(3,1)) = a(3,13) = \dots \text{maple steigt aus} \dots \\ a(3,k) & = & a(2,a(3,k-1)) \geq 2*a(3,k-1) \\ & \geq & 2^2*a(3,k-2) \geq \dots \geq 2^k*a(3,0) \geq 2^k \\ a(4,1) & \geq & 2^{13} \\ a(4,2) & = & a(3,a(4,1)) \geq 2^{a(4,1)} \geq 2^{2^{13}} \\ a(4,3) & = & a(3,a(4,2)) \geq 2^{a(4,2)} \geq 2^{2^{2^{13}}} \\ & \vdots \end{array}$$

Satz 2.2 Die Ackermann-Funktion ist nicht LOOP-berechenbar.

Lemma 2.1 Sei P ein LOOP-Programm mit Variablen x_1, \ldots, x_k und

$$f_p(n) = \max \left\{ \Sigma_{i=1}^k n_i' \mid \Sigma_{i=1}^k n_i \leq n \right\}$$

wobei n_i' die Werte von x_i nach Beendigung von P sind und n_i die Startwerte von x_i sind. Dann gibt es ein $t \in \mathbb{N}$ mit $f_p(n) < a(t,n) \ \forall n$.

Beweis: Beweis des Satzes 2.2:

Angenommen doch, sei P das zugehörige LOOP-Programm, das g(n) := a(n,n) berechnet. Nach Definition von f_p gilt $g(n) \le f_p(n) \ \forall n$. Wähle t mit $f_p(n) < a(t,n) \ \forall n$. Setze n = t:

$$f_p(t) < a(t,t) =_{Def.} g(t) \le f_p(t)$$

 \Rightarrow Widerspruch!

Beweis: Beweis des Lemmas 2.1 durch Induktion über den strukturellen Aufbau:

Induktionsanfang:

$$P=x_i=x_j\pm c$$
 (o.E. $c=\{0,1\}$). Es ist klar, dass
$$f_p(n) \leq 2n+1 < a(2,n)=2n+3 \ \forall n$$
 $\Rightarrow t=2$ tut es!

Induktionsschritt:

Hier gibt es 2 Fälle zu behandeln. Entweder ist $P=P_1; P_2$ oder $P=\mathsf{LOOP}\,x_i\;\mathsf{DO}\,P_i\;\mathsf{END}$.

1. Fall: $P = P_1; P_2$: Nach Induktionsannahme $\exists k_1, k_2$, so dass

$$f_n(n) < a(k_i, n) \ \forall n \ \forall i = 1, 2$$

$$\begin{array}{lll} f_p(n) & \leq & f_{p_2}(f_{p_1}(n)) \\ & \leq & f_{p_2}(a(k_1,n)) \\ & \leq & a(k_2,a(k_1,n)) & \text{Setze } k_3 := \max\{k_2,k_1-1\}. \\ & \leq & a(k_3,a(k_3+1,n)) & \text{Monotonie} \\ & = & a(k_3+1,n+1) \\ & \leq & a(k_3+2,n) & \text{Eigenschaft 4 der Ackermannfkt.} \end{array}$$

Hieraus erhält man: $t = k_3 + 2$ tut es!

2. Fall: $P = \mathsf{LOOP}\,x_i\,\mathsf{DO}\,Q\,\mathsf{END}$. Dieser Beweis kann ähnlich geführt werden, s. hierzu z.B. Schöning.

2.3.2 WHILE-berechenbar

Motivation: Die Ackermann Funktion ist intuitiv berechenbar, sie ist Turing-berechenbar, aber sie ist nicht LOOP-berechenbar. Dies zeigt: LOOP-Programme sind nicht mächtig genug.

WHILE-Programme sind wie folgt definiert:

Variablen: $x_1, x_2, x_3, ...$

Konstanten: 0, 1, 2, ...

Trennsymbole: ; := \neq

Operationszeichen: + -

Schlüsselworte: WHILE DO END

Aufbau von WHILE-Programmen:

- $x_i := c$, $x_i := x_j + c$, $x_i := x_j - c$ sind WHILE-Programme.

Die Interpretation dieser Ausdrücke erfolgt, wie üblich, mit der Einschränkung, dass $x_j - c$ als Null gewertet wird, falls $c > x_j$.

- Sind P_1, P_2 WHILE-Programme do ist auch $P_1; P_2$ ein WHILE-Programm. Interpretation: Führe erst P_1 und dann P_2 aus.
- Ist P ein WHILE-Programm so ist auch WHILE $x_i \neq 0$ DO P send ein WHILE-Programm.

Interpretation: Führe P solange aus bis x_i den Wert Null hat. **Achtung:** Änderungen von x_i im Innern von P haben einen Einfluss auf die Anzahl Wiederholungen.

Lemma 2.2 LOOP-Programme können durch WHILE-Programme simuliert werden.

Beweis: Der Ausdruck LOOP x DO P END ist äquivalent zum Ausdruck y := x; WHILE $y \neq 0$ DO y := y - 1; P END wobei y eine Variable ist, die in P nicht verwendet wird. \square

Satz 2.3 *Ist eine Funktion WHILE-berechenbar, so ist sie auch Turing-berechenbar.*

Beweis: Beweisidee: Spediere für jede WHILE-Schleife ein zusätzliches Band, auf dem die zugehörige Schleifenvariable x_i gespeichert wird.

Unser Ziel ist natürlich ein Satz der Form: Die Menge der Turing-berechenbaren Funktionen entspricht der Menge WHILE-berechenbaren Funktionen.

2.3.3 GOTO-berechenbar

Für GOTO-Programme gilt:

Variablen: $x_1, x_2, x_3, ...$ Konstanten: 0, 1, 2, ...Trennsymbole: ; := Operationszeichen: + -

Schlüsselworte: IF THEN GOTO HALT

Aufbau von GOTO-Programmen, wobei hierbei die A_i Anweisungen und die M_i Marken (für Sprünge) sind :

$$M_1: A_1; M_2: A_2; \dots M_k: A_k$$

Als Anweisungen sind zugelassen:

- Wertzuweisungen: $x_i := x_j \pm c$,
- unbedingter Sprung: GOTO M_i
- bedingter Sprung: IF $x_i = c$ THEN GOTO M_i (wobei c eine Konstante ist)
- Stopanweisung: HALT

Satz 2.4

Jedes WHILE-Programm kann durch ein GOTO-Programm simuliert werden.

Beweis: Beweisidee: Ersetze jede WHILE-Schleife WHILE $x_i \neq 0$ DO P END durch folgenden Ausdruck:

$$M_1$$
: IF $x_i=0$ THEN GOTO M_2 P ; GOTO M_1 M_2 : . . .

Satz 2.5

Jedes GOTO-Programm kann durch ein WHILE-Programm simuliert werden.

Beweis: Beweisidee: Gegeben sei das GOTO-Programm $M_1: A_1; M_2: A_2; ... M_k: A_k$ Wir simulieren dies durch eine WHILE-Programm mit genau einer WHILE-Schleife:

$$\begin{split} c &:= 1; \\ \text{WHILE } c \neq 0 \text{ DO} \\ &\text{IF } c = 1 \text{ THEN } A_1' \text{ END;} \\ &\text{IF } c = 2 \text{ THEN } A_2' \text{ END;} \\ &\vdots \\ &\text{IF } c = k \text{ THEN } A_k' \text{ END;} \\ \text{END} \end{split}$$

wobei

$$A_i' := \begin{cases} \begin{array}{ll} x_j := x_l \pm b; c := c+1 & \text{falls } A_i = x_j := x_l \pm b \\ c := \ell & \text{falls } A_i = \mathsf{GOTO} \ M_\ell \\ \text{IF } x_j = b \ \mathsf{THEN} \ c := \ell \\ \text{ELSE } count := count + 1 \ \mathsf{END} & \text{falls } A_i = \mathsf{IF} \ x_j = b \ \mathsf{THEN} \ \mathsf{GOTO} \ M_\ell \\ c := 0 & \text{falls } A_i = \mathsf{HALT} \end{cases}$$

Satz 2.6 *Turing-berechenbar* \Rightarrow **GOTO***-berechenbar*.

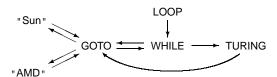
Beweis: Beweisidee:

- 1. Konfiguration einer Turingmaschine (α, β, z) wird kodiert in den Variablen $(x_{\alpha}, x_{\beta}, x_{z})$.
- 2. Umwandlung in ein GOTO-Programm:

IF
$$(x_z = z) \land (\text{erstes Zeichen von } x_\beta = b) \text{ THEN } \{x_z := z; \ldots \}$$

2.3.4 Zusammenfassung

Im folgenden sei nocheinmal ein kurzer Überblick über die Beziehungen zwischen den einzelnen Berechenbarkeitsarten gegeben. Die Pfeile geben an, dass sich alle durch ihr Herkunftsobjekt berechnenbaren Funktionen auch durch ihr Zielobjekt berechnen lassen.



2.4 Primitiv rekursive und μ -rekursive Funktionen

07.06.2000 Vorlesung 11

Idee: Man versucht, eine Klasse von "berechenbaren" Funktionen induktiv zu definieren.

2.4.1 Primitiv rekursive Funktionen

Definition 2.3 Die Klasse der primitiv rekursiven Funktionen (auf \mathbb{N}_0) ist induktiv wie folgt definiert:

- Alle konstanten Funktionen sind primitiv rekursiv.

$$f(n) = c \quad \forall n \in \mathbb{N}_0 \qquad \text{(für alle } c \in \mathbb{N}_0\text{)}$$

- Die Nachfolgerfunktion s(n) ist primitiv rekursiv.

$$s(n) = n + 1 \quad \forall n \in \mathbb{N}_0$$

- Alle Projektionen sind primitiv rekursiv.

$$f(n_1,\ldots,n_k)=n_j \quad \forall n_1,\ldots,n_k \in \mathbb{N}_0 \qquad \text{(für alle } j \in \{1,\ldots,k\})$$

Dies soll bedeuten das wir uns ein beliebiges Argument der Funktion f herausgreifen können, um es in einer primitiv rekursiven Funktion zu verwenden.

- Die Komposition von primitiv rekursiven Funktion ist primitiv rekursiv. Seien f,g primitiv rekursiv dann ist auch: h(n) = f(g(n)) für alle $n \in \mathbb{N}_0$ eine primitiv rekursive Funktion.
- Jede Funktion, die durch *primitive Rekursion* aus primitiv rekursiven Funktionen entsteht, ist primitiv rekursiv. Seien *f* , *g* primitiv rekursiv, so sind:
 - $h(0,\ldots) = f(\ldots)$, die Funktion h kommt in keinem Argument von f vor
 - $h(n+1,\ldots)=g(h(n,\ldots),\ldots)$, nur das erste Argument wird um eins erniedrigt die anderen Argumente bleiben unverändert

primitiv rekursiv.

Beispiel 2.6

Addition:

add:
$$\mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$$

 $(x,y) \mapsto x+y$

Diese Funktion ist primitiv rekursiv, denn:

$$\begin{array}{rcl} \operatorname{add}(0,x) & = & x \\ \operatorname{add}(n+1,x) & = & s(\operatorname{add}(n,x)) \end{array}$$

Rekursion: Addiere zunächst n und x und addiere dann 1 zum Ergebnis.

Multiplikation: mult: $\mathbb{N}_0 \times \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ $(x,y) \mapsto xy$

Diese Funktion ist ebenso primitiv rekursiv, denn:

$$\begin{array}{rcl} \operatorname{mult}(0,x) & = & 0 \\ \operatorname{mult}(n+1,x) & = & \operatorname{add}(\operatorname{mult}(n,x),x) \end{array}$$

Rekursion: Multipliziere zunächst n und x und addiere x zum Ergebnis.

Bemerkung: Es ist einsichtig, dass primitiv rekursive Funktionen intuitiv berechenbar sind. Damit stellt sich die Frage: Wie mächtig ist diese Klasse? Wir werden später sehen, dass die primitiv rekursiven Funktionen genau die LOOP-berechenbaren Funktionen sind.

Beispiel 2.7

(modifizierte) Vorgängerfunktion:

$$\bar{s}$$
: $\mathbb{N}_0 \longrightarrow \mathbb{N}_0$
 $x \mapsto \begin{cases} 0 & x = 0 \\ x - 1 & \text{sonst} \end{cases}$

primitiv berechenbar, denn

$$\begin{array}{rcl} \bar{s}(0) & = & 0 \\ \bar{s}(n+1) & = & n \end{array}$$

(modifizierte) Subtraktion:

$$\begin{array}{cccc} \text{sub: } \mathbb{N}_0 \times \mathbb{N}_0 & \to & \mathbb{N}_0 \\ & & & & \\ (x,y) & \mapsto & \left\{ \begin{array}{ll} 0 & y \geq x \\ x-y & \text{sonst} \end{array} \right. \end{array}$$

primitiv berechenbar, denn

$$\begin{array}{rcl} \operatorname{sub}(x,0) & = & x \\ \operatorname{sub}(x,y+1) & = & \bar{s}(\operatorname{sub}(x,y)) \end{array}$$

Definition 2.4 Sei P(x) ein Prädikat, d.h. ein logischer Ausdruck, der in Abhängigkeit von $x \in \mathbb{N}$ den Wert true oder false liefert. Dann können wir diesem Prädikat in natürlicher Weise eine sogenannte 0-1 Funktion $\hat{P}: \mathbb{N}_0 \to \{0,1\}$ zuordnen, indem wir definieren, dass $\hat{P}(x) = 1$ genau dann, wenn P(x) =true ist. Wir nennen P(x) primitiv rekursiv genau dann, wenn $\hat{P}(x)$ primitiv rekursiv ist.

Definition 2.5 Beschränkter max-Operator: Zu einem Prädikat P(x) definieren wir

$$\begin{array}{cccc} q: \mathbb{N}_0 & \to & \mathbb{N}_0 \\ & n & \mapsto & \left\{ \begin{array}{ll} 0 & \text{falls } \neg P(x) \text{ für alle } x \leq n \\ \max\{x \leq n \mid P(x)\} & \text{sonst} \end{array} \right. \end{array}$$

Dann gilt: Ist P primitiv rekursiv, so auch q, denn:

$$\begin{array}{rcl} q(0) & = & 0 \\ q(n+1) & = & \left\{ \begin{array}{ll} n+1 & \text{falls } P(n+1) \\ q(n) & \text{sonst} \end{array} \right. \\ & = & q(n) + \hat{P}(n+1) * (n+1-q(n)) \end{array}$$

Definition 2.6 Beschränkter Existenzquantor: Zu einem Prädikat P(x) definieren wir ein neues Prädikat Q(x) durch mit : Q(n) ist genau dann true, wenn ein $x \leq n$ existiert mit P(x) ist true.

Dann gilt: Ist P primitiv rekursiv, so auch Q, denn:

$$\begin{array}{rcl} \hat{Q}(0) & = & 0 \\ \hat{Q}(n+1) & = & \hat{P}(n+1) + \hat{Q}(n) - \hat{P}(n+1) * \hat{Q}(n) \end{array}$$

Beispiel 2.8

Der Binomialkoeffizient bin: $\mathbb{N}_0 \to \mathbb{N}_0$ mit $x \mapsto {x \choose 2}$ ist primitiv berechenbar, denn es gilt: ${x+1 \choose 2} = {x \choose 2} + x$.

Es gibt eine primitiv berechenbare Funktion, die $\mathbb{N}_0 \times \mathbb{N}_0$ bijektiv auf \mathbb{N}_0 abbildet.

	0	1	2	3	4	
0	0	1	3	6	10	
1	2	4	7	11		
2	5	8	12			
3	9	13				
4	14					
:						

$$f(x,y) = {x+y+1 \choose 2} + x.$$

Der Beweis, dass f die oben dargestellte, bijektive Funktion ist, sei dem Leser als Übungsaufgabe überlassen. Analog gibt es eine primitiv berechenbare k-stellige Funktion, die $\mathbb{N}_0 \times \ldots \times \mathbb{N}_0$ bijektiv auf \mathbb{N}_0 abbildet. Wir bezeichnen diese Funktion mit $\langle n_1 \ldots, n_k \rangle$.

Sei f definiert wie oben. Dann sind auch die Umkehrfunktionen g, h von f, die durch

$$g(f(x,y)) = x,$$
 $h(f(x,y)) = y,$ $f(g(n),h(n)) = n$

definiert sind primitiv rekursiv, denn:

$$\begin{array}{lcl} g(n) & = & \max\{x \leq n \mid \exists y \leq n : f(x,y) = n\} \\ h(n) & = & \max\{y \leq n \mid \exists x \leq n : f(x,y) = n\} \end{array}$$

Analog kann die Umkehrfunktionen von $\langle n_1 \dots, n_k \rangle$ hergeleitet werden.

09.06.2000 Vorlesung 12

Satz 2.7 f primitiv rekursiv $\Leftrightarrow f$ LOOP-berechenbar

Beweis:

Wir zeigen zunächst " \Leftarrow ": Sei also P ein LOOP-Programm, das f berechnet. P verwendet die Variablen $x_1, \ldots, x_k, k \geq n$, $f: \mathbb{N}_0^n \to \mathbb{N}_0$.

Zu zeigen: f ist primity rekursiv.

Der Beweis erfolgt durch strukturelle Induktion über den Aufbau von P.

Induktionsverankerung: $P: x_i := x_j \pm c$ Wir zeigen: \exists primiv rekursive Funktion

$$g_p(\underbrace{\langle a_1,\ldots,a_k\rangle}) = \underbrace{\langle b_1,\ldots,b_k\rangle}$$
 Belegung der Variablen bei Start von P Belegung der Variablen bei Ende von P

Für $P: x_i := x_j \pm c$ erhält man:

$$g_p(\langle a_1,\ldots,a_k\rangle) = \langle a_1,\ldots,a_{i-1},a_i \pm c,a_{i+1},\ldots,a_n\rangle$$

Induktionsschritt: Hier unterscheiden wir 2 Fälle:

1.Fall: Sei P: Q; R. Dann ist: $g_p(x) = g_R(g_Q(x))$

2.Fall: Sei nun P: LOOP x_i DO Q END

IDEE: Definiere Funktion h(n, x), die die Belegung der Variablen berechnet, wenn man mit Belegung x startet und dann Q genau n mal ausführt. Dann ist:

$$\begin{array}{rcl} h(0,x) & = & x \\ h(n+1,x) & = & g_Q(h(n,x)) \end{array}$$

und damit $g_p(x) = h(d_i(x), x)$, wobei d_i die *i*-te Unkehrfunktion von $\langle x_1, \dots, x_k \rangle$, also $d_i(\langle x_1, \dots, x_k \rangle) = x_i$.

Die Richtung " \Rightarrow " wird über strukturelle Induktion über den Aufbau von f gezeigt. Dies sei dem Leser als Übungsaufgabe überlassen.

Korollar 2.1 Die Ackermann-Funktion ist nicht primity rekursiv.

Hier rufe man sich die Definition der Ackermann-Funktion aus Beispiel 2.5 von Seite 40 in Erinnerung. Intuitiv ist vorstellbar: Diese Funktion wächst so schnell, dass sie nicht mehr mittels primitiver Rekursion dargestellt werden kann.

2.4.2 μ -rekursive Funktionen

Idee: Sei $f: \mathbb{N}_0 \to \mathbb{N}_0$ eine Funktion. Dann liefert der sogenannte μ -Operator die kleinste natürliche Zahl für die f den Wert Null annimmt.

Motivation: Der μ -Operator wird uns erlauben, "vorab" die notwendige Anzahl Durchläufe einer while-Schleife zu bestimmen, bis die Laufvariable Null wird.

Definition 2.7 Sei f eine (nicht notwendigerweise totale) k + 1-stellige Funktion. Die durch Anwendung des μ -Operators entstehende Funktion f_{μ} ist definiert durch:

$$\begin{array}{cccc} f_{\mu}: \mathbb{N}_{0}^{k} & \rightarrow & \mathbb{N}_{0} \\ (x_{1}, \ldots, x_{k}) & \mapsto & \left\{ \begin{array}{ll} \min\{n \in N \mid f(n, x_{1}, \ldots, x_{k}) = 0\} & \textit{falls } f(m, x_{1}, \ldots, x_{k}) \\ & \textit{definiert } \forall m < n \\ 0 & \textit{sonst} \end{array} \right.$$

Definition 2.8 Die Klasse der μ -rekursiven Funktionen ist die kleinste Klasse von (nicht notwendigerweise totalen) Funktionen, die die Basisfunktionen (konstante Funktionen, Nachfolgerfunktion, Projektionen) enthält und alle Funktionen, die man hieraus durch (evtl. wiederholte) Anwendung von Komposition, primitiver Rekursion und/oder des μ -Operators gewinnen kann.

Satz 2.8 f μ -rekursiv \Leftrightarrow f WHILE-berechenbar

2.5 Entscheidbarkeit, Halteproblem

2.5.1 Charakteristische Funktionen

Ziel: Wir wollen im folgenden Abschnitt zeigen, dass es keinen Algorithmus geben kann, der als Eingabe ein Programm P und Daten x erhält und (für jedes solches Paar (P, x)!) entscheidet, ob P hält, wenn es mit Eingabe x gestartet wird.

Dazu definieren wir zunächst die charakteristische Funktion bzw. die semi-charakteristische Funktion von $A\subseteq \Sigma^*$ wie folgt:

Definition 2.9 Sei $A \subseteq \Sigma^*$. Die charakteristische Funktion von A ist definiert als

$$\begin{array}{ccc} \chi_A: \Sigma^* & \to & \{0,1\} \\ & & \\ w & \mapsto & \left\{ \begin{array}{ll} 1 & \textit{falls } w \in A \\ 0 & \textit{sonst} \end{array} \right. \end{array}$$

Definition 2.10 *Sei* $A \subseteq \Sigma^*$. *Die semi-charakteristische Funktion von* A *ist definiert als*

$$\begin{array}{ccc} \chi_A': \Sigma^* & \to & \{0,1\} \\ & w & \mapsto & \left\{ \begin{array}{ll} 1 & \textit{falls } w \in A \\ \textit{undefiniert} & \textit{sonst} \end{array} \right. \end{array}$$

2.5.2 Entscheidbare Sprachen

Mit Hilfe der Definitionen aus Abschnitt 2.5.1 zur charakteristischen Funktion können wir nun für Sprachen definieren:

Definition 2.11 Eine Sprache $A \subseteq \Sigma^*$ heißt entscheidbar, falls die charakteristische Funktion χ_A berechenbar ist.

Zur Erinnerung: "Berechenbar" heisst für uns immer: Turing-berechenbar (und damit auch WHILE-berechenbar, μ -rekursiv, ...).

$$\begin{array}{c|c} w & \text{ja} & w \in L \\ \hline \text{nein} & w \not\in L \end{array}$$

Definition 2.12 Eine Sprache $A \subseteq \Sigma^*$ heißt semi-entscheidbar, falls die semi-charakteristische Funktion χ'_A berechenbar ist.

$$\begin{array}{c|c} w & \text{ja} & w \in L \\ \hline M & ??? & \end{array}$$

Es ist klar, dass eine entscheidbare Funktion auch semi-entscheidbar ist. Umgekehrt ist es allerdings nicht klar, ob es möglich ist, für eine semi-entscheibare Sprache einen Algorithmus zu bauen, der diese Sprache entscheidet, der also für den Fall $w \notin L$ "Nein" ausgibt und nicht in eine Endlosschleife gerät. Wir werden noch sehen, dass dies *nicht* möglich ist.

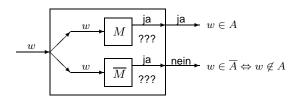
Satz 2.9 Eine Sprache $A \subseteq \Sigma^*$ ist genau dann entscheidbar, wenn sowohl A als auch $\overline{A} := \Sigma^* \setminus A$ semi-entscheidbar sind.

Beweis:

Die Richtung "⇒"" ist klar.

Es bleibt also "←" zu zeigen.

Wenn A und \overline{A} beide semi-entscheidbar sind, dann gibt es WHILE-Programme, die für ein Wort w genau dann stoppen, wenn $w \in A$ bzw. wenn $w \notin A$. Führt man daher diese beiden Programme "parallel" aus (genauer: jeweils abwechselnd einen Schritt des einen Programms und dann einen Schritt des anderen Programms) erhält man ein Programm, das A entscheidet.



2.5.3 Rekursiv aufzählbare Sprachen

Definition 2.13 Eine Sprache $A \subseteq \Sigma^*$ heisst rekursiv aufzählbar, falls es eine berechenbare Funktion $f: \mathbb{N}_0 \to \Sigma^*$ gibt, so dass

$$A = \{f(0), f(1), f(2), \dots, \}$$

 $\it Mit$ anderen Worten: Eine Sprache heisst dann rekursiv aufzählbar, falls es eine berechenbare Funktion $\it f$ (bzw. einen Algorithmus) gibt, die (der) die Worte der Sprache $\it A$ "aufzählt".

Hiezu folgende Beispiele:

Beispiel 2.9

1. Σ^* mit $\Sigma = \{0,1\}$ ist rekursiv aufzählbar. Betrachte dazu die folgende Funktion f(n):

alle einstelligen
$$\begin{cases} f(0) &= 0 \\ f(1) &= 1 \end{cases}$$
 alle zweistelligen
$$\begin{cases} f(2) &= 00 \\ f(3) &= 10 \\ f(4) &= 01 \\ f(5) &= 11 \end{cases}$$
 alle dreistelligen
$$\begin{cases} f(6) &= 000 \\ \vdots &\vdots &\vdots \end{cases}$$

Eine weitere Möglichkeit, eine Funktion $f_1(n)$ anzugeben, die alle Wörter aufzählt, wäre: $f_1(n)=$ Binärkodierung von n+2 ohne führende 1. $f_1(0)=1x0, f_1(1)=1x1, f_1(2)=1x00\dots$

2. $L_{TM} = \{w \in \{0,1\}^* \mid w \text{ ist Codierung einer Turing-Maschine}\}$ ist rekursiv aufzählbar

Berechnung von f(n): Probiere rekursiv (vgl. Beispiel 2.9 Teil 1) alle Wörter über $\{0,1\}$ aus und teste jeweils, ob dies die Codierung einer Turing-Maschine ist – solange bis die n-te Turing-Maschine gefunden wurde.

Satz 2.10 Eine Sprache $A \subseteq \Sigma^*$ ist genau dann semi-entscheidbar, wenn sie rekursiv aufzählbar ist.

Beweis:

Wir zeigen zunächst " \Leftarrow ":

Betrachte den folgenden Algorithmus, der eine berechenbare Funktion f verwendet, die A aufzählt:

Lese die Eingabe $w \in \Sigma^*$; x :=0; do forever if f(x) = w then $\{$ return ("Ja"); halt; $\}$ x := x + 1;

end;

Nun wird "⇒" gezeigt:

Betrachte den folgenden Algorithmus, der ein WHILE-Programm P simuliert, das die semi-charakteristische Funktion χ'_A berechnet:

Lese die Eingabe $n \in \mathbb{N}$.

```
\begin{aligned} count &:= 0; \ k := 0; \\ \textbf{repeat} \\ & k := k+1; \\ & \textbf{if } P \ \textbf{stoppt bei Eingabe} \ f(word(x(k))) \ \textbf{in genau} \ y(k) \ \textbf{Schritten then} \\ & count := count + 1; \\ \textbf{until } count &= n \\ \textbf{return} \ (word(x(k))) \end{aligned}
```

Hierbei sind x(k) und y(k) die Umkehrfunktionen der Funktion

$$f(x,y) := \binom{x+y+1}{2} + x$$

und word(n) eine Funktion, die einer natürlichen Zahl n das n-te Wort von Σ^* zuordnet. \square

Anmerkung zu obigem Beweis:

Da die Sprache A semi-entscheidbar ist, müssen wir die Anzahl der Schritte für das Programm P bereits im voraus festlegen -P könnte sonst nie stoppen. Um dennoch alle Schrittzahlen (y(k)) für alle Worte n (n=x(k)) "durchzuprobieren", verwenden wir die Umkehrfunktionen x(k) und y(k) der Funktion $f(x,y) = {x+y+1 \choose 2} + x$, die wir bereits im Beispiel 2.8 auf Seite 45 als bijektive Abbildung von $\mathbb{N}_0 \times \mathbb{N}_0 \to \mathbb{N}_0$ kennengelernt haben.

	Α	nzahl	der Sc	hritte	P	
	0	1	2	3	4	•••
w_1 0	0	1	3	6	10	
w_2 1	2	4	7	11		
w_3 2	5	8	12			
w_4 3	9	13				
w_5 4	14					
÷						

2.5.4 Halteproblem

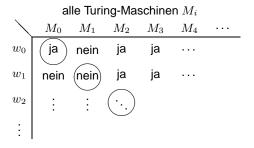
Definition 2.14 Unter dem speziellen Halteproblem H_S versteht man die folgende Sprache:

$$K = \{w \in \{0,1\}^* \mid M_w \text{ angesetzt auf } w \text{ h\"alt}\}$$

16.06.2000 Vorlesung 13

Notation: M_w bezeichnet die w-te Turing-Maschine wobei w als Binärzahl interpretiert wird.

Betrachten wir folgende Tabelle, in der alle Turing-Maschinen M_i nach rechts und alle Wörter w_i über $\{0,1\}^*$ nach unten aufgelistet werden. Wir tragen in die Tabelle JA ein, falls die Turingmaschine M_i der jeweiligen Spalte i das Wort w_j der Zeile j akzeptiert. Ansonsten tragen wir NEIN ein.



Wir definieren uns nun folgende Sprache:

$$\begin{array}{ll} L_d &= \{w_i \mid M_i \text{ akzeptiert } w_i \text{ \underline{nicht}}\} \\ &= \{w \mid \text{ in der Diagonale der Zeile, die dem Wort } w \text{ entspricht, steht NEIN}\} \end{array}$$

Lemma 2.3 L_d ist nicht rekursiv aufzählbar.

Beweis: Angenommen doch. Dann gibt es eine Turingmaschine M mit $L(M) = L_d$. Da die obere Zeile alle Turingmaschinen erhält, kommt M in dieser Aufzählung aller Turingmaschinen VOR, d.h. es gibt ein i_0 mit $M_{i_0} = M$.

Betrachte nun ein Wort w_{i_0} . Wann gilt: $w_{i_0} \in L_d$?

$$w_{i_0} \in L_d \underset{\mathrm{Def.\ von\ } L_d}{\Longleftrightarrow} M_{i_0}$$
 akzeptiert w_{i_0} nicht

Andererseits:

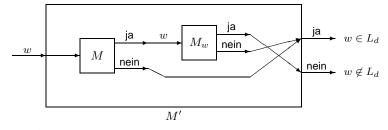
$$w_{i_0} \in L_d \underset{\mathsf{Def. von } M}{\Longleftrightarrow} M = M_{i_0} \text{ akzeptiert } w_{i_0}$$

⇒ Widerspruch!

Korollar 2.2 L_d ist nicht entscheidbar.

Satz 2.11 H_S ist nicht entscheidbar.

Beweis: Angenommen doch. Sei M eine Turingmaschine, die H_S entscheidet. Wir konstruieren daraus eine Turingmaschine M', die L_d entscheidet.



 $\Longrightarrow Widerspruch!$

Definition 2.15 Unter dem (allgemeinen) Halteproblem versteht man die Sprache

$$K = \{w \# x \in \{0,1\}^* \mid M_w \text{ angesetzt auf } x \text{ h\"alt}\}$$

Satz 2.12 Das allgemeine Halteproblem ist nicht entscheidbar.

Damit sind wir beim Ziel dieses Abschnitts angekommen, denn obiger Satz bedeutet mit anderen Worten: Es kann keinen Algorithmus geben, der als Eingabe ein Programm P und Daten x erhält und (für jedes solche Paar (P,x)!) entscheidet, ob P hält, wenn es mit Eingabe x gestartet wird.

Kapitel 3

Algorithmen und Datenstrukturen

3.1 Analyse von Algorithmen

Idee: Bestimme die Ressourcen, die ein Algorithmus benötigt – als Funktion der Eingabelänge n – im allgemeinen nur bis auf eine (multiplikative) Konstante genau (O-Notation). Folgende Ressourcen sind hierbei zu betrachten:

- Laufzeit
- Speicherplatz
- Anzahl Prozessoren

- . . .

In dieser Vorlesung wird von den angegebenen Ressourcen (fast ausschliesslich) die Laufzeit der Algorithmen analysiert.

Beispiel 3.1

Faktultätsfunktion fak(n) berechnet n!

```
x := 1;

for i = 2 to n do

x = x * i;

return (x);
```

Für diesen Algorithmus soll nun die Laufzeit bestimmt werden.

Vorschlag: Laufzeit ist O(n).

Es ist klar, dass die Anzahl arithmetischer Operationen O(n) ist.

ABER: Die Anzahl Bits, die ausgegeben werden, ist $\lceil \log_{10} n! \rceil = \Omega(n \log n)$ – Abschätzung mit Hilfe der Stirlingschen Approximationsformel $n! = \Omega\left(\left(\frac{n}{e}\right)^n\right)$.

Aus obigem Beispiel wird klar, dass unterschiedliche Betrachtungsweisen zu verschiedenen Ergebnissen für die Zeitkomplexität eines Algorithmus führen können. Es ist deshalb sinnvoll, im weiteren formal festzulegen, wie die Zeitkomplexität eines Algorithmus bestimmt werden soll.

3.1.1 Referenzmaschine

Wir wählen als Referenzmaschine: WHILE-Maschine erweitert durch

- IF ... THEN ... ELSE
- Multiplikation und Division
- Verarbeitung von rationale Zahlen möglich
- indirekte Adressierung
- ... \langle gegebenenfalls weitere arithmetische Operationen wie \sqrt{n} , $\sin n$, ... \rangle

3.1.2 Zeitkomplexität

uniformes Kostenmaß: # Operationen

entspricht Wortlänge unendlich (d.h. beliebig grosse Zahlen)

logarithmisches Kostenmaß: # Bit-Operationen

entspricht Wortlänge ist 1

Welches Kostenmaß soll nun verwendet werden? Darüber soll folgende Faustregel Auskunft geben.

Faustregel: Man verwendet immer das uniforme Kostenmaß, falls sichergestellt ist, dass die größte vom Algorithmus berechnete Zahl polynomiell in der Eingabegröße ist.

3.1.3 Worst Case Analyse

Sei A ein Algorithmus. Dann sei

$$T_{\mathcal{A}}(x) := \text{Laufzeit von } \mathcal{A} \text{ bei Eingabe } x$$

Im allgemeinen ist obige Funktion viel zu aufwendig zu berechnen – und (meist) auch nicht aussagekräftig. Interessanter jedoch ist eine Aussage der Form:

$$T_{\mathcal{A}}(n) = \max_{|x| \ = \ n} T_{\mathcal{A}}(x)$$
 (= maximale Laufzeit bei Eingabelänge n)

3.1.4 Average Case Analyse

$$T_{\mathcal{A}}^{ave}(n) = \frac{\sum_{x||x|=n} T_{\mathcal{A}}(x)}{|\{x \mid |x|=n\}|}$$

Bemerkung: Wir werden Laufzeiten $T_{\mathcal{A}}(n)$ nur bis auf einen multiplikativen Faktor genau berechnen, d.h. das genaue Referenzmodell, Fragen der Implementierung, etc. spielen dabei keine Rolle.

3.2 Sortierverfahren

Wir betrachten die Sortierverfahren unter dem Aspekt der Laufzeitanalyse. Dazu folgende **Bemerkung** vorab:

Bei den zu betrachtenden Verfahren (Selection-Sort, Insertion-Sort, Merge-Sort, Quick-Sort, Heap-Sort) gilt:

Laufzeit = O(Anzahl der Schlüsselvergleiche)

55

3.2.1 **Selection-Sort**

Der Algorithmus Selection-Sort arbeitet noch folgendem Prinzip:

Gegeben sei eine Folge a_1, \ldots, a_n von unsortierten Elementen. Im ersten Schritt wird das größte Element der Folge bestimmt und an die n-te Position gesetzt (aufsteigende Sortierung vorausgesetzt). Im zweiten Schritt wiederholt man das Verfahren mit der um eins verkürzten Folge (ohne das letzte Element) usw. Man erhält dann nach n Schritten eine sortierte Folge.

Wir beweisen folgenden Satz:

Satz 3.1 Selectionsort benötigt zum Sortieren von n Elementen genau $\binom{n}{2}$ Vergleiche.

Beweis: Die Anzahl der Vergleiche (zwischen Schlüsseln bzw. Elementen des Arrays) ergibt sich beim Selection-Sort zu:

$$\sum_{i=0}^{n-2} (n-1-i) = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = \binom{n}{2}$$

Damit ist die Laufzeit von Selection-Sort $O(n^2)$.

3.2.2 **Insertion-Sort**

21.06.2000 Das Sortierverfahren Insertion-Sort arbeitet noch folgenden Prinzip:

Sei a_1, \ldots, a_n eine unsortierte Folge von Elementen. Unter der Annahmen, dass die Folge a_1, \ldots, a_{i-1} bereits sortiert ist, wird das i-te Element a_i an der richtigen Stelle im Anfangsstück eingefügt, wodurch man eine sortierte Teilfolge der Länge i erhält. i läuft hierbei von 1 bis n.

Die Stelle, an der das i-te Element einfügt werden muss, kann hierbei z.B. durch binäre Suche ermittelt werden.

Satz 3.2 Insertion-Sort benötigt zum Sortieren von n Elementen maximal $\binom{n}{2}$ Vergleiche.

Satz 3.3 Der auf der binären Suche basierende Insertionsort (beim Einsortieren des nächsten Elementes in den bereits sortierten Teil) benötigt zum Sortieren von n Elementen ma*ximal* $n \lceil \log(n+1) \rceil$ *Vergleiche*.

Beweis: Hierzu sehen wir uns zunächst den Fall n=3 als Beispiel an:

Für n=3 benötigen wir also insgesamt 2 Vergleiche.

Im allgemeinen Fall ergibt sich für die Anzahl B_n der Vergleiche bei n Elementen folgende Rekursionsgleichung:

$$B_{2k+1} = 1 + B_k$$

$$B_{2k} = 1 + B_k$$

Löst man diese Rekursionsgleichung (z.B. mit Hilfe von MAPLE), so erhält man $B_n =$ $\lceil \log_2(n+1) \rceil$

Damit benötigt Insertion-Sort $\sum_{i=0}^{n-1} \lceil \log(i+1) \rceil \approx n \log n$ viele Vergleiche.

Achtung: Die Laufzeit von Insertion-Sort ist dennoch $O(n^2)$.

Vorlesung 14

3.2.3 Merge-Sort

Beim Merge-Sort wird eine unsortierte Folge von Zahlen zunächst rekursiv so lange in Teilfolgen halber Länge zerlegt bis die Länge einer Teilfolge 1 ist. Jeweils 2 dieser Teilfolgen werden dann miteinander verschmolzen, so dass eine sortierte Teilfolge doppelter Länge entsteht. Dies wird fortgesetzt, bis die gesamte Folge sortiert ist.

Satz 3.4 Die rekursive Version von Mergesort sortiert ein Feld der Länge n mit maximal $n \cdot \lceil \log(n) \rceil$ Vergleichen.

Beweis: s. Skript zur Vorlesung Diskrete Strukturen I von Prof. Steger, WS 99/00 □

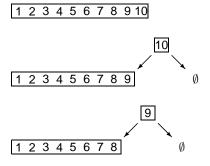
3.2.4 Quick-Sort

Beim Quick-Sort Verfahren wird in jedem Schritt ein Element x der zu sortierenden Folge als Pivot-Element ausgewählt. Wie diese Auswahl getroffen wird, sei hierbei zunächst noch nicht festgelegt (s. hierzu die auf Seite 56 aufgezählten Auswahlmöglichkeiten). Dann wird die zu sortierende Folge so umgeordnet, dass eine Teilfolge links von x entsteht, in der alle Werte der Elemente nicht größer als x sind und ebenso eine Teilfolge rechts von x, in der alle Werte nicht kleiner als das Pivot-Element x sind. Diese Teilfolgen werden dann selbst wieder nach dem gleichen Verfahren rekursiv zerlegt und umsortiert (Quick-Sort zählt also zu den sogenannten Divide-and- $Conquer\ Verfahren$). Dies geschieht jeweils solange, bis die Teilfolgen die Länge 1 besitzen und damit bereits sortiert sind, so dass man am Ende eine vollständig sortierte Folge erhält.

Satz 3.5 Quicksort benötigt zum Sortieren eines Feldes der Länge n maximal $\binom{n}{2}$ viele Vergleiche.

Beispiel 3.2

Besonders ungünstig ist es zum Beispiel wenn man Quick-Sort auf eine schon sortierte Liste ansetzt und dann das erste bzw. letzte Element als Pivot-Element wählt. In diesem Fall läuft das Divide-and-Conquer Verfahren komplet ins leere, da eine der entstehenden Teilfolgen leer ist und die andere alle restlichen Elemente enthält.



In diesem Fall benötigt Quicksort ($\sum_{i=1}^{n} n - i = \binom{n}{2}$) Vergleiche.

Satz 3.6 *Quicksort benötigt zum Sortieren eines Feldes der Länge* n *mit* durchschnittlich $nur 2 \ln(2) n \log(n) + O(n)$ *viele Vergleiche.*

Beweis: Zum Beweis der beiden obigen Sätze sei auf die detaillierte Analyse von Quicksort im Skript zur Vorlesung Diskrete Strukturen II von Prof. Steger verwiesen. □

Entscheidend für die Laufzeit von Quick-Sort ist hierbei eine "gute" Wahl des Pivotelements. Was aber ist eine gute Wahl?

1. Nehme stets das letzte Element der Folge als Pivotelement **Nachteil:** sehr schlecht bei vorsortierten Arrays

 Median-of-3 Verfahren: wählen den Median (das mittlere Element) des ersten, mittleren, letzten Elements des Array
 Nachteil: s. hierzu Übungsblatt 8

3. zufälliges Pivotelement

Vorteil: besseres Verhalten bei sortierten Arrays

Nachteil: zusätzlicher Aufwand für die Randomisierung

3.2.5 Heap-Sort

Zunächst wollen wir definieren, was wir unter einem Heap verstehen:

Definition 3.1 *Definition eines Heaps:*

- Alle inneren Knoten bis auf maximal einen haben genau zwei Kinder.
- Alle Knoten mit weniger als zwei Kindern (insbesondere also die Blätter) befinden sich auf den beiden größten Leveln.
- Die Blätter im größten Level des Baumes sind von links nach rechts aufgefüllt.
- Für jeden Knoten gilt: alle Nachfolger haben einen höchstens gleich großen Schlüssel.

Der Algorithmus HEAPSORT untergliedert sich ein 2 Phasen. In der ersten Phase wird aus der unsortierten Folge von n Elementen ein Heap nach obiger Definition aufgebaut. In der zweiten Phase wird dieser Heap ausgegeben, d.h. ihm wird jeweils das größte Element entnommen (das ja an der Wurzel steht), diese Element wird in die zu sortierende Folge aufgenommen und die Heap-Eigenschaften werden anschließend wieder hergestellt. Im folgenden wollen wir die dafür benötigten Teil-Algorithmen entwerfen und diese dann zu einem kompletten HEAPSORT-Algorithmus zusammenführen.

Betrachten wir nun zunächst den Algorithmus REHEAP(h) zum Einfügen der Wurzel in einen ansonsten korrekt sortierten Heap:

```
Sei v die Wurzel des Heaps h;

while (Heap-Eigenschaft in v nicht erfüllt)

Sei v^* das Kind mit dem größeren Schlüssel;

Vertausche die Schlüssel in v und v^* und setzte v=v^*;
```

Als nächstes benötigen wir noch einen Algorithmus CREATEHEAP(h) zum Erstellen eines Heaps für n beliebige Elemente:

```
for \ell := Tiefe des Baumes down to 1 do
for each Knoten v auf Level \ell do
reheap(Baum H mit Wurzel v);
```

Wenn wir am Ende die sortierte Folge den Heap entnehmen wollen, brauchen wir einen Algorithmus Deletemax(h) zum Löschen der Wurzel:

```
Sei r die Wurzel des Heaps h und sei k der in r gespeicherte Schlüssel; Sei \ell das rechteste Blatt im untersten Level; Kopiere den Schlüssel in \ell in die Wurzel r;
```

Lösche das Blatt ℓ und dekrementiere $heap_size$; reheap(h);

Damit ergibt sich unser Algorithmus HEAPSORT (sortiert absteigend) zu:

CreateHeap(h); while h nicht leer do Gebe Schlüssel der Wurzel aus; DeleteMax(h);

Satz 3.7 Mittels Heapsort kann ein Feld der Länge n mit höchstens $2n \log(n) + o(n)$ vielen Vergleichen sortiert werden.

Beweis: Wir führen zunächst eine Laufzeitanalyse der einzelnen vorgestellten Teilalgorithmen durch, um danach die Gesamtlaufzeit des Algorithmus angeben zu können. Dazu betrachten wir einen Heap mit l Leveln. Dieser Heap verfügt höchstens 2^{l-1} Knoten.

REHEAP:

Vergleiche
$$\leq 2 \cdot (l-1)$$

CREATEHEAP:

Vergleiche
$$\leq \underbrace{2^{l-1} \cdot 0}_{\text{Level } l} + \underbrace{2^{l-2} \cdot 2 \cdot 1}_{\text{Level } l-1} + \dots + \underbrace{2 \cdot 2 \cdot (l-2)}_{\text{Level } 2} + \underbrace{1 \cdot 2 \cdot (l-1)}_{\text{Level } 1}$$

$$= \sum_{i=0}^{l-1} 2^{i} \cdot 2 \cdot (l-1-i)$$

$$= 2(l-1) \cdot \sum_{i=0}^{l-1} 2^{i} - 2 \cdot \sum_{i=0}^{l-1} i2^{i}$$

$$= 2^{l-1} = 2^{l-1} = 2^{l-2} \cdot 2^{l-2} = 2^{l-2} \cdot 2^{l-2} = 2$$

DELETEMAX: DELETEMAX verhält sich von der Laufzeit genaso wie REHEAP mit einem Element weniger.

HEAPSORT: Die Anzahl der Vergleiche ist kleiner als die Anzahl der Verlgeiche bei CREATE-HEAP addiert mit der Summe der Vergleiche bei allen DELETEMAX.

Wir benötigen also noch die Gesamtsumme bei DELETEMAX. Dazu hilft uns folgende Überlegung: Spätestens nach dem Löschen von 2^{l-1} vielen Elementen nimmt die Anzahl der Levels des Heap um 1 ab, nach weiteren 2^{l-2} Elementen wieder um 1, usw. Damit gilt

Vergleiche
$$\leq \underbrace{2^{l-1} \cdot 2(l-1)}_{\text{die ersten } 2^{l-1}} + \underbrace{2^{l-2} \cdot 2(l-2)}_{\text{die nächsten } 2^{l-2}} + \ldots + 2 \cdot (2 \cdot 1)$$

$$\stackrel{\text{die ersten } 2^{l-1} \text{ Elemente}}{\sim} \underset{\text{ReHeap für Heap mit}}{\sim} \underset{\text{mente}}{\sim} \underset{\text{ReHeap für Heap mit } l-1 \text{ Leveln}}{\sim}$$

$$= 2 \cdot \underbrace{\sum_{i=1}^{l-1} i2^i}_{=(l-2)2^l+2}$$

Damit ergibt sich die Anzahl der Vergleiche bei Heap-Sort zu:

$$\begin{tabular}{lll} \# \mbox{ Vergleiche} & \leq & 2 \cdot 2^l - 2 \cdot l + 2 + 2 \cdot ((l-2) \cdot 2^l + 2) \\ & = & 2l \cdot 2^l - 2 \cdot 2^l - 2l + 6 \\ \end{tabular}$$

Nachdem wir den Heap-Sort Algorithmus auf einem n-elementigen Array ausführen, ergibt sich die Höhe l zu:

$$l = \lceil \log_2(n+1) \rceil$$

Damit erhalten wir die Anzahl der Vergleiche bei n Elementen nun zu:

$$2n\log_2 n + O(n)$$

Bemerkungen:

- Mit einer von Carlssons beschriebenen Variante von Heapsort kann man ein Feld der Länge n mit maximal $n \log(n) + O(n \log \log(n))$ vielen Vergleichen sortieren.
- HeapSort ist ein sogenanntes in-situ Verfahren, d.h es benötigt nur konstant viele zusätzliche Speicherplätze.

3.2.6 Vergleichsbasierte Sortierverfahren

Wir wollen in diesem Abschnitt eine generelle Aussage über die Laufzeit von vergleichsbasierten Sortieralgorithmen treffen:

Satz 3.8 Jedes vergleichsbasierte Sortierverfahren hat Laufzeit $\Omega(n \log n)$, und es benötigt $n \log_2 n + O(n)$ viele Vergleiche.

Beweis: Der Bewis zu diesem Satz kann einer Tutoraufgabe auf Übungsblatt 8 entnommen werden.

3.2.7 Bucket-Sort

Bei Bucket-Sort handelt es sich um ein *nicht* vergleichsbasiertes Sortierverfahren. Hier werden z.B. Zahlen $a_1 \dots a_n$ aus dem Bereich $\{1 \dots n\}$ dadurch sortiert, dass sie in durchnummerierte "Eimer" $1 \dots n$ geworfen werden. Die Inhalte dieser Eimer werden dann nacheinander ausgegeben, man erhält eine sortierte Folge.

Die Laufzeit von Bucket-Sort beträgt also O(n), allerdings muss gewährleistet sein, dass die Zahlen aus dem Bereich $\{1\dots n\}$ kommen. Da dies bei Buchstaben sehr einfach zu gewähleisten ist (man denke entsprechende Codierungen, z.B. Unicode) funktioniert dieses Sortierverfahren für Wörter sehr gut (vergleiche jeweils die ersten Buchstaben, dann die zweiten, ...). Für weitere Analysen zu diesem Verfahren sei auf die Vorlesung Effiziente Algorithmen des Hauptstudiums [3] verwiesen.

3.3 Suchverfahren

Problemstellung: Gegeben sind (große) Mengen von Datensätzen, die durch einen (eindeutigen) Schlüssel gekennzeichnet sind.

Schlüssel

"In real life" ist der Schlüssel hierbei ein Textstring, eine Zahl, etc. In der Vorlesung wollen wir aber ohne Einschänkung davon ausgehen, dass der Schlüssel der gesamte Datensatz ist (sonst müssten wir zu jedem Schlüssel stets noch einen Zeiger auf den Rest des Datensatzes mitangeben).

Gesucht ist nun eine Datenstruktur, die die folgenden Operationen effizient ermöglicht:

- is_member(k)Teste, ob der Datensatz mit Schlüssel k enthalten ist.
- insert(d)Füge den Datensatz d mit Schlüssel k=k(d) ein, <u>falls</u> es noch keinen Datensatz mit Schlüssel k gibt.
- delete(k)Lösche den Datensatz mit Schlüssel k, falls vorhanden.

Bemerkung: So eine Datenstruktur nennt man Wörterbuch.

Grundsätzlich gibt es zwei verschiedene Ansätze, um Wörterbücher zu realisieren:

- 1. Hashing
- 2. Suchbäume

3.3.1 Suchbäume

Annahme: Die Schlüssel sind vergleichbar, d.h. die Menge aller Schlüssel (das sogennante *Universum*) ist total geordnet.

3.3.2 Binäre Suchbäume

Betrachten wir zunächst binäre Suchbäume. In binären Suchbäumen gilt für alle Knoten x:

- key(x) > größter Schlüssel im linken Unterbaum von x
- key(x) < kleinster Schlüssel im rechten Unterbaum von x

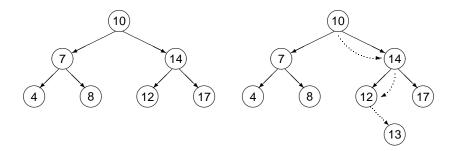
23.06.2000 Vorlesung 15

Nunmehr stellt sich natürlich die Frage, welchen Aufwand die die einzelnen Methoden, zur Manipulation der Knoten in einem binären Suchbaum der Höhe h, haben.

- is-member(k) verfügt über einen zeitlichen Aufwand von O(n). Man muss schlimmstenfalls einmal von der Wurzel des Baumes bis zu einem Blatt laufen (nämlich wenn der gesuchte Schlüssel ein Blatt des Baumes ist oder nicht im Bau enthalten ist.)
- insert(k) verfügt ebenfalls über lineare Laufzeit, also O(n). Um ein Element muss man den Baum nämlich einmal von der Wurzel bis zu dem Knoten durchlaufen, an dem das Blatt eingefügt wird.

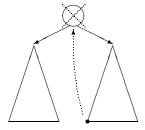
Beispiel 3.3

Um in den links dargestellten binären Suchbaum den Schlüssel 13 einzufügen geht man wie folgt vor: Man vergleicht zunächst den Wert des neuen Schlüssels mit dem wert der Wurzel. In diesem Fall ist der Wert des Schlüssels größer, als der der Wurzel, der Schlüssel muss also im rechten Teilbaum platziert werden. Der erste Knoten des Teilbaums ist nun größer als der neue Schlüssel, wir wenden uns also nach links. Wir treffen nunmehr auf ein Blatt, da der Wert dieses Blattes kleiner als der neue Schlüssel ist, wird der Schüssel als rechter Teilbaum dieses Knotens eingefügt.



- delete(k); obwohl hier der Baum unter Umständen reorganisiert werden muss, wir auch für insert(k) nur lineare Zeit verbraucht.

Löscht man die Wurzel eines Baumes (oder Teilbaumes), so wählt man das linkeste Blatt des rechten Teilbaumes der Wurzel als neuen Knoten. Es dürfte klar sein, dass dieses Blatt über den kleinsten Wert aller Blätter und damit auch den kleinsten Wert aller Knoten im rechten Teilbaum verfügt. Da alle Werte im rechten Teilbaum echt größer sind als die im linken Teilbaum, ist dieser Knoten eine gültige Wurzel.

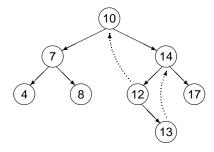


Da der Aufwand den Knoten zu finden linear ist und die Umordnung konstante Zeit benötigt ergibt sich ein Aufwand von O(n).

Wenn kein linkestes Blatt existiert muss man den Algorithmus leicht modifizieren, siehe dazu folgendes Beispiel:

Beispiel 3.4

In unserem nachstehenden Beispielbaum wird die Wurzel (Wert 10) gelöscht. Der Knoten mit dem kleinsten Wert im rechten Teilbaum ist nunmehr 12, er wird zur neuen Wurzel. Der Knoten 13 wird an den ehemaligen Vater von 12 angehangen.

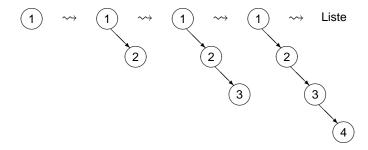


In diesem Fall wird der linkeste Knoten als neue Wurzel verwendet und der rechte Teilbaum dieses Knotens an Stelle des Knotens an dessen Vorgänger angehangen.

Ein Problem der binären Suchbäume ist es aber, dass sie nicht höhenbalanciert sind, so dass sich unter Umständen ein sehr ungünstiges Laufzeitverhalten einstellen kann.

Beispiel 3.5

Wir fügen nacheinander die Schlüssel 1,2,3,4,5, ... in einen zu Beginn leeren Baum ein. Wie in der Skizze zu erkennen erhält man eine Liste, so das die Höhe h des Baumes nicht $O(\log n)$ ist, wie erwünscht, sondern O(n) (wobei n die Zahl der Schlüssel ist)



Wie kann man nun aber sicherstellen, das man einen balancierten Baum erhält? Wir wollen im folgenden auf zwei Möglichkeiten eingehen. Die wirklich effizienten Lösungen werden aber leider erst im Hauptstudium [3] behandelt.

3.3.3 AVL-Bäume

Für alle Knoten x eines AVL-Baumes gilt, dass sie Höhe des linken und rechten Unterbaumes von x sich um höchstens 1 unterscheiden.

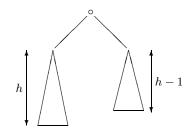
Wir modifizieren nun die Datenstruktur so, dass an jedem Knoten x die Höhe des Teilbaumes mit Wurzel x gespeichert ist.

Lemma 3.1 Ein AVL-Baum mit Höhe h enthält mindestens $(\frac{1+\sqrt{5}}{2})^h$ und höchstens 2^{h+1} viele Knoten.

Beweis: Es dürfte klar sein, das jeder binäre Baum der Höhe h höchstens 2^{h+1} viele Knoten enthält.

Die andere Aussage des Lemmas beweisen wir durch Induktion über h.

- h=0: Hier verfügt der Baum nur über einen Knoten, da $(\frac{1+\sqrt{5}}{2})^0=1$ ist die Aussage aus dem obigen Lemma für diesen Punkt erfüllt.
- h=1: Ein Baum der Höhe 1 verfügt entweder über 2 oder aber 3 Knoten, für die Zahl der Knoten gilt also ≥ 2 . Nun ist aber $(\frac{1+\sqrt{5}}{2})^1=1.618\leq 2$, womit die Aussage auch für diesen Fall gilt.
- $h\Rightarrow h+1$: Damit der gesamte Baum die Höhe h+1 hat, muss mindestens einer der beiden Teilbäume die Höhe h haben. Der andere Teilbaum hat dann mindestens die Höhe h-1.



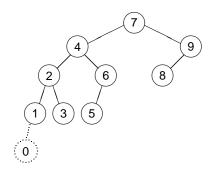
Damit ergibt sich für die Anzahl der Knoten:

$$\begin{array}{ll} \text{\# Knoten} & \geq & 1 + (\frac{1+\sqrt{5}}{2})^h + (\frac{1+\sqrt{5}}{2})^{h-1} \\ & \geq & (\frac{1+\sqrt{5}}{2})^{h-1} \cdot (\frac{1+\sqrt{5}}{2}+1) \\ & = & (\frac{1+\sqrt{5}}{2})^{h-1} \cdot (\frac{1+\sqrt{5}}{2})^2 \\ & = & (\frac{1+\sqrt{5}}{2})^{h+1} \end{array}$$

Korollar 3.1 *Ein AVL-Baum mit n Knoten hat die Höhe* $O(\log n)$.

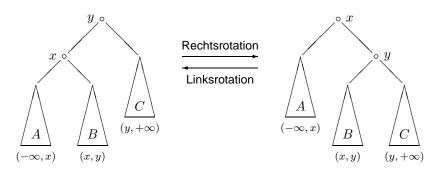
Korollar 3.2 *In einem AVL-Baum mit n Knoten hat* is_member(k) *die Laufzeit* $O(\log n)$.

Wie verhalten sich aber insert und delete? Nehmen wir als Beispiel folgenden Baum und nehmen wir an, wir wollen den Schlüssel 0 einfügen. Fügen wir den Schlüssel korrekt als Blatt des Knoten 1 ein, so ist die Höhenbedingung verletzt. Wir müssen den Baum umsortieren.

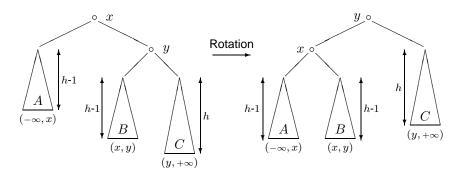


Beschäftigen wir uns also zunächst mit insert:

- 1. Dieser Schritt erfolgt wie bisher.
- 2. In diesem Schritt wird die Höhenbedingung wieder hergestellt. Es dürfte klar sein, das die Höhenbedingung nur auf dem Pfad von der Wurzel zu dem eingefügten Knoten verletzt seien kann. Wir verfolgen daher den Pfad von unten nach oben und stellen die Höhenbedingung wieder her. Dazu nutzen wir sogenannte Rotationen. Die folgende Skizze zeigt eine Rotation um *x-y*:

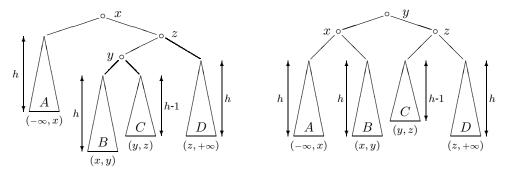


Wie man unschwer erkennen kann wird durch diese Operation die Höhe der Teilbäume verändert. Sehen wir uns daher ein Beispiel an, wie man die Rotation zum Wiederherstellen der Höhenbedingung verwenden kann:



Währen im Knoten y die Höhenbedingung nach dem Einfügen noch gilt, ist sie in x verletzt. Nach der Rotation gilt die Höhenbedingung jedoch wieder. Die Höhe der Teilbäume von y ist gleich der Höhe der Teilbäume von x vor dem Einfügen. Damit ist die Höhenbedingung jetzt überall im Baum erfüllt.

Mitunter muss man eine Doppelrotation vornehmen um den Baum zu rebalancieren.

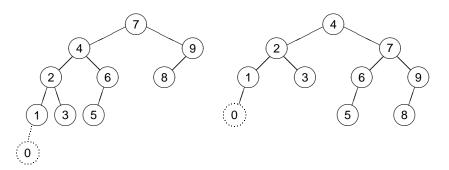


Damit dürfte einsichtig seien, dass sich insert in einem AVL-Baum mit n Knoten in $O(\log n)$ durchführen lässt.

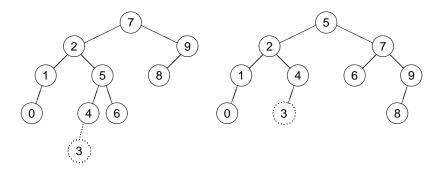
Gleiches gilt im übrigen auch für delete. Auch hier kann es natürlich sein, dass man nach dem Löschen eines Knotens den Baum rebalancieren muss. Die Vorgehensweise ist dann die gleiche wie bei insert.

Beispiel 3.6

Zum Abschluss noch ein Beispiel für das rebalancieren von AVL-Bäumen. In den folgenden Baum wird der Schlüssel 0 hinzugefügt und der Baum anschließend durch eine Einfachrotation rebalanciert.



Bei unserem zweiten Beispiel ist nach dem einfügen des Schlüssels 3 eine Doppelrotation notwendig um den Baum zu rebalancieren.



28.06.2000 Vorlesung 16

3.3.4 (a, b)-Bäume

Definition 3.2 Ein (a, b)-Baum ist ein Suchbaum, so dass gilt:

- alle Blätter haben gleiche Tiefe
- Schlüssel sind nur in den Blättern gespeichert (externer Suchbaum)
- \forall Knoten v außer Wurzel und Blättern: $a \leq \#$ Kinder $(v) \leq b$
- für Wurzel $2 \le \#$ Kinder $\le b$
- -b > 2a 1
- für alle inneren Knoten v gilt: hat v l Kinder, so sind in v l-1 Werte $k_1, \ldots k_{l-1}$ gespeichert und es gilt:

$$k_{i-1} < key(w) \le k_i \forall \mathit{Knoten}\ w\ \mathit{im}\ \mathit{i-ten}\ \mathit{Unterraum}\ \mathit{von}\ v$$

(wobei
$$k_0 = -\infty$$
, $k_l = +\infty$)

Bemerkung: (a,b)-Bäume mit b=2a-1 nennt man auch *B-Bäume*. Diese B-Bäume wurden erstmals in einer Arbeit von Prof. R. Bayer und W. McCreight im Jahr 1972 beschrieben.

Lemma 3.2 Sei T ein (a, b)-Baum mit n Blättern. Dann gilt:

$$\log_b(n) \le H\ddot{o}he(T) \le 1 + \log_a\left(\frac{n}{2}\right)$$

Beweis: Dieser Beweis sei dem Leser als Übungsaufgabe überlassen. Alternativ sei auf die Arbeit von Bayer / McCreight verwiesen. □

- is member(k):

```
\begin{split} v := & \text{Wurzel von } T \\ & \text{while } v \text{ nicht Blatt do} \\ & i := \min\{1 \leq j \leq \# \text{ Kinder}(v) \mid k \leq k_j\} \\ & v := i\text{-tes Kind von } v \\ & \text{if } k = key(v) \text{ then return ("true")} \\ & \text{else return ("false")} \end{split}
```

Die Laufzeit ist $O(H\ddot{o}he(T))$.

```
- insert(v):

Bestimme Blatt v wie in is_member(k)

w := \mathsf{parent}(v)

Füge k als zusätzliches Blatt von w ein.

while # Kinder(w) > b do

if w \neq \mathsf{Wurzel} then y := \mathsf{parent}(w)

else y := \mathsf{neue} Wurzel mit w als einzigem Kind

Zerteile w in zwei Knoten w_1 und w_2 mit den \lfloor \frac{b+1}{2} \rfloor kleinsten bzw.

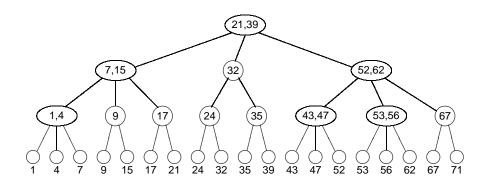
\lceil \frac{b+1}{2} \rceil größten Kindern von w

w := y
```

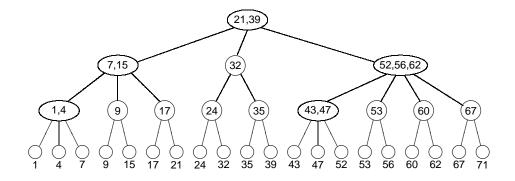
Die Laufzeit ist $O(H\ddot{o}he(T))$.

Beispiel 3.7

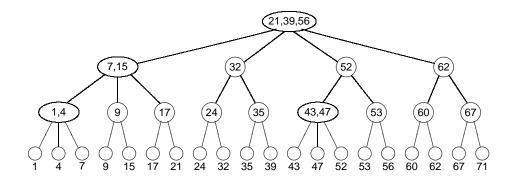
Beschäftigen wir uns nun kurz mit einem Beispiel für die Operation **insert(v)**. In den folgenden (2,3)-Baum soll ein Schlüssel mit dem Wert 60 eingefügt werden.



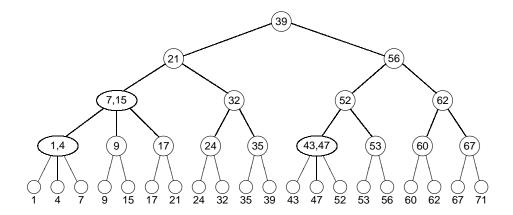
Nach dem Ausführen Einfügeoperation ergibt sich zunächst der untenstehende Baum. Eigentlich hätte man den Schlüssel 60 an den Knoten 53,56 anfügen müssen, jedoch hätte dieser Knoten dann über mehr als drei Kinder verfügt. Daher wurde der Knoten geteilt.



Durch die Aufteilungsoperation verfügt nunmehr der Knoten 52,56,62 über vier Kinder, so dass auch dieser Knoten geteilt werden muss.



Da nunmehr die Wurzel über mehr als drei Kinder verfügt wird sie geteilt und eine neue Wurzel eingefügt.



delete(k):

```
Bestimme Blatt v wie in is_member(k)

if key(v) \neq k then stop

w := \mathsf{parent}(v); Entferne v aus w.

while (# Kinder(w) < a) \land (w \neq \mathsf{Wurzel}) do

Sei y ein linker oder rechter Nachbar von w.

if # Kinder(y) = a then Verschmelze w und y.

else Adoptiere rechteste bzw. linkeste Kind von y.

w := \mathsf{parent}(w)

if (w = \mathsf{Wurzel}) und (Wurzel hat nur ein Kind) then Lösche Wurzel.
```

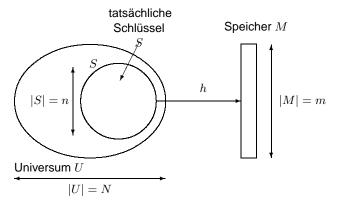
Die Laufzeit ist wiederum $O(H\ddot{o}he(T))$.

Korollar 3.3 In einem (a,b)-Baum mit n Blättern (bzw. gespeicherten Schlüsseln) kann man is_member, insert, delete in $O(\log n)$ durchführen.

Bemerkung: Die Wahl von a und b hängt wesentlich von der Größe des (a,b)-Baums ab. Allgemein gilt:

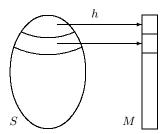
- Liegt der (a,b)-Baum im RAM, wählt man b klein. Dadurch hat man geringe Kosten für das Finden des "richtigen" Teilbaums.
- Liegt der (a,b)-Baum auf Sekundärspeichern, wählt man a groß. Der Baum hat dann geringe Höhe, dadurch ist die Anzahl der Zugriffe auf den Sekundärspeicher gering.

3.3.5 Hash-Verfahren



Hierbei soll die Hashfunktion h die Eigenschaft haben, dass man **is_member** effizient ausführen kann – und zwar (möglichst) für *alle* Mengen S.

Ansatz: h ordnet jedem Element des Universums einen festen Platz im Speicher zu.



Da $|U|\gg m$ gibt es natürlich Mengen S, so dass deren Elemente auf den gleichen Speicherplatz abgebildet werden, man spricht von *Kollisionen*. Die "Kunst" des Hashen ist dabei: Vermeide solche Kollisionen!

Im folgenden ist also näher auf diese beiden Punkte einzugehen:

30.06.2000 Vorlesung 17

- 1. Wahl der Hashfunktion h
- 2. Auflösen von Kollisionen

Zu 1.) Wahl der Hashfunktion

Idee: Betrachte beliebige Funktion h mit $\forall i | h^{-1}(i) | = \frac{N}{m}$, wobei m = |M| und N = |U|.

$$\Pr_{x,y} \left[h(x) = h(y) \right] = \frac{1}{m}$$

Dies heißt: wählt man den Datensatz zufällig, ist der Erwartungswert für die Anzahl Kollisionen klein.

Aber: In der Praxis ist der Datensatz *nicht* zufällig. Da man aber die Hashfunktion zufällig wählen kann, hätte man gerne ein Verfahren, wie man eine solche Hashfunktion mit kleinem Erwartungswert findet.

Universelles Hashing

Eine Menge \mathcal{H} von Hashfunktionen heißt *universell*, falls gilt:

$$\underbrace{\frac{\left|\left\{h \in \mathcal{H} \mid h(x) = h(y)\right\}\right|}{|\mathcal{H}|}}_{\mathbf{Pr}_h[h(x) = h(y)]} \leq \frac{1}{m} \ \forall x, y \in U$$

Beispiel 3.8

Im folgenden sei ein Beispiel für eine universelle Hashfamilie gegeben. O.E. sei m eine Primzahl. Dann ist $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$ ist ein Körper (s. hierzu auch das Skript zur Vorlesung Diskrete Strukturen I von Prof. Steger, WS 99/00)

$$x_0 \mid x_1 \mid x_2 \mid \cdots \mid x_n$$
 $\mid \log m \mid \mathsf{Bits}$

Schlüssel $x \in U$: $x = x_0, x_1, x_2, \dots, x_r$.

Wir können also x_i interpretieren als Zahl $\in \mathbb{Z}_m$. Für $a = (a_0, \dots, a_r)$ mit $a_i \in \mathbb{Z}_m$ setzen wir:

$$\begin{array}{ccc} h_a: & U & \to & \mathbb{Z}_m \\ & x & \mapsto & \sum_{i=0}^r a_i x_i \bmod m \end{array}$$

Satz 3.9 $\mathcal{H} = \{h_a \mid a = (a_0, \dots a_r), a_i \in \mathbb{Z}_m\}$ ist universell.

Beweis: Sei $x \neq y$, und damit o.E. $x_0 \neq y_0$, aber $h_a(x) = h_a(y)$. Für alle $a_1, \ldots, a_r \in \mathbb{Z}_m$ gilt:

Es gibt genau ein $a_0 \in \mathbb{Z}_m$ mit $h_a(x) = h_a(y)$, denn (mit \mathbb{Z}_m ist Körper):

$$\iff \sum_{i=0}^{r} a_i x_i = \sum_{i=0}^{r} a_i y_i \\ \iff a_0 \underbrace{(x_0 - y_0)}_{\in \mathbb{Z}_m} = \sum_{i=1}^{r} a_i (y_i - x_i)$$

Also:

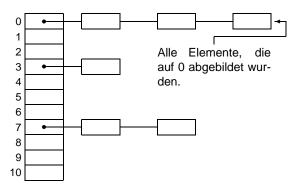
$$\Pr_a\left[h_a(x) = h_a(y)\right] = \frac{\text{\# a's mit } h_a(x) = h_a(y)}{\text{\# aller a's}} = \frac{m^r \cdot 1}{m^{r+1}} = \frac{1}{m}$$

Die a_1,\ldots,a_r können frei gewählt werden (dafür gibt es jeweils m Möglichkeiten), a_0 ist für $h_a(x)=h_a(x)$ fest, andernfalls gibt es auch hier m Möglichkeiten, a_0 zu wählen. \square

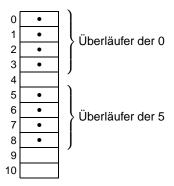
Zu 2.) Auflösen von Kollisionen

Mögliche Strategien für die Auflösung von Kollisionen sind:

Verketten:



Lineares Sortieren: Idee: Wird ein Element x auf den i-ten Speicherplatz in M abgebildet, so wird es dort gespeichert, falls der Platz noch nicht belegt ist. Sonst wird es im i+1-ten Speicherplatz gespeichert, falls dieser noch frei ist, andernfalls . . .



Faustregel: Diese Möglichkeit ist nur brauchbar, falls $|M| \gg |S|$.

```
\label{eq:doppeltes Hashen: h(k,i) = h_1(k) + i \cdot h_2(k) \bmod m, wobei \ h_1 \ \text{und} \ h_2 \ zwei \\ \text{Hashfunktionen sind.} \\ \text{insert}(k): \\ i := 0 \\ \text{do forever} \\ \text{if } M \left[ h(k,i) \right] = \text{nil then } M \left[ h(k,i) \right] := k; \ \text{stop}; \\ \text{else } i = i+1 \\ \end{cases}
```

Faustregel: brauchbar – aber nur wenn keine delete's vorkommen.

3.3.6 Vorrangwarteschlangen

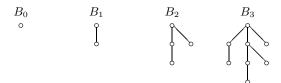
Definition 3.3 Eine Vorrangwarteschlange (engl. Priority Queue) ist eine Datenstruktur, die die folgenden Operationen unterstützt:

- Insert
- DeleteMin Finden und Löschen des Elements mit dem kleinsten Schlüssel
- DecreaseKey → Verkleinern eines Schlüssels
- Union → Vereinigung zweier Datenstrukturen

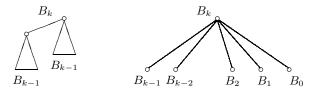
In dieser Vorlesung soll eine Realisierung einer Vorrangwarteschlange als *Binomial Heap* besprochen werden. Dieser wird heute allerdings nicht mehr (häufig) verwendet, da es eine bessere Datenstruktur gibt, die sogenannten *Fibonacci Heaps*. Für weitere Informationen hierzu sei auf die Vorlesung Effiziente Algorithmen und Datenstrukturen des Hauptstudiums [3] verwiesen.

	BinHeap	FibHeap
Insert	$O(\log n)$	O(1)
DeleteMin	$O(\log n)$	$O(\log n)$
DecreaseKey	$O(\log n)$	O(1)
Union	$O(\log n)$	O(1)
	worst case	amortisiert

Definition 3.4 Ein Baum mit einem Knoten ist der Binomialbaum B_0 . Entsprechend ist ein Baum mit zwei Knoten der Binomialbaum B_1 . Man erhält den Binomialbaum B_k , indem man die Wurzeln der zwei Binomialbäume B_{k-1} mit einer Kante verbindet.



Es gilt ebenso, dass man B_k erhält, wenn man die Wurzeln der Binomialbäume B_{k-1} ... B_0 mit einem neuen Wurzelknoten verbindet.



Lemma 3.3 Für einen Binomialbaum B_k gilt:

- er enthält 2^k Knoten, Höhe k
- es gibt genau $\binom{k}{i}$ Knoten mit Tiefe i
- die Wurzel hat Grad k, alle anderen Knoten haben Grad $\leq k-1$.

Beweis: Der Beweis sei dem Leser als Übungsaufgabe überlassen.

Definition 3.5 Ein Binomial Heap ist eine Menge \mathcal{H} von Binomialbäumen, so dass

1. jeder Binomialbaum $\in \mathcal{H}$ erfüllt die Heap-Bedingung:

$$key(x) \le key(y) \ \forall v, w \ \textit{mit} \ v \ \textit{ist} \ \textit{Vater} \ \textit{von} \ w$$

2. $\forall k \in \mathbb{N}$: \mathcal{H} enthält höchstens einen B_k

Interpretation:

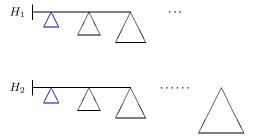
Aus der Eigenschaft (2) für Binomial Heaps folgt: Sind in \mathcal{H} n Schlüssel gespeichert, so besteht \mathcal{H} aus höchstens $\log_2 n$ vielen Bäumen.

Aus der Eigenschaft (1) folgt: In jedem Baum ist der kleinste Schlüssel in der Wurzel gespeichert.

Korollar 3.4 FindMin benötigt $O(\log n)$ Zeit.

05.07.2000 Se Vorlesung 18

Beschäftigen wir uns nun eingehender mit den Algorithmen für Union, Insert, Decease Key und Delete Min. Wie wir sehen werden lassen sich alle vier Operationen im wesentlichen auf Union zurückführen.

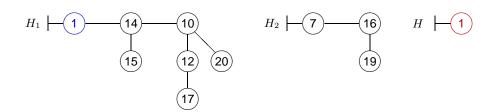


Union: Unser Ziel ist die Vereinigung zweier Binomial-Bäume H_1, H_2 zu H. Sei mintree(X) eine Funktion, die den kleinsten Baum in X zurückliefert, ebenso liefere maxtree(X) den größten Baum in X. Zu Beginn des Algorithmus ist H leer, es wird dann schrittweise so vergrößert, dass zu jedem Zeitpunkt gilt, dass maxtree(H) kleiner oder gleich mintree(H_1) und mintree(H_2) ist.

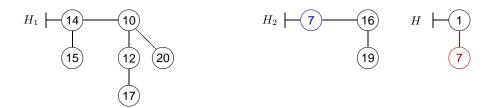
```
\begin{aligned} \mathbf{H} \coloneqq & \mathsf{leer}; \\ \mathbf{while} \ H_1 \neq \mathsf{leer} \lor H_2 \neq \mathsf{leer} \ \mathbf{do} \\ & \mathbf{if} \ \mathsf{maxtree}(H) < \mathsf{mintree}(H_1) \leq \mathsf{mintree}(H_2) \ \mathbf{then} \\ & \alpha) \ \mathsf{Verschiebe} \ \mathsf{kleinsten} \ \mathsf{Baum} \ \mathsf{in} \ H_1 \ \mathsf{nach} \ H. \\ & \mathbf{else} \ \mathsf{if} \ \mathsf{maxtree}(H) < \mathsf{mintree}(H_2) \leq \mathsf{mintree}(H_1) \ \mathsf{then} \\ & \beta) \ \mathsf{Verschiebe} \ \mathsf{den} \ \mathsf{kleinsten} \ \mathsf{Baum} \ \mathsf{in} \ H_2 \ \mathsf{nach} \ H. \\ & \mathbf{else} \ \mathsf{if} \ \mathsf{maxtree}(H) = \mathsf{mintree}(H_1) = \mathsf{mintree}(H_2) \ \mathsf{then} \\ & \gamma) \ \mathsf{Verschmelze} \ \mathsf{kleinsten} \ \mathsf{Baum} \ \mathsf{aus} \ H_1 \ \mathsf{und} \ H_2, \ \mathsf{hänge} \\ & \mathsf{neuen} \ \mathsf{Baum} \ \mathsf{in} \ H \ \mathsf{ein}. \\ & \mathbf{else} \ \mathsf{if} \ \mathsf{maxtree}(H) = \mathsf{mintree}(H_1) < \mathsf{mintree}(H_2) \ \mathsf{then} \\ & \delta) \ \mathsf{Verschmelze} \ \mathsf{kleinsten} \ \mathsf{Baum} \ \mathsf{in} \ H. \\ & \mathbf{else} \ \mathsf{if} \ \mathsf{maxtree}(H) = \mathsf{mintree}(H_2) < \mathsf{mintree}(H_1) \ \mathsf{then} \\ & \epsilon) \ \mathsf{Verschmelze} \ \mathsf{kleinsten} \ \mathsf{Baum} \ \mathsf{in} \ H_2 \ \mathsf{und} \ \mathsf{gr\"{o}\mathfrak{S}} \\ \mathsf{ten} \ \mathsf{Baum} \ \mathsf{in} \ H. \ \mathsf{Es} \ \mathsf{entsteht} \ \mathsf{ein} \ \mathsf{neuer} \ \mathsf{Baum} \ \mathsf{in} \ H. \end{aligned}
```

Man definiert hierbei mintree(leerer Heap) = ∞ .

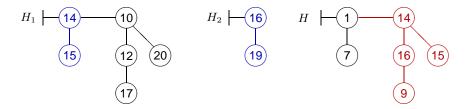
Beispiel 3.9



Im 1. Schritt (d.h. im 1. Durchgang der while-Schleife) wird der erste Knoten von H_1 nach H verschoben. Dies entspricht dem Fall Fall α aus unserem Algorithmus.

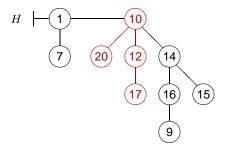


Im 2. Schritt ist es nicht mehr möglich einfach den kleinsten Teilbaum nach H zu verschieben, da H dann zwei gleich große Teilbaume enthalten würde. Vielmehr verschmelzen wir den kleinsten Teilbaum aus H_2 mit dem größten Teilbaum aus H. Damit tritt der Fall ϵ ein.



Nun im 3. Schritt ist die Situation ähnlich. Wir können keinen der beiden kleinsten Teilbäume aus H_1 und H_2 in H einfügen, da H dann ebenfalls zwei gleich große Teilbäume enthalten würde. Wir verschmelzen also die beiden Teilbäume aus H_1 und H_2 miteinander, indem wir den Teilbaum mit der größeren Wurzel an den mit der kleineren Wurzel anfügen. Der neu entstandene Baum wird nun in H eingefügt. Dies entspricht dem Fall γ ein.

Da wir im 4. Schritt sowohl in H_1 , als kleinsten, als auch in H, als größten, Teilbäume der Größe 4 haben, müssen wir die Teilbäume verschmelzen. Dies ist der Fall δ unseres Algorithmus.



Wenden wir uns nun der *Invariante* des Algorithmus Union zu. Vor und nach jedem Durchlauf der while-Schleife gilt:

$$maxtree(H) \le min\{mintree(H_1), mintree(H_2)\}\$$

Beweis: Zu Beginn trifft die Bedingung zu. Ebenso weißt man leicht nach, dass die Bedingung auch für die Fälle α , β , γ , δ und ε erhalten bleibt. Wichtig: Wir verwenden die Tatsache, dass H_1, H_2 jeden Baum B_k höchstens einmal enthält.

Wir haben also gesehen, dass der angegebene Algorithmus für Union funktioniert. Die Laufzeit des Algorithmus ist:

$$O(\text{\# B\"{a}ume in } H_1 + \text{\# B\"{a}ume in } H_2) =_{\text{S. Vorlesung } 07.07.2000} \\ O\left(\log(\text{\# Schl\"{u}ssel in } H_1) + \log(\text{\# Schl\"{u}ssel in } H_2)\right)$$

Insert(H, k): Wir gehen folgendermaßen vor:

- 1. Erzeuge einen neuen Heap H' mit Schlüssel k als einzigem Element.
- 2. H := Union(H, H')

Klar ist, dass sich die Laufzeit zu $O(\log(\# \text{ Elemente in } H))$ ergibt.

DeleteMin(*H***):** Wir wissen, dass das Minimum stets die Wurzel eines Baumes ist.

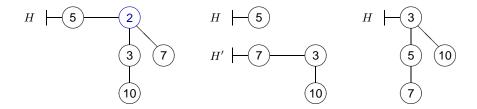
1. Bestimme den Baum in H mit der kleinsten Wurzel.

- 2. Gebe Wurzel des Baumes aus und erzeuge einen neuen Heap H' mit allen Unterbäumen der Wurzel.
- 3. H := Union(H, H')

Klar ist wiederum: Laufzeit $O(\log(\# \text{ Elemente in } H))$.

Beispiel 3.10

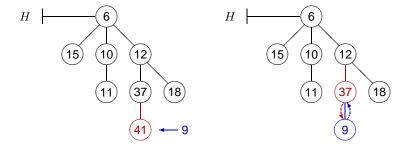
Im folgendem Beispiel entfernen wir den Knoten 2 aus dem Binomial Heap (links). Dadurch zerfällt der Heap in zwei Teile (mitte), die dann mittels Union wieder vereinigt werden (rechts).



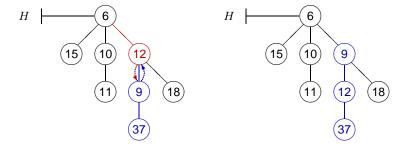
DeceaseKey(H**,** x**,** k**):** Zur Erinnerung sei noch einmal erwähnt, dass diese Operation den Schlüssel von x auf k setzen sollte, falls k < key[x]. Doch zunächst folgendes Beispiel:

Beispiel 3.11

In dem folgenden Heap soll der Schlüssel 41 durch 9 ersetzt werden (links). Tut man dies, so ist jedoch die Heapbedingung nicht mehr erfüllt (rechts), da der Vater von 9, der Knoten 37, dann größer als 9 ist. Um die Heapbedingung wieder herzustellen vertauscht man beide Knoten miteinander.



Nach dem ersten Vertauschen ist die Heapbedingung jedoch immer noch verletzt (links), so dass man noch einmal die Knoten vertauschen muss. Auf diese Weise wandert der Knoten solange im Baum nach oben bis die Heapbedingung erfüllt ist (rechts).



Für DecreaseKey ergibt sich somit der folgende Algorithmus:

```
\begin{array}{l} \textbf{if } key[x] < k \textbf{ then } \textbf{error;} \\ \textbf{else } key[x] = k; \ y := x; \ z := \textbf{Vater(}x\textbf{);} \\ \textbf{while } z \neq \textbf{nil} \land key[y] < key[z] \textbf{ do} \\ \textbf{Vertausche } \textbf{Inhalt } \textbf{von } y \textbf{ und } z; \\ y := z; \ z := \textbf{Vater(}x\textbf{);} \end{array}
```

Für Laufzeit seine Laufzeit gilt schließlich:

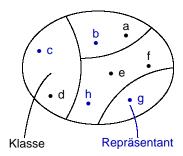
 $O(\max. H\ddot{o}he \text{ eines Baumes in } H) = O(\log(\# \text{Schlüssel in } H))$

3.4 Mengendarstellungen – Union-Find Strukturen

Problemstellung: Gegeben sei eine (endliche) Menge S, die in Klassen X_i partitioniert ist:

$$S = X_1 \dot{\cup} X_2 \dot{\cup} \dots \dot{\cup} X_l$$

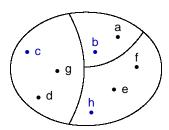
Für jede Klasse X_i gibt es hierbei einen Repräsentanten $r_i \in X_i$.



Gesucht wird eine Datenstruktur, welche die folgenden Operationen unterstützt:

- $Init(S) \rightsquigarrow Jedes$ Element bildet eine eigene Klasse mit sich selbst als Repräsentanten.
- Union $(r, s) \leadsto$ Vereinige die beiden Klassen mit den Repräsentanten r und s, wähle r als neuen Repräsentanten.
- Find(x) \leadsto Bestimme zu $x \in S$ den Repräsentanten der Klasse, die x enthält.

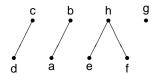
In unserem Beispiel würde Find(d) den Wert c liefern. Führt man die Operation Union(c,g) auf unserem Beispiel auf so erhält man folgendes Resultat:



Eine solche Datenstruktur nennt man auch Union-Find-Struktur.

Eine triviale Implementierung benötigt O(|S|) für die Operation Union. Ziel ist eine Laufzeit für Union von $O(\log(|S|))$. Wir werden sehen, dass es sogar noch besser geht.

Um logarithmische Laufzeit zu erreichen, realisieren wir die Datenstruktur als Vereinigung von zur Wurzel hin gerichteten Bäumen. Dabei bilden die Repräsentanten die Wurzeln und die restlichen Elemente der Klasse die restlichen Knoten.



Die Operationen Find und Union sind dann folgendermaßen zu implementieren:

Find(x): Laufe von x zur Wurzel und gebe diese aus. Da wir davon ausgehen, dass x ein Zeiger auf den knoten bzw. der knoten selbst ist, beträgt die Laufzeit ist $O(\max$. Höhe eines Baumes).

Union: Unser Ziel ist, Union so zu implementieren, dass die maximale Höhe eine Baumes $\leq log_2|S|$ ist. Die Operation Union hat dabei Laufzeit O(1).

07.07.2000 Vorlesung 19

Bevor wir die Betrachtung von Union-Find Strukturen fortsetzen, betrachten wir folgendes Anwendungsbeispiel:

Beispiel 3.12

Kruskals Algorithmus für Minimum Spanning Tree (MST)

In der Vorlesung Diskrete Strukturen I [1] haben wir uns ausführlich mit Kruskals Algorithmus für Minimale Spannbäume auseinander gesetzt. Zur Erinnerung sei er hier noch einmal wiedergegeben:

```
Kruskals Algorithmus Version 2 

Eingabe: zshgd. Graph G=(V,E), wobei E=\{e_1,\ldots,e_m\}, Gewichte w[e]; Ausgabe: Kantenmenge T eines min. spann. Baums in G. Sortiere die Kantenmenge so, dass gilt: w[e_1] \leq w[e_2] \leq \ldots \leq w[e_m]; T:=\emptyset; for i:=1 to m do if T\cup\{e_i\} kreisfrei then T:=T\cup\{e_i\}; od
```

Allerdings haben wir damals die Frage ausgeklammert, wie man effizient bestimmt ob das Einfügen einer Kante einen Kreis erzeugt. Dies wollen wir nun nachholen, da damit die Effizienz des Algorithmus steht und fällt.

Geht man nach einen primitiven Ansatz vor, so erreicht man quadratische Laufzeit. Man fügt die aktuell betrachtete Kante temporär in den bestehenden kreisfreihen Graphen ein und testet ob der Graph dann immer noch kreisfrei ist.

Union-Find-Strukturen ermöglichen es nun eine Laufzeit von $O(|E|\log|V|)$ zu erreichen. Beim Aufbauen des Spannbaums nutzen wir diese Datenstruktur derart, dass alle Knoten die in einer Zusammenhangskomponente liegen jeweils einer Klasse angehören. Zu Beginn liegt jeder Knoten in einer eigenen Klasse. Wollen wir testen ob wir eine Kante in den

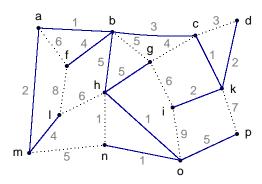
Spannbaum einfügen können, so testen wir einfach, ob die sie begrenzenden Knoten in verschiedenen Klassen und damit in verschiedenen Zusammenhangskomponenten liegen. Wenn ja, erzeugt das Einfügen der Kante keinen Kreis und wir führen ein Union auf den beiden Klassen der Endknoten der Kante aus. Liegen beide Knoten hingegen in der selben Klasse so wird die Kante nicht in den aufzubauenden Spannbaum aufgenommen.

Damit ergibt sich der folgende Algorithmus:

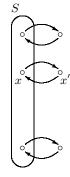
```
Kruskals Algorithmus – Version 3 

Eingabe: zusammenhängender Graph G=(V,E); Gewichte w[e]; Ausgabe: Kantenmenge T eines min. spann. Baums in G. Sortiere die Kantenmenge so, dass gilt: w[e_1] \leq w[e_2] \leq \ldots \leq w[e_m]; T:=\emptyset; Init(V); for i:=1 to m do Bestimme u,v\in V mit e_i=\{u,v\}; if \operatorname{Find}(u) \neq \operatorname{Find}(v) then T:=T\cup\{e_i\}; Union(Find(u), Find(v)); fi
```

Im folgenden ist ein Beispielgraph mit gewichteten Kanten abgebildet, in dem der minimale Spannbaum nach dem Algorithmus von Kruskal bestimmt wurde.



Bevor wir uns eingehender mit der Implementierung der Operationen Init(s), Find(x) und Union(r, s) beschäftigen, wollen wir uns noch einmal über ihre grundlegende Arbeitsweise klar werden:



- Init(s) legt von jedem Element $x \in S$ eine *Kopie* an.
- Union(*r*, *s*) hängt die *Kopien* geeignet zusammen.
- Find(x) verfolgt zunächst den Link zur Kopie von x und von dort aus weiter zur Wurzel.

Wie kann nun ein $\mathsf{Union}(r,s)$ implementiert werden? Vor der Union -Operation stellt sich folgende Situation dar:

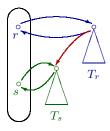


Annnahme: Jede Wurzel kennt die Höhe ihres Baumes. Zu Beginn gilt: $\forall x \in S$: Höhe(x) = 0. Wir unterscheiden nun 2 Fälle:

1. Fall: $H\ddot{o}he[r] \geq H\ddot{o}he[s]$

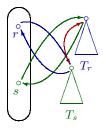
Füge Baum mit Wurzel s als neuen Unterbaum von r ein.

$$H\ddot{o}he[r] := max\{H\ddot{o}he[r], H\ddot{o}he[s] + 1\}$$



2. Fall: $H\ddot{o}he[r] < H\ddot{o}he[s]$

Hierbei muss darauf geachtet werden, dass nach Definition von Union gesteuert werden soll, welche der beiden Wurzeln die neue Wurzel sein soll.



- 1. Schritt: Vertausche Wurzeln von T_r und T_s .
- 2. Schritt: Weiter wie im 1. Fall.

Klar ist nun: Union benötigt O(1) Zeit.

Lemma 3.4 Für jeden Baum T_r gilt:

$$H\ddot{o}he(T_r) \leq \log_2 \left(\# \text{ Knoten in } T_r \right)$$

Beweis: Zu Beginn stimmt die Behauptung des Lemmas. Für Union zweier Bäume T_r und T_s gilt: Sei h_r die Höhe von T_r und n_r die Anzahl Knoten in T_r . Analoges gelte für h_s und n_s .

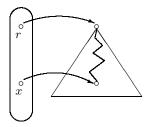
- **1. Fall:** $h_r = h_s$
 - Höhe h des neuen Baumes ist $h = h_r + 1$.
 - Anzahl Knoten des neuen Baumes ist $n = n_r + n_s$.

Zu zeigen ist $h \leq \log_2 n$:

$$\begin{array}{rcl} \log_2 n & = & \log_2(n_r + n_s) \\ & \geq & \log_2(2n_r) & \text{ o.E. ist } n_r < n_s \\ & = & 1 + \log_2(n_r) \\ & \geq & 1 + h_r & \text{ Induktion} \end{array}$$

2. Fall: $h_r > h_s$ Dann $h = h_r \le \log_2(n_r) \le \log_2(n)$.

Aus dem Lemma folgt: Find(x) hat worst case Laufzeit $O(\log |S|)$. Kann diese Laufzeit von Find(x) verbessert werden?



Den angegebenen Pfad von r nach x durchläuft man nun zweimal (einmal von x nach r und dann wieder zurück). Beim Zurücklaufen erhalten alle Knoten auf dem Weg von r nach x mitgeteilt, dass r ihre Wurzel ist. Zugriffe auf diese Knoten können dann im nächsten Schritt in konstanter Zeit erfolgen!

Die ändert zwar nichts an der worst case Laufzeit, allerdings kann man nun zeigen, dass sich die Laufzeit im average case dadurch verbessert. Die vorgestellt Methode wird hierbei *Path Compression* genannt.

Analyse von Path Compression:

Bei Find(x) werden alle Knoten auf dem Pfad von x zur Wurzel direkt unter die Wurzel gehängt. Für die Analyse betrachtet man Folgen von m (beliebigen) Union / Find Aufrufen nach einem Init auf eine n-elementige Menge.

Eine triviale Abschätzung ist $O(m \log n)$. Mit etwas mehr Mühe (s. Hauptstudium) erhält man: $O(m \log^* n)$. Hierbei bedeutet $\log^* n$ die Anzahl der \log Operationen, die hintereinander angewendet werden müssen, bis das Ergebnis ≤ 1 ist. Mit viel mehr Mühe erhält man: $O(m \cdot \alpha(m,n))$. Hierbei ist $\alpha(m,n)$ die Inverse der Ackermannfunktion, und definiert als:

$$\alpha(m,n) := \min\{i : A\left(i, \left\lfloor \frac{m}{n} \right\rfloor\right) \ge \log_2 n\}$$

Man bemerke hierbei, dass die Ackermann-Funktion (s. Beispiel 2.5 auf Seite 40) *sehr* schnell wächst (und nicht primitiv rekursiv ist). Entsprechend langsam wächst die Inverse dieser Funktion

Für Spezialfälle (Details s. Hauptstudiumsvorlesung Effiziente Algorithmen und Datenstrukturen [3]) geht es noch besser. Insbesondere kann man damit Kruskals Algorithmus in

$$\underbrace{O(m \log n)}_{\text{Sortieren}} + \underbrace{O(m)}_{\text{Schleife}}$$

implementieren. Für praktische Anwendungen ist bereits der Faktor $\log n$ sehr kritisch.

3.5 Graphenalgorithmen

3.5.1 Kürzeste Pfade

Problemstellung:

Gegeben: Graph G=(V,E), |V|=n, |E|=m, wobei eine Längenfunktion $l:E\to\mathbb{Z};$ $s,t\in V$

Gesucht: ein bezüglich l kürzester Pfad von s nach t

Aus der Vorlesung Diskrete Strukturen I (WS 99/00) [1] wissen wir: Kürzeste Pfade in ungewichteten Graphen kann man mit Breitensuche in O(m+n) bestimmen.

Algorithmus von Dijkstra

Dieser Algorithmus funktioniert nur für Graphen mit $l \geq 0$. Es ist nicht immer möglich, die Kantengewichte auf solche Werte zurückzuführen (auch das Addieren einer großen Zahl bei negativen Gewichten hilft dann nicht in jedem Fall weiter).

Verwende folgende Datenstrukturen:

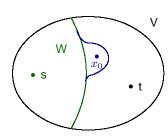
- W :=Werte der Knoten x, zu denen ein kürzester s-x Pfad bekannt ist.
- $\rho[x]$: Array, um die Länge des kürzesten schon bekannten s-v Pfades zu speichern.

Der Algorithmus von Dijkstra stellt sich nun folgendermaßen dar:

```
\begin{array}{lll} \operatorname{DIJKSTRA}(G,\ell,s,t) \\ \star & \operatorname{Initialisierung} \star \\ W & := & \left\{s\right\}; \\ \rho[v] & := & \left\{ \begin{array}{ll} 0 & \operatorname{falls} \ v = s \\ \ell(s,v) & \operatorname{falls} \ v \in \Gamma(s) \\ \infty & \operatorname{sonst} \end{array} \right. \\ \operatorname{pred}[v] & := & \left\{ \begin{array}{ll} s & \operatorname{falls} \ v \in \Gamma(s) \\ \infty & \operatorname{sonst} \end{array} \right. \\ \star & \operatorname{Hauptschleife} \star \\ \operatorname{while} \ t \not\in W \ \operatorname{do} \\ & \operatorname{W\"{a}hle} \ x_0 \in V \setminus W \ \operatorname{so} \ \operatorname{dass} \ \rho[x_0] = \min\{\rho[v] \mid v \in V \setminus W\}. \\ W & := W \cup \left\{x_0\right\}; \\ \operatorname{for} \ \operatorname{all} \ v \in \Gamma(x_0) \cap (V \setminus W) \ \operatorname{so} \ \operatorname{dass} \ \rho[v] > \rho[x_0] + \ell(x_0,v) \ \operatorname{do} \\ \rho[v] & := \rho[x_0] + \ell(x_0,v); \operatorname{pred}[v] & := x_0; \\ \star & \operatorname{Ausgabe} \star \\ \operatorname{return} \ t, \operatorname{pred}[t], \operatorname{pred}[\operatorname{pred}[t]], \ldots, s. \end{array}
```

12.07.2000 Vorlesung 20

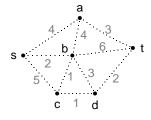
Sei W die Menge der Knoten aus V, für die die kürzesten Pfade bekannt sind. In der Schleife des Algorithmus von Dijktra werden folgende Operationen ausgeführt:

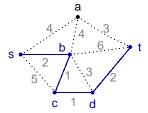


- Suche einen Knoten $x_0 \in V \setminus W$ mit minimalem Abstand zu s.
- Füge x_0 zu W hinzu.
- Aktualisiere $\rho[v]$, die Liste mit der Länge des kürzesten bekannten s-v-Pfades für jeden Knoten v, pred[v], die Liste mit den Vorgängern $\Gamma(v)$ von v in dem s-v-Pfad.

Beispiel 3.13

Im folgenden wollen wir uns die Arbeitsweise des Algorithmus an einem Beispiel verdeutlichen. Für den linken der beiden Graphen soll der kürzeste Pfad von s nach t bestimmt werden. Das Ergebnis ist links zu sehen.





81

Initialisierung: $W = \{s\}$

1. Iteration: $x_0 = b, W = \{s, b\}$

2. Iteration: $x_0 = c, W = \{s, b, c\}$

3. Iteration: $x_0 = a, W = \{s, b, c, a\}$

4. Iteration: $x_0 = d, W = \{s, b, c, a, d\}$

5. Iteration: $x_0 = t$. Der kürzeste Pfad kann nun rückwärts (jeweils über die Vorgänger) abgelesen werden: t, d, c, b, s mit Länge 6.

Beweis: (Korrektheitsbeweis)

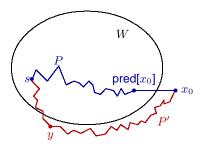
Wir zeigen: Vor und nach jeder Iteration gilt:

- 1. $\forall x \in V \setminus W$: $\rho[x] = \text{Länge eines kürzesten } s - x \text{ Pfades, der als innere Knoten nur Knoten aus } W$ enthält.
- 2. $\forall w \in W$: $\rho[w] = \text{Länge eines kürzesten } s - w \text{ Pfades.}$

Zu Beginn: Hier trifft die oben angegebene Behauptung auf jeden Fall zu.

Schritt: Betrachte Schritt $W \leftarrow W \cup \{x_0\}$.

(2): $\rho[x_0] =_{(1)}$ Länge eines kürzesten s - w Pfades mit Knoten aus W.



Angenommen es gibt doch einen anderen, kürzeren $s-x_0$ Pfad P'. Dann muss dieser Pfad mindestens einen Knoten enthalten, der außerhalb von W liegt. Sei y nun der erste Knoten auf P' außerhalb von W.

Dann gilt nach Wahl von x_0 : $\rho[y] \ge \rho[x_0]$.

 \Longrightarrow $l(P')=\rho[y]+$ Länge des Teilstücks $y-x_0\geq \rho[x_0]$ (hier wird wesentlich die Eigenschaft verwendet, dass für alle Kanten $l\geq 0$ ist).

Dies ist aber ein Widerspruch dazu, dass der Pfad P' kürzer ist als P.

(1): Wir müssen nun auch Pfade berücksichtigen, die den Knoten x_0 enthalten. \rightsquigarrow for all-Schleife.

Bemerkung: Der Beweis zeigt: Der Algorithmus von Dijkstra funktioniert nur, falls $l \geq 0$ ist

Laufzeit: Hängt *wesentlich* von der Wahl der Datenstrukturen ab: Verwendet man ein Array, so gilt:

$$\underbrace{n}_{\text{Schleife}} \underbrace{\left(O(n) + O(n)\right)}_{\text{for all}} = O\left(n^2\right)$$

Unter Verwendung von sogenanten $Priority\ Queues$ (Vorrangwarteschlangen): Implementiere $\rho[\]$ als Priority Queue, wobei der Schlüssel eines $v\in V$ genau der Wert $\rho[v]$ ist. Man erhält:

	Anzahl Aufrufe	Kosten pro Aufruf	
	Alizaili Aultuic	Bin.Heaps	Fib. Heaps
Insert	n	$O(\log n)$	O(1)
DeleteMin	n	$O(\log n)$	$O(\log n)$
DecreaseKey	$m \\ \text{pro Kante} \leq 1 \text{ Aufruf}$	$O(\log n)$	O(1)
Insgesamt		$O\left((n+m)\cdot\log n\right)$	$O(n\log n + m)$

Der Algorithmus von Floyd-Warshall

Ziel: Bestimme kürzeste Pfade zwischen je zwei Knoten.

Ansatz: Verwende dynamische Programmierung.

$$\overbrace{i} \quad \overbrace{\in \{1, \dots, k\}} \quad V = \{1, \dots, n\}$$

 $F^k[i,j] := \text{L\"{a}}$ nge eines kürzesten i-j Pfades mit Zwischenknoten $\in \{1,\dots,k\}$

Initialisierung:
$$F^0[i,j] = \left\{ egin{array}{ll} l(\{i,k\}) & \{i,j\} \in E \\ 0 & i=j \\ \infty & \mathrm{sonst} \end{array} \right.$$

Rekursion: Hier ergibt sich folgender Algorithmus:

for
$$k=1$$
 to n do

$$\forall i, j: \ F^k[i, j] = \min\{F^{k-1}[i, j], F^{k-1}[i, k] + F^{k-1}[k, j]\}$$

Ausgabe: $F^n[i,j]$

Beweis: Der Korrektheisbeweis sei dem Leser als Übungsaufgabe überlassen.

Laufzeit: Einsichtig ist: $O(n^3)$.

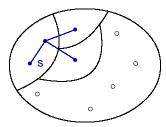
Bemerkung:

- Dieser Algorithmus funktioniert auch bei negativen Kantengewichten. Detail hierzu siehe Tutoraufgaben, Übungsblatt 9.
- Man beachte die Ähnlichkeit zum CYK-Algorithmus. Beide Algorithmen beruhen auf Dynamischer Programmierung.

3.5.2 Minimale Spannbäume

Hier kennen wir bereits den Algorithmus von Kruskal, dessen Laufzeit $O(m \log n)$ ist (m = |E|, n = |V|). Eine Alternative ist der Algorithmus von Prim.

Bei dem Algorithmus von Prim wird der MST folgendermaßen bestimmt: Um den Algorithmus zu starten wählen wir einen Knoten aus dem Graphen G aus. Dieser Knoten bildet nun das erste Element der Menge W. W ist dabei die Menge der Knoten aus G, für die der MST schon bestimmt wurde.



Nunmehr vergrößern wir W derart, dass wir immer die billigste Kante, die aus W herausführt auswählen und ihren Endknoten in W einfügen.

Wurden alle Knoten von G in W eingefügt, so bilden die Knoten aus W zusammen mit den gewählten Kanten den MST.

Der Algorithmus von Prim funktioniert damit fast genauso wie der Algorithmus von Dijkstra. Und dementsprechend ähnlich ist er diesem:

$$\begin{split} \operatorname{PRIM}(G,\ell) \\ \star \operatorname{Initialisierung} \star \\ \operatorname{W\"{a}hle einen Knoten} s \in V \text{ beliebig;} \\ W &:= \{s\}; \\ W &:= \{s\}; \\ T &:= (V,\emptyset); \\ \rho[v] &:= \begin{cases} 0 & \text{falls } v = s \\ \ell(s,v) & \text{falls } v \in \Gamma(s) \\ \infty & \text{sonst} \end{cases} \\ \operatorname{pred}[v] &:= \begin{cases} s & \text{falls } v \in \Gamma(s) \\ \text{nil sonst} \end{cases} \end{split}$$

* Hauptschleife *

```
 \begin{aligned} & \text{while } W \neq V \text{ do} \\ & \text{W\"{a}hle } x_0 \in V \setminus W \text{ so dass } \rho[x_0] = \min\{\rho[v] \mid v \in V \setminus W\}; \\ & W := W \cup \{x_0\}; \, T := T + \{x_0, \operatorname{pred}[x_0]\}; \\ & \text{ for all } v \in \Gamma(x_0) \cap (V \setminus W) \text{ mit } \rho[v] > \ell(x_0, v) \text{ do} \\ & \qquad \qquad rho[v] := \ell(x_0, v); \operatorname{pred}[v] := x_0; \\ & \star \operatorname{Ausgabe} \star \\ & \operatorname{return } T \end{aligned}
```

Die Laufzeit des Algorithmus von Prim ist: $O(n \log n + m)$.

3.5.3 Transitive Hülle

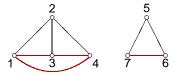
Problemstellung:

Gegeben: Gerichteter Graph D = (V, A)

Gesucht: Transitive Hülle von D, d.h. Graph $D_T = (V_T, A_T)$, wobei

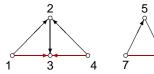
$$\{x,y\} \in A_T \iff \exists \text{gerichtete } x-y \text{ Pfad in } D$$

Bemerkung: Für *ungerichtete* Graphen ist dies einfach: wir bestimmen mit BFS (oder DFS) die Zusammenhangskomponenten und fügen eine Kante zwischen je zwei Knoten in der gleichen Zusammenhangskomponente ein.



Die Laufzeit beträgt: $\underbrace{O(n+m)}_{\mathsf{RFS}} + O\left(|E_T|\right)$

Für gerichtete Graphen ist dieses Problem viel schwieriger, vgl. Vorlesung Effiziente Algorithmen und Datenstrukturen, [3].



Kapitel 4

Komplexitätstheorie

Motivation: Bilder aus dem Buch von Garey & Johnson, *Computer and Intractability* 14.07.2000 Vorlesung 21 (1979), s. auch [4].

4.1 Definitionen

Definition 4.1 Sei $\Sigma = \{0, 1\}$ und M eine deterministische Turingmaschine. Wir setzen:

- $\mathsf{TIME}_M(x) := \# \mathit{Schritte}, \ die \ M \ bei \ \mathit{Eingabe} \ x \ \mathit{durchf\"{u}hrt}$
- DTIME(f(x)) := Menge aller Sprachen, für die es eine deterministische Mehrband-Turingmaschine M gibt mit TIME $_M(x) \le f(|x|) \ \forall x \in \Sigma^*$.

$$\mathcal{P} = \bigcup_{p \; Polynom} \mathsf{DTIME}(p(n))$$

Man sagt auch: \mathcal{P} enthält die polynomiell lösbaren Probleme bzw. \mathcal{P} entspricht den effizient lösbaren Problemen.

Beispiel 4.1

2-COLORING

Gegeben: Graph G = (V, E)Frage: Gilt $\chi(G) \leq 2$?

Fig. on $\chi(G) \leq 2$:

Es gilt: 2-COLORING $\in \mathcal{P}$. Denn: $\chi(G) \leq 2 \iff G$ bipartit.

Definition 4.2 Für nichtdeterministische Turingmaschinen definieren wir:

-
$$\mathsf{TIME}_M(x) = \left\{ \begin{array}{ll} \textit{Minimale \# Schritte, die M für eine} \\ \textit{akzeptierende Berechnung benötigt} & x \in L(M) \\ 0 & x \not\in L(M) \end{array} \right.$$

- NTIME(f(x)) := Menge aller Sprachen, für die es eine nichtdeterministische (Mehrband-) Turingmaschine M gibt mit $\mathsf{TIME}_M(x) \le f(|x|) \ \forall x \in \Sigma^*.$

$$\mathcal{NP} = \bigcup_{\substack{p \ Polynom}} \mathsf{NTIME}(p(n))$$

Beachte: Bei \mathcal{NP} -Problemen wird nur gefordert, dass es eine akzeptierende Berechnung gibt, die nur polynomiell lange dauert. Es wird aber nichts darüber gesagt, wie man diese finden kann.

Eine alternative Formulierung der Definition von \mathcal{NP} wäre:

Definition 4.3

$$L \in \mathcal{NP} \iff \textit{jedem } x \in \Sigma^* \textit{ kann man eine Menge von L\"osungen } sol(x) \subseteq \Sigma^* \\ \textit{zuordnen, so dass gilt:} \\ 1. \ x \in L \Leftrightarrow sol(x) \neq \emptyset \\ 2. \ \exists \textit{ deterministische Turingmaschine, die bei Eingabe } (x,y) \textit{ in polynomiell (in } |x|) \textit{ vielen Schritten entscheidet, ob } y \in sol(x).$$

Beispiel 4.2

k-COLORING

Gegeben: Graph G = (V, E)Frage: Gilt $\chi(G) \leq k$?

Das Problem ist in \mathcal{NP} . Setze bespielsweise:

$$sol(G) = \{c : V \to \{1, \dots k\} \mid c(u) \neq c(v) \ \forall \{u, v\} \in E\}$$

Beispiel 4.3

COLORING

Gegeben: Graph $G = (V, E), k \in \mathbb{N}$

Frage: Gilt $\chi(G) \leq k$?

Auch dieses Problem gehört zu \mathcal{NP} .

Beispiel 4.4

SAT

Gegeben: Boolsche Formel F in konjunktiver Normalfom (KNF, CNF)

Frage: Gibt es eine erfüllende Belegung für F

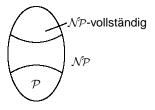
Eine Beispiel-Formel wäre $(x_1, x_2, x_3 \text{ sind Literale})$:

$$F = \underbrace{(x_1 \vee \overline{x_2} \vee x_3)}_{\text{Klausel}} \wedge (x_2 \vee \overline{x_3}) \wedge (x_1 \vee \overline{x_3})$$

Eine erfüllende Belegung wäre: $x_1 = WAHR$, $x_2 = WAHR$, $x_3 = FALSCH$ ist erfüllende Belegung.

Eine der wichtigsten offenen Fragen der Informatik ist: Gilt $\mathcal{P} = \mathcal{NP}$?

Klar ist: $\mathcal{P} \subseteq \mathcal{NP}$. Vermutung: Nein!



4.2 NP-Vollständigkeit

Definition 4.4 Seien $A \subseteq \Sigma^*$ und $B \subseteq \Gamma^*$ Sprachen. Dann heisst A auf B polynomiell reduzierbar (Schreibweise $A \leq_p B$), falls es eine totale, polynomiell berechenbare Funktion $f: \Sigma^* \to \Gamma^*$ gibt mit

$$x \in A \iff f(x) \in B \ \forall x \in \Sigma^*$$

Bemerkung:

1. Relation \leq_p ist transitiv, d.h.

$$A \leq_p B \land B \leq_p C \Longrightarrow A \leq_p C$$

- 2. (a) $A \leq_p B \land B \in \mathcal{P} \Longrightarrow A \in \mathcal{P}$
 - (b) $A \leq_n B \land B \in \mathcal{NP} \Longrightarrow A \in \mathcal{NP}$

Definition 4.5

- Eine Sprache A heisst \mathcal{NP} -schwer, falls für alle Sprachen $L \in \mathcal{NP}$ gilt: $L \leq_p A$.
- Eine Sprache A heisst NP-vollständig, falls $A \in NP$ und A NP-schwer ist.

Intuitiv:

- Die \mathcal{NP} -vollständigen Probleme sind "die schwersten" Probleme in \mathcal{NP} .
- Ein NP-schweres Problem ist und "mindestens so schwierig" wie *jedes* Problem in NP. Beachte, dass NP-schwere Probleme nicht unbedingt ∈ NP sein müssen.

Bemerkung: \mathcal{NP} -schwere (engl. \mathcal{NP} -hard) Probleme werden im Deutschen zu weilen auch als \mathcal{NP} -hart bezeichnet.

Der Begriff \mathcal{NP} -Vollständigkeit wurde 1971 von Cook eingeführt. Er bewies folgenden Satz, der unabhängig davon auch 1973 von Levin gezeigt wurde:

Satz 4.1 SAT ist NP-vollständig.

Beweis: Zu zeigen ist:

19.07.2000 Vorlesung 22

- 1. SAT $\in \mathcal{NP}$. Dies wurde bereist oben gezeigt.
- 2. $\forall L \in \mathcal{NP}$ gilt: $L \leq_p \mathsf{SAT}$

Sei $L \in \mathcal{NP}$ beliebig. Wir zeigen $L \leq_p \mathsf{SAT}$, d.h. wir müssen zeigen: es gibt eine polynomiell berechenbare Funktion $f: \Sigma^* \to \Sigma^*$ mit

$$x \in L \iff f(x) \in \mathsf{SAT}$$

Anders ausgedrückt: wir müssen uns eine Konstruktion ausdenken, die aus $x \in \Sigma^*$ eine Boolesche Formel F_x erzeugt, so dass gilt:

$$x \in L \iff F_x \text{ erfüllbar}$$

Idee: Nach Annahme ist $L \in \mathcal{NP}$. Also gibt es eine nichtdeterministische Turingmaschine M für L und ein Polynom p mit

$$TIME_M(x) \le p(|x|) \ \forall x \in \Sigma^*$$

Ziel: Konstruiere aus M für jedes $n \in \mathbb{N}$ eine Formel F mit Variablen $x_1, \ldots, x_n, z_1, \ldots, z_{q(n)}$, wobei q() ein Polynom ist, so dass:

$$M$$
 akzeptiert $x=x_1x_2\dots x_n\iff\exists$ Belegung für $z_1,\dots,z_{q(n)}$, so dass $x_1,\dots,x_n,z_1,\dots,z_{q(n)}$ erfüllende Belegung für F ist.

Wie macht man das? Wir müssen folgende Variablen einführen:

- $P_{s,t}^i = s$ -te Zelle des Bandes enthält zum Zeitpunkt t das Symbol i.
- Q_t^j $\hat{=}$ Turingmaschine befindet sich zum Zeitpunkt t im j-ten Zustand.
- $S_{s,t} \stackrel{.}{=}$ Schreib- / Lesekopf der Turingmaschine ist zum Zeitpunkt t an Position s.

wobei

$$i \in \Gamma = \{0, 1, \square\},\$$

$$-1 \le t \le t^* = p(n) \text{ mit } n = |x|,$$

-
$$1 \le s \le t^*$$
,

- $0 \le j \le k$ und

-
$$Z = \{z_0, \underbrace{z_1, \dots, z_e}_{=E}, z_{e+1}, \dots z_k\}.$$

Klar: # Variablen ist ploynomiell in |x|. Wir müssen sicherstellen, dass die Variablen auch die intendierte Eigenschaft haben. Dazu benötigen wir noch Klauseln:

Formel
$$\mathcal{F} = A \wedge B \wedge C \wedge D \wedge E \wedge F$$

Teilformel *A*: stellt sicher, dass zu jedem Zeitpunkt der Schreib– / Lesekopf an genau einer Stelle ist.

$$A = A_1 \wedge \ldots \wedge A_{t^*}$$

$$A_{\gamma} = (S_{1,\gamma} \vee \ldots \vee S_{t^*,\gamma}) \wedge \bigcap_{\alpha \neq \beta} (S_{\alpha,\gamma} \Longrightarrow \neg S_{\beta,\gamma})$$

Teilformel B: stellt sicher, dass zu jedem Zeitpunkt jede Zelle genau ein Symbol enthält. Die Details sind analog zu A.

Teilformel C: zu jedem Zeitpunkt ist Turingmaschine in genau einem Zustand. Die Details sind wiederum analog zu A.

Teilformel D: stellt sicher, dass die Turingmaschine zum Zeitpunkt t=1 im Zustand z_0 ist mit Schreib- / Lesekopf an Position 1 und Eingabe x_1, \ldots, x_n an Position $1, \ldots, n$ des Bandes.

$$D = P_{1,1}^{x_1} \wedge \ldots \wedge P_{n,1}^{x_n} \wedge P_{n+1}^{\square} \wedge \ldots \wedge P_{t^*,1}^{\square} \wedge Q_1^0 \wedge S_{1,1}$$

Teilformel E: spätestens zum Zeitpunkt t^* ist die Turingmaschine in einem akzeptierenden Zustand.

$$E = (Q_1^1 \vee Q_1^2 \vee \ldots \vee Q_1^e) \vee (Q_2^1 \vee \ldots \vee Q_2^e) \vee \ldots \vee (Q_{t^*}^1 \vee \ldots \vee Q_{t^*}^e)$$

Teilformel F: modelliert Übergänge der Turingmaschine (also δ).

$$\forall (\underbrace{z_j}_{\in Z},\underbrace{\sigma}_{\in \Gamma}) \text{ betrachte Menge der Tupel } (z_{i_j},\sigma_{i_j},\underbrace{m_{i_j}}_{\{-1,0,1\}}) \delta(z_j,\sigma), \text{ wo-}$$

bei $1 \leq j \leq |\delta(z_i, \sigma)|$.

Teilformel F enthält für jedes solche Tupel (z_i, σ) :

$$\bigvee_{1 \leq s \leq t^*} \left[\left(Q_t^j \wedge S_{s,t} \wedge P_{s,t}^{\sigma} \right) \implies \left(\left(Q_{t+1}^{i_1} \wedge S_{s+m_{i_1},t+1} \wedge P_{s,t+1}^{\sigma_{i_1}} \right) \vee \dots \right. \\ \left. \dots \vee \left(Q_{t+1}^{i_r} \wedge S_{s+m_{i_r},t+1} \wedge P_{s,t+1}^{\sigma_{i_r}} \right) \right) \right]$$

Beispiel 4.5

3 SAT

Gegeben: Boolesche Formel in KNF, wobei jede Klausel höchstens drei Literale enthält. *Frage:* Gibt es eine erfüllende Wahrheitsbelegung?

Satz 4.2 3 SAT ist NP-vollständig.

Bemerkung: Es gilt: $2 \text{ SAT} \in \mathcal{P}$. Die Angabe eine polynomiellen Algorithmus für 2 SAT sei dem Leser hierbei als Übungsaufgabe überlassen.

Beweis:

1. Klar ist: 3 SAT $\in \mathcal{NP}$.

2. Zu zeigen bleibt: $\forall L \in \mathcal{NP}$: $L \leq_p$ 3 SAT

Wir wissen: \leq_p ist transitiv und SAT ist \mathcal{NP} vollständig.

D.h. es genügt zu zeigen: SAT \leq_p 3 SAT.

Sei F eine beliebige SAT Formel: Wir transformieren jede Klausel von F in eine 3 SAT Formel wie folgt:

Eine Klausel

$$(x_1 \vee \ldots \vee x_k)$$

wird umgeformt zu

$$(x_1 \vee z_1) \wedge (\overline{z_1} \vee x_2 \vee z_2) \wedge (\overline{z_2} \vee x_3 \vee z_3) \wedge \ldots \wedge (\overline{z_{k-2}} \vee x_{k-1} \vee z_{k-1}) \wedge (\overline{z_{k-1}} \vee x_k)$$

Dann gilt:

Alle x_i haben den Wert "falsch" \Longrightarrow Es gibt keine Belegung für z_i , so dass alle neuen Klauseln erfüllt sind.

Ist aber mindestens ein x_i wahr, dann gibt es eine erfüllende Belegung für die z_i 's.

21.07.2000 Vorlesung 23

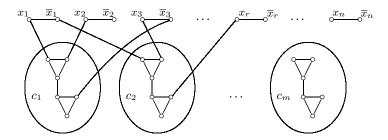
Beispiel 4.6 3 COL

Gegeben: Graph G = (V, E)Frage: Gilt $\chi(G) \leq 3$?

Satz 4.3 3 COL *ist* \mathcal{NP} -vollständig.

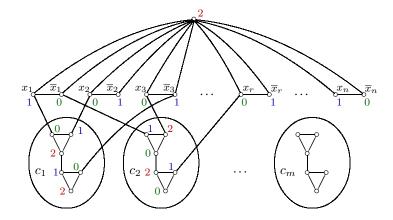
Beweis:

- 1. Offensichtlich ist 3 COL $\in \mathcal{NP}$.
- 2. Wir zeigen: 3 SAT $\leq_p 3$ COL. Zu einer gegebenen Boole'schen Formel F mit Variablen x_1,\ldots,x_n konstruieren wir einen Graphen G wie folgt: Wir erzeugen zunächst 2n Knoten mit den Variablen $(x_1,\overline{x}_1,x_1,\overline{x}_1,\ldots x_n,\overline{x}_n)$, wobei jeweils x_i und \overline{x}_i durch eine Kante verbunden sind. Weiterhin enthält der Graph die Klauseln C_1 bis C_m , die wie in der nachfolgenden Skizze konstruiert werden. Die Klauseln sind mit den in ihnen enthaltenen Variablen durch Kanten verbunden.

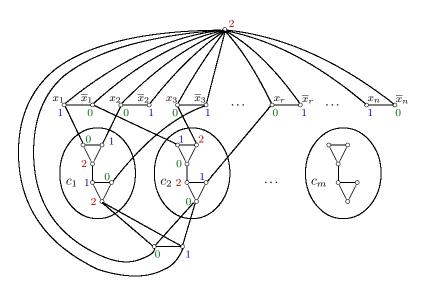


$$c_1 = x_1 \lor x_2 \lor \overline{x}_3$$
$$c_2 = x_1 \lor x_3 \lor x_i$$

Um sicherzustellen das alle Variablen mit nur zwei Farben (0,1) gefärbt werden können verbinden wir sie jeweils mit einem zusätzlichen Knoten, der die Färbung 2 erhält. Haben alle Variablen mit denen eine Klausel durch Kanten verbunden sind die Färbung 0, ist also die Klausel nicht erfüllt, so hat auch der "Ausgang" die Farbe 0. Hat hingegen mindestens eine der Variablen die Farbe 1, ist also die Klausel erfüllt, so kann man die Klausel so färben, das der "Ausgang" die Farbe 2 hat.



Um sicherzustellen das der Graph nur Klauseln enthält deren "Ausgang" den Wert 2 hat, erweitern wir den Graphen wie folgt:



Aus der Konstruktion folgt:

F erfüllbar \iff Graph G ist mit 3 Farben färbbar

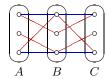
Beispiel 4.7

3-partites Matching

Gegeben: Gegeben drei paarweise disjunkte Mengen X, Y und Z und eine Menge $S \subseteq X \times Y \times Z$.

Frage: Gibt es ein perfektes Matching, also eine Teilmenge $M \subseteq S$, so dass jedes Element $v \in X \cup Y \cup Z$ in genau einem Element von M enthalten ist?

Satz 4.4 MaxMatching in Graphen kann man in polynomieller Zeit konstruieren, s. auch Vorlesung Effiziente Algorithmen und Datenstrukturen, [3].



Satz 4.5 3-partites Matching ist \mathcal{NP} -vollständig.

Beweis:

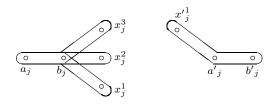
- 1. Offensichtlich ist 3-partites Matching $\in \mathcal{NP}$.
- 2. Wir zeigen wieder 3 SAT \leq_p 3-partites Matching.

$$\begin{array}{lll} X & := & \{x_i^j, \bar{x}_i^j \mid 1 \leq i \leq n, 1 \leq j \leq m\} \\ Y & := & \{y_i^j \mid 1 \leq i \leq n, 1 \leq j \leq m\} \cup \{a^j \mid 1 \leq j \leq m\} \\ & & \cup \{c_k \mid 1 \leq k \leq (n-1)m\} \\ Z & := & \{z_i^j \mid 1 \leq i \leq n, 1 \leq j \leq m\} \cup \{b^j \mid 1 \leq j \leq m\} \\ & & \cup \{d_k \mid 1 \leq k \leq (n-1)m\} \\ S_1 & := & \{(x_i^j, y_i^j, z_i^j), (\bar{x}_i^j, y_i^{j+1}, z_i^j) \mid 1 \leq i \leq n, 1 \leq j \leq m-1\} \\ & & \cup \{(x_i^m, y_i^m, z_i^m), (\bar{x}_i^m, y_i^1, zm_i) \mid 1 \leq i \leq n\} \\ S_2 & := & \{(\lambda^j, a^j, b^j) \mid 1 \leq j \leq m, \ \lambda \ \text{Literal von } C_j\} \\ S_3 & := & \{(x, c_k, d_k) \mid x \in X, \ 1 \leq k \leq (n-1)m\} \\ S & := & S_1 \cup S_2 \cup S_3 \end{array}$$

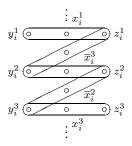
Sei also F eine Boolesche Formel mit Variablen x_1, \ldots, x_n und Klauseln c_1, \ldots, c_m .

Ziel: Konstruiere X, Y, Z und S, so dass gilt

F erfüllbar $\iff \exists$ perfektes Matching



Für Variablen x_i :



Beispiel 4.8

Subset Sum

Gegeben: Natürliche Zahlen a_1, \ldots, a_n und K.

Frage: Gibt es ein $I \subseteq \{1, \dots, n\}$, so dass $\sum_{i \in I} a_i = K$?

Satz 4.6 Subset Sum ist NP-vollständig.

Korollar 4.1 Knapsack ist NP-vollständig.

Aber: $\exists O(n^2 \cdot p_{max})$ Algorithmus für Knapsack. Dies ist *kein* Widerspruch, da die Eingabe des Algorithmus log der Profite ist, damit ist p_{max} exponentiell von der Eingabegröße abhängig.

Beispiel 4.9

Clique

Gegeben: Graph G = (V, E), Zahl $K \in \mathbb{N}$.

Frage: Enthält G einen vollständigen Subgraphen der Größe K?

k-Clique

Gegeben: Graph G = (V, E).

Frage: Enthält G einen vollständigen Subgraphen der Größe k?

Satz 4.7 Clique ist NP-vollständig.

Satz 4.8 k-Clique $\in \mathcal{P} \ \forall k \in \mathbb{N}$.

Beweis: Idee: Wir probieren alle möglichen Subgraphen der Größe k durch und testen jeweils, ob sie vollständig sind. Hierbei gibt es $\binom{n}{k}$ mögliche Subgraphen (wobei n die Anzahl der Knoten von G ist). Ebenso gilt: $\binom{n}{k} \in O(n^k)$. Da das k nun fest ist (und nicht zur Eingabegröße gehört), haben wir einen polynomiellen Algorithmus für k-Clique gefunden.

Bemerkung: Für grosse k, z.B. $k = 10^10$, ist der Algorithmus zwar immer noch polynomiell in der Eingabe (also in n), praktisch aber wäre ein Algorithmus mit einer Laufzeit von $O\left(n^{(10^10)}\right)$ wohl kaum zu verwenden.

Literaturverzeichnis

[1] Prof. Dr. Angelika Steger & Dipl. Inf. Martin Raab, Skriptum zur Vorlesung Diskrete Strukturen I WS 98/99, 6. August 1999, Lehrstuhl für Effiziente Algorithmen TUM Referenzen: 3.12, 3.5.1 [2] Prof. Dr. Dr. h.c. Wilfried Brauer Vorlesung: Einführung in die Informatik 1 (WS 98/99) WWW: http://wwwbrauer.in.tum.de/lehre/infoI/WS9899/ infoI.shtml Skript: http://www.in.tum.de/~manthey/script.htm Referenzen: 2.4 [3] Prof. Dr. Ernst W. Mayr Vorlesung: Effiziente Algorithmen und Datenstrukturen (WS 98/99) WWW: http://wwwmayr.in.tum.de/lehre/1998WS/ea/ Skript: http://wwwmayr.in.tum.de/skripten/ead_ws9899.ps.gz Referenzen: 3.2.7, 3.3.2, 3.3.6, 3.4, 3.5.3, 4.4 [4] M. Garey, D. Johnson, Computers and Intractability - A Guide to the Theory of NP-completeness Freeman, 1979 Referenzen: 4

Index

Symbols	Turing38
(a,b)-Baum 65	WHILE 39, 41
ε-frei	Binomial Heap siehe Heap
<i>μ</i> -Operator	Binomialbaum70
μ-rekursiv	BNF siehe Backus-Naur-Form
2-Coloring	Bucket-Sortsiehe Sortierverfahren
3 COL	
3-partites Matching	\mathbf{C}
F	Charakteristische Funktion 47, 48
${f A}$	Chomsky
Ableitungs-	Grammatik1
baum5	Hierarchie
graph5	Normalform
Abschlusseigenschaften 32	Clique
kontextfreie Sprachen 20	Coloring
reguläre Sprachen 14	Compiler
Ackermann-Funktion 40, 47	CYK-Algorithmus
Äquivalenzproblem 15	D
Algorithmen51	D Determination 51
Algorithmus von Dijkstra 80	Datenstrukturen
Algorithmus von Prim 83	dynamische Programmierung 18
auf Graphen siehe	dynamische Programmerung 18
Graphenalgorithmen	E
	-
Kruskals Algorithmus 76, 83	Endlichkeitsproblem
Alphabet	Endlichkeitsproblem
Alphabet	entscheidbare Sprache 48
Algorithmen	entscheidbare Sprache
Alphabet	entscheidbare Sprache 48
Alphabet	entscheidbare Sprache
Alphabet 1 Analyse 53 Algorithmen 53 average case 54 lexikalische 33 syntaktische 34 worst case 54 Ausdrücke regulär 10 Automat deterministisch, endlich 6 Kellerautomat 23 deterministisch 24, 27 AVL-Baum 62	entscheidbare Sprache
Alphabet 1 Analyse 53 Algorithmen 53 average case 54 lexikalische 33 syntaktische 34 worst case 54 Ausdrücke regulär 10 Automat 6 Kellerautomat 23 deterministisch 24, 27 AVL-Baum 62	entscheidbare Sprache
Alphabet 1 Analyse 53 Algorithmen 53 average case 54 lexikalische 33 syntaktische 34 worst case 54 Ausdrücke regulär 10 Automat 6 Kellerautomat 23 deterministisch 24, 27 AVL-Baum 62 B B-Baum	entscheidbare Sprache
Alphabet 1 Analyse 53 Algorithmen 53 average case 54 lexikalische 33 syntaktische 34 worst case 54 Ausdrücke regulär 10 Automat 6 Kellerautomat 23 deterministisch 24, 27 AVL-Baum 62 B B-Baum Backus-Naur-Form 3	entscheidbare Sprache 48 Entscheidbarkeit 15, 32, 37, 47 ϵ -frei 17 F Fibonacci Heap siehe Heap Formale Sprache 1 Funktion 47, 48 μ -rekursiv 44, 47 primitiv rekursiv 44 semi-charakteristische 48 G Grammatik 1 deterministisch kontextfrei 27 Eindeutigkeit 6 kontextfrei 2, 3
Alphabet 1 Analyse 53 Algorithmen 53 average case 54 lexikalische 33 syntaktische 34 worst case 54 Ausdrücke regulär 10 Automat deterministisch, endlich 6 Kellerautomat 23 deterministisch 24, 27 AVL-Baum 62 B B B B-Baum 65 B Backus-Naur-Form 3 B Berechenbarkeit 37	entscheidbare Sprache
Alphabet 1 Analyse 53 Algorithmen 53 average case 54 lexikalische 33 syntaktische 34 worst case 54 Ausdrücke regulär 10 Automat 6 Kellerautomat 23 deterministisch 24, 27 AVL-Baum 62 B B-Baum Backus-Naur-Form 3	entscheidbare Sprache 48 Entscheidbarkeit 15, 32, 37, 47 ϵ -frei 17 F Fibonacci Heap siehe Heap Formale Sprache 1 Funktion 47, 48 μ -rekursiv 44, 47 primitiv rekursiv 44 semi-charakteristische 48 G Grammatik 1 deterministisch kontextfrei 27 Eindeutigkeit 6 kontextfrei 2, 3

INDEX 95

Graphenalgorithmen79	Median-of-357
kürzeste Pfade 80	Mengendarstellungen75
Greibach Normalform 17	Merge-Sort siehe Sortierverfahren
	Minimum Spanning Tree 76
Н	μ -Operator
Halteproblem 47, 50	μ -rekursiv
allgemeines 51	,
spezielles 50	${f N}$
Hash-Verfahren 68	Normalform
Hashing	Chomsky
Auflösen von Kollisionen69	Greibach
doppeltes Hashen70	<i>NP</i> -Probleme85
lineares Sortieren 69	<i>NP</i> -schwer87
universelles 68	\mathcal{NP} -vollständig 87
Verketten 69	•••
Wahl der Hashfunktion68	P
Heap	<i>P</i> -Probleme
Binomial Heap70, 71	Parser34
Fibonacci Heap	Path Compression
Heap-Sort siehe Sortierverfahren	Prädikat45
Heap-Soft siene Softierverrainen	primitiv rekursiv
Ĭ	Produktion
Insertion-Sort siehe Sortierverfahren	Pumping Lemma
insertion portstene portier verrainen	kontextfreie Sprachen
K	reguläre Sprachen
k-Clique	regulare spracticit
<i>k</i> -Coloring	0
Kellerautomat	Quick-Sort siehe Sortierverfahren
deterministisch	Quiek Boit siene Boitiei vertainen
Knapsack	R
Komplexität	Reduzierbarkeit86
Komplexitätsklassen	Referenzmaschine53
\mathcal{NP}	reguläre
	Grammatik siehe Grammatik
P	Sprache siehe Sprache
<u>*</u>	sprache siene sprache
kontextfreie	S
Grammatik siehe Grammatik	SAT siehe Satisfiability
Sprache siehe Sprache	Satisfiability
kontextsensitive	Scanner
Grammatik siehe Grammatik	Schnittproblem
Sprache siehe Sprache	Selection-Sortsiehe Sortierverfahren
Kostenmaß	Sortierverfahren
logarithmisch 54	Bucket-Sort
uniform	
Kruskals Algorithmus siehe Algorithmen	Heap-Sort
_	Insertion-Sort
L	Merge-Sort
Laufzeit53	Quick-Sort
LBA30	Selection-Sort
I and siteman blanc	1 1 1 1 1
Leerheitsproblem	vergleichsbasiert 59
Linksableitung6	Spannbäume
Linksableitung6	Spannbäume minimale Spannbäume
Linksableitung 6 M	Spannbäume minimale Spannbäume
Linksableitung6	Spannbäume minimale Spannbäume

96 INDEX

kontextfrei 16
kontextsensitiv
regulär6
rekursiv aufzählbar
semi-entscheidbar 48
Subset Sum92
Suchbaum60
(a,b)-Baum65
AVL-Baum 62
B-Baum
binär
Suchen siehe Suchverfahren
Suchverfahren
Hash-Verfahren
Vorrangwarteschlange70
T
Transitive Hülle
Turing Berechenbarkeit
Turingmaschine
deterministisch 29
Konfiguration 29
linear beschränkt 30
nichtdeterministisch 28
Startkonfiguration 30
T T
U
Union-Find Strukturen
Union-Find-Struktur
Universum
V
Vorangwarteschlange70
vorung war te semange
\mathbf{W}
Wörterbuch
Wortproblem 4, 15, 18, 32
_
Z
Zeitkomplexität54